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STRICTLY OBSERVABLE LINEAR SYSTEMS*

JACOB HAMMER" AND MICHAEL HEYMANN

Abstract. A theory of strictly observable linear systems is developed in a module theoretic framework
which is consistent with the classical algebraic theory of linear time invariant realization. The theory
incorporates in a unified framework the reduction of linear systems through precompensation, through
state feedback, and through dynamic output feedback.

1. Introduction. In Hautus and Heymann [1978] and in Hammer and Heymann
[1981], the foundations for an algebraic theory of linear systems were formulated,
using the linear realization theory of Kalman [1965] (see also Kalman, Falb, and
Arbib [1969], Chapt. 10) as the starting point. In Hautus and Heymann [1978]
emphasis has been placed on the input/state behavior and on static state feedback
using the theory of K[z ]-modules (K[z] being the ring of polynomials in z over a
field K). In Hammer and Heymann [1981] the theory has been extended to investigate
the structure of dynamic as well as static output feedback. It has been shown there
that an important role in the theory of output feedback is played by the latency
structure and the latency kernel of the system. The latency structure is characterized
by the class of system inputs whose corresponding outputs are identically zero prior
to the time 0. This structure is algebraically expressed by modules over the ring
K[[z-1]] of power series (in z -1 over the field K) and led to a rich structure theory
as evidenced in Hammer and Heymann [1981].

In the present paper we focus on a "dual" class of inputs, namely, those that
generate outputs terminating at 0. This leads to a K[z]-module structure and in
particular to the concept of strict observability which is the main theme of the paper.
The basic definition of strict observability in our framework is that in the above
mentioned class of inputs all elements are polynomial (i.e., terminating at or before
t=0).

The concept of strict observability is closely related to various concepts that have
been studied (from various different points of view) in the literature. Probably the
first time the concept appeared was in Basile and Marro [1969] and in the paper by
Nikolskii [1970] who defined a linear system to be ideally observable if its state can
be observed from knowledge of the output alone (without knowledge of the corres-
ponding input). Nikolskii showed that ideal observability holds if and only if the
observability is maintained under every static state feedback law. The same concept
was introduced independently in Rappaport and Silverman [1971], who called it perfect
observability (see also Payne and Silverman [1973]). In Heymann [1972] the concept
of feedback irreducibility was introduced and a system was called feedback irreducible
if its observability is invariant (i.e., indestructible) under state feedback. Irreducibility
was also studied in Morse [1975], where a system was defined to be irreducible if the
subspace v*, i.e., the largest (A, B)-invariant subspace in the kernel of C, is zero
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(see also Morse [1973]). Morse showed that his definition of irreducibility is equivalent
to feedback irreducibility and obtained various other results on irreducible systems.
The equivalence of irreducibility and strong observability was shown in Molinary
[1976], and more recently the equivalence between the various concepts mentioned
above was discussed in Hautus [1979], where also an important characterizing rank
condition was given. Other recent related papers are Fuhrmann and Willems [1979],
[1981] and Khargonekar and Emre [1980].

In this paper we study the effects of bicausal precompensation (i.e., cascade
control) and of state as well as output feedback on the structural properties of linear
systems, with strict observability playing a central role in the theory.

In 2 we give some mathematical preliminaries reviewing the algebraic setup.
In 3 strict observability is formally defined and some basic consequences that follow
immediately from the definition are discussed. In particular, the structure of injective
precompensation orbits is investigated. Theorem 3.2 states that every injective input-
output (i/o) map can be made strictly observable by bicausal precompensation, and
Theorem 3.3 states the fact that an injective i/o map can be rendered strictly
observable, also, by static state feedback in every possible realization. Theorem 3.4
summarizes the properties of strictly observable i/o maps. In 4 the structure of
bounded f/K-modules is discussed. In 5 the structure of precompensation orbits
of injective i/o maps is investigated in detail. Reduced reachability indices are
defined. In Theorem 5.1 a Wiener-Hopf type factorization is proved for injective i/o
maps. A characterization of injective precompensation orbits based on the reduced
reachability indices is given in Theorem 5.3, and a "dynamics assignment" theorem
(by precompensators) is given in Theorem 5.5. Section 6 is devoted to an investigation
of the effect of dynamic output feedback. Theorem 6.5 states that an injective i/o
map can be made strictly observable, also, by output feedback. Theorem 6.6 gives an
"index assignment" result, i.e., it states that by output feedback any admissible set
of reachability indices can be attained for systems defined over infinite fields. In 7
contact is made between the present theory and the geometric control theory of
Wonham and Morse and supremal (A, B)-invariant subspaces in ker C are character-
ized. Finally, in 8 generalization to noninjective i/o maps is discussed.

2. Preliminaries on the mathematical setup. The reader is assumed to be familiar
with the mathematical setup and terminology of Hautus and Heymann [1978] as well
as Hammer and Heymann [1981], which we review briefly.

For a field K and a K-linear space S, we denote by AS the set of all formal
Laurent series in z -1 of the form

(21) s= } s,z-’ stS.
t=to

It can then be seen that, with coefficientwise addition and convolution multiplication,
the set AK forms a field, and under similar operations the set AS becomes a AK-linear
space. When S is finite dimensional, then so is also AS (as a AK-linear space) and
dimA,: AS dim: S.

The set AS contains as subsets the set f+S of (polynomial) elements of the form
,t_oStZ -t, and the set f-S of (power series) elements of the form ,t>=oStZ -t. In
particular, II+K and II-K form principal ideal domains under the operations defined
in AK. Furthermore, f+S and 1-S are free modules over fI+K and fl-K, respectively,
and in case the K-linear space S is finite dimensional, both of these modules are of
rank equal to dimc S.
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Let U and Y be K-linear spaces. A AK-linear map f" AU AY represents a
linear time invariant system with input value space U and output value space Y (Wyman
[1972]). The order of the AK-linear map f is defined as ordf:=
inf {ord f-u -ord u l0 u AU}, and, in case U and Y are finite dimensional, ord/Y>
-c. Below we shall always assume that U and Y are finite dimensional and we denote

m := dim: U and p := dim: Y.

Further, let L denote the K-linear space of K-linear maps U--> Y. With every
AK-linear map/r. AU--> AY one associates an element :Y-r Ttz -t in AL, called the
transfer function of f. The coefficients Tk of the transfer function are given by
Tk := pk f iu, where the K-linear maps Pk and iu are defined as

i, U AU u -u (injection)

pk AY Y Y. ytz--- yk.

It can then be readily seen that the action of f on an element u u,z-’ AU is
given by the convolution formula

:-’.

For conciseness, we shall frequently identify AK-linear maps with their transfer
functions.

Next, we define some terminology. Let s be an element in AS. Then, s is called
(i) polynomial if s 12+S, (ii) strictly polynomial if s z fUS, (iii) causal if s fl-S, (iv)
strictly causal if s z-112-S, (v) static if s S, and (vi) rational if there exists a nonzero
polynomial tO f+K such that Os is polynomial. We denote by ArS the set of all
rational elements in AS, so that A,K is the field of polynomial quotients, and A,S is
a AK-linear space.

The above terminology also applies to AK-linear maps f" AU AY through
the respective properties of their transfer functions as elements of AL. Upon applying
the convolution formula (2.2), it is easy to verify that f is" (i) polynomial if and only
if ff[lq+U] c 12+Y, (ii) strictly polynomial if and only if ff[12+U] c z l2+Y, (iii) causal
if and only if f-[I)-U]clq-Y, (iv) strictly causal if and only if f-[lq-U]c z-12-Y,
(v) static if and only if f[U]= Y, and (vi) rational if and only if f[AU]cAY. A
strictly causal and rational AK-linear map f" AU--> AY is called a linear i/o (input-
output) map. A AK-linear map l" AU--> AU is called bicausal if it is causal and has
a causal inverse.

We associate with a linear i/o map f a number of related constructs. First, we
+define the two K-homomorphlsms

! UAU (natural injection),
+r AY AY/f+Y(=: F+Y) (canonical projection).

Then we associate with every linear i/o map if" A U--> AY the 12+K-homomorphism
+ ,+

called the restricted linear i/o map. We also associate with f its output value map
defined as

f :=p ff f+" l+U- Y.
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The output value map gives the output value at (time) 1, and is, in general, (only)
a K-linear map. In certain cases, there exists an lI/K-module structure on Y, com-
patible with its K-linear structure, such that the output value map f is an II/K
homomorphism as well. If this is the case then f is called a linear i/s (input-state) map.

By a realization of a restricted linear i/o map "/U F/Y, we refer to a triple
(X, g, h), where X is an rE/K-module, and where g" f/U X and h"X F/Y are
f K-homomorphlsms satisfying/= h g. The module X is called the state space. The
realization (X, g, h) is called reachable if g is surjective and observable if h is injective.
Clearly, the condition/r= h. g implies that ker g c ker/ Conversely, if ker g c ker 1
there exists an II/K-homomorphism h "X F/Y such that (X, g, h) is a realization
of/ 

Given a realization (X, g, h), the map g" f/U-X can be viewed as the output
response map of a linear i/o map g" AU AX, which, in fact, is a linear i/s map. We
say that g is reachable if g is surjective. Finally, if (X, g, h) is a realization of f, there
exists a (static) map H’X Y such that f H. g. The last formula is called a state
representation of f.

In the present paper we shall be particularly interested in the following type of
12/K-modules. An II/K-submodule A c AS is called bounded if there exists an integer
k < oo such that ord 8 =< k for every nonzero element 8 h. If A is a nonzero and
bounded module, then the least integer k satisfying this order inequality is called the
(order) bound of A. Clearly, f/S itself and all its f/K-submodules are examples of
bounded modules. A more detailed examination of the structure of bounded modules
is given in 4 below.

3. Strict observability: Basic properties. Let f" AU--> AY be a linear i/o map
and, as before, let 7r +’ A Y--> F+Y denote the canonical projection. We introduce the
following:

DEFINITION 3.1. A linear i/o map f’AU->AY is called strictly observable if
ker 7r+/r [1+ U.

It follows immediately from the definition that if f is strictly observable then
+/ker zr is bounded and the only AK-linear space contained in it is the null space

Since, obviously, ker/zc ker zr//r, it follows that if /v is strictly observable then /
is infective, (i.e., ker f 0). In Hammer and Heymann [1981, Lemma 5.11] it was
shown that every infective linear i/s map is strictly observable.

Let AU be a fixed AK-linear space and consider the class of all rational bicausal
AK-linear maps AU - AU. Clearly, this class forms a (noncommutative) group under
the operation of composition. Under the action of this group (with elements acting
as bicausal precompensators), the class of linear i/o maps AU AY is partitioned
into (mutually exclusive) equivalence classes called (bicausal) precompensation orbits.
We next investigate these orbits.

First observe that if a linear i/o map is injective, then so is every element in its
precompensation orbit. Thus, an orbit is either infective or nonin]ective. Since, as we
have seen, strict observability implies injectivity, it follows that if a precompensation
orbit contains strictly observable elements it is injective. The theorem below, the
proof of which is postponed to 5 (see Proof 5.2), states that the converse of the
above statement is also true, namely that every injective orbit contains strictly observ-
able elements.

THEOREM 3.2. Let f" AU AY be an in]ective linear i/o map. Then, there exists
a bicausal precompensator l" AU AU such that f is strictly observable.

Consider a reachable realization (X, g, h) of a linear i/o map f’A,U-* AY; let
g" AU-AX be the i/s map associated with g, and let f H g be the corresponding
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state representation for f. Also let l" A U--> AU be a bicausal precompensator for
jr. We say that has a static state feedback representation in the realization (X, g, h)
if there exists a pair of static AK-linear maps F" AX--> AU and G" AU--> AU, with
G invertible, such that = (I +Fg)-IG.

In Hautus and Heymann [1978 Thm. 5.7], it was shown that has a static state
feedback representation in a reachable realization (X, g, h) if and only if/--1 [ker ] c

II/Uo
Suppose now that f" AU--> AY is an infective linear i/o map and that l" AU-->

AU is a bicausal precompensator for f such that f is strictly observable, that is,
ker 7r/lr/’c II/U. Let (X, g, h) be any reachable realization of jr and let g be the
restricted i/s map associated with g. Then ker ff ker g ker ]r (the equality following
from the i/s property), and it follows that

T-l[ker ] T-l[ker/r] /--l[ker r +jr] ker 7r+lrT iq+ U.

By the previous paragraph, we conclude that has a static state feedback representa-
tion over g and we just proved"

TI-IZOREM 3.3. Let f" AU--> AY be an inlective linear i/o map and let l" AU-->
AU be a bicausal precompensator such that f is strictly observable. Then has a
static state feedback representation in every reachable realization of f.

In Heymann [1972], a transfer matrix was called feedback irreducible if under
the application of static state feedback in a canonical realization, the resultant closed
loop system is necessarily also canonical, that is, the observability property is preserved.
We shall see that strict observability is equivalent to feedback irreducibility so that
Theorem 3.2 combined with Theorem 3.3 is equivalent to Theorem 6.64 in Heymann
[1972].

Let f’AU-->AY be a strictly observable linear i/o map and let 8(f) denote
its McMillan degree. If f’ is any other i/o map in the bicausal precompensation orbit
of f, then by Theorem 3.3, f can be obtained from f’ by static state feedback in
any reachable realization of f’. It follows, therefore, that (f)<-(f’), where (f’)
is the McMillan degree of f’. Thus, all strictly observable linear i/o maps in a given
(infective) bicausa! precomposation orbit have the same McMillan degree 8, which is
the minimal degree among all McMillan degrees of elements in the orbit. Furthermore,
strict observability implies feedback irreducibility. Conversely, suppose that f is a
feedback irreducible linear i/o map and let f H g be a canonical state representa-
tion of f. By Theorem 3.2, there exists a bicausal precompensator such that
f’ := f is strictly observable, and by Theorem 3.3, has a static state feedback
representation over g. It then follows (see Hautus and Heymann [1978], Cor. 5.9)
that g’:=g" is also a reachable linear i/s map and ker if= -[ker ff]. From the
feedback irreducibility of f it follows that the state representation f’= Hg’ is also
canonical, whence ker/r, ker ’. Consequently,

ker zr+/= ’[ker 7r+/r-] [ker/’] -[ker ’]

-’-[ker ] ker ff c f+U,
so that f is strictly observable. Our preceding discussion is summarized in the
following:

THEOREM 3.4. Consider the class of linear i/o maps in a fixed infective precomposi-
tion orbit. Let be the minimal McMillan degree of elements in the orbit. Then the
following statements are equivalent"

(i) f is strictly observable.
(ii) f is feedback irreducible.
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(iii) f has McMillan degree .
(iv) Every i/o map f’ in the orbit can be transformed into f by static state

feedback in any reachable realization.
Consider now two linear i/o maps f" AU AY and fa" AU - AW, and assume

that there exists a polynomial map P’AY-AW such that fa=P. fl. Then if
ukerTr f (i.e., if f(u)12/Y) it follows also that f2(u)=P, f(u)iq+W, that
is, u ker +a. We conclude then, that the existence of a polynomial map P such

fcker f2. That the converse of the abovethat f2 P fl implies that ker +- +-

statement is also true will be shown in the ensuing discussion. First, we need the
following auxiliary result (proof omitted), which is a consequence of the Smith-
McMillan canonical form theorem"

LEMMA 3.5. Let f" AU AY be a rational AK-linear map, let r := dimAr Im f
and let Yo Ybe any r-dimensional subspace. Then there exists a polynomial unimodular
map M" AY AYsuch that Im M. f AYo.

We also require the following result (compare Hammer and Heymann [1981,
Lem. 5.1]).

LEMMA 3.6. Let " AU AY be a AK-linear map. ff ker+ is a AK-
linear subspace, then kerf.

With the above lemmas we can now state and prove the polynomial factorization
theorem:

THEOREM 3.7. Let fl"AUAY and f2"AUAW be rational -linear
maps. There exists a polynomial AK-linear map P" AY AW such that f2 P" f
g and only g ker f ker f2.

Proof. That the condition of the theorem is necessary was seen in the discussion
preceding Lemma 3.5. To prove suciency, assume that ker fl c ker f. Let
r := dimAn Im f and let Y0 be any r-dimensional subspace of Y. By Lemma 3.5 there
exists a unimodular polynomial map M" AY AY such that ImM. f AY0. If we
denote fo :=Mf, it follows immediately from the necessity condition above com-
bined with the fact that both M and M- are polynomial maps, that ker f0
ker f, whence ker /oker f. Lemma 3.6 then implies that kerfo
ker f2 SO that there exists a AK-linear map Po" AYAW such that Po" fo rE.
Let Y Y be a direct summand of Yo in Y, that is, Y Yo Y. Also, let " AY AY
denote the projection onto A Yo along AY, i.e., if y yo + y AY is the decomposition
of y into its components yoAYo and yAY, then (y)=yo. We now define the
map P := Po" M and for each u AU we have

P" fl(U) Po q" Mfl(u) Pogtfo(U) Polo(u) fz(u),
whence P. fl-f2. To conclude the proof we need to show that P is polynomial,
and since by definition M is polynomial, it suffices to prove that so also is Po’q. To
this end, we first note that every element y I)/Y decomposes uniquely as y yo+ yl

with yo fl+Yo and yl fl+ Y1. Thus

Poc (y) Po(yo) Po(yo) PoFtMfl(u) P" fl(u) f(u)

for some uker +- +-
rr fl. Since by hypothesis ker rr//rl c ker rr fz, it follows that

f-2(u)=Po(y) Y/W, and the proof is complete. 71
COROLLARY 3.8. Let fl, fz" AU AY be two rational AK-linear maps. There

exists a unimodular polynomial map M AY AY such that fz Mr1 if and only
/f ker +- +-

7r fl=ker rr f2.
Proof. Necessity follows immediately from Theorem 3.7. To prove sufficiency,

/-assume that ker rr /l=ker rr fz. Then by Lemma 3.6, kerfl=ker/rz so that
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dim Im fl dim Im f2 := r. Let Yo c y be an r-dimensional K-linear subspace and
let M1, ME" AY-> AY be unimodular polynomial maps such that Im Mlfl
Im Mf2 AYo (see Lemma 3.5). Denoting flo := Mlf and f2o := MEf2, we
obviously also have ker +r+]xo ker zr+f20. By Theorem 3.7, there exist then poly-
nomial maps Po, P2o" A Y-> AY such that /2o Pof+.o and flo PEof2o. Let
Y1 c Y be a direct summand of Yo in Y and let " AY--> AY be the projection
defined in the proof of Theorem 3.7. Now define the polynomial maps P1
(Plo-I) /I and P2-t(P2o-I) +I where I is the identity map in A Y. Clearly
then also lEo=P1 flo and flo=P2 f2o, and also P2" P =PI" P2 =L (The reader
can verify these facts by direct computation.) It follows that P is unimodular and the
unimodular map M:-MxPM1 satisfies the condition of the corollary.

We conclude the section with an additional characterization of strict observability.
COROLLARY 3.9. Let f’AU-->AY be a linear i/o map. Then f is strictly

observable if and only if it has a polynomial left inverse.
+IProof. First observe that if I" AU +AU is the identity map, then ker r U.

/ /IoThus, be definition, f is strictly observable if and only if ker r ker r By
Theorem 3.7 this kernel inclusion holds if and only if there is a polynomial map
P" AY - AU such that P f I, concluding the proof.

4. Bounded fl+K-modules. Let f" AU AY be an injective linear i/o map, say
of order k. It is then readily seen that ker r+]y is a bounded f+K-submodule of AU
and its order bound is less than or equal to (-)k. Indeed, if u 0 has order greater
than (-)k, then ordf(u)->_ordi+ordu>0, whence f(u)z-f-Y, and since
f(u) 0 it follows that u ker zr

In the present section we shall study the structure of bounded fl/K-submodules
of AU. We emphasize again that U is a finite dimensional K-linear space. The structure
of bounded l)+K-submodules of AU is essentially the same as that of submodules of
I)+U, which was discussed in some detail in Hautus and Heymann [1978, 6] and
also in Forney [1975].

Let A AU be a bounded f/K-submodule with order bound k A, and for each
integer j, let S U be the K-linear space spanned by the leading coefficients t U
of all elements u A which satisfy ord u -> . In this way, we obtain a chain of K-linear
spaces

(4.1) U S]--I S] SkA--1 Sk SkA+l 0

Now, by the finite dimensionality of U, there exists an integer kA(<-_k A) such that

Sk # Sk++I and Sk-j Sk+ for all ] > 0. We call the chain {Sj} the order chain of A and
the nonincreasing sequence of integers {/+i},/+i := dim Si, we call the order list of A. In
the special case when A- ker zr+] where f is a linear i/o map, we refer to the
order chain and the order list of A, respectively, as the reduced teachability chain and
the reduced teachability list of f.

PROPOSITION 4.2. Let A, A’ c AUbe bounded +K-submodules with order chains
{Si} and {S;} and order lists {/+j} and {/z;}, respectively.

(i) /f A’ c A then for each integer ], S; Si and lz <-_

(ii) If A’ c A and for each integer ], tz; tzi, then A’ A.
Proof. (i) This is an immediate consequence of the preceding discussion.
(ii) If A’c A, then the equalities/z; =/zi imply that S; Sj for all ], and if u

is any element, there exists an element u’ A’ such that ord (u u’) > ord u. Further,
u u’ e A so that by the same argument, there is an element u" e A’ such that ord (u
u’-u") >ord (u -u’). Proceeding stepwise, we finally find elements u’, u", , u A’
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such that ord (u-u’-u" ur)>k a, where k a is the order bound of A. Since
u-u’ u teA, we conclude that u-u’ u =0, whence u=u’+
u"+. + u e A, so that also A c A’, and we conclude that A A’, as claimed. [-1

We turn now to a brief review of some results on proper bases for AK-linear
spaces and f/K-modules. A set of elements u 1,’", Uk AU is called properly
independent if and only if their leading coefficients tl,’", tk e U are K-linearly
independent. A basis for a subspace Y c AU is called a proper basis if it consists of
properly independent elements. If ul, , Uk AU is a properly independent set of
vectors, then it is also AK-linearly independent, as was shown e.g. in Hammer and
Heymann [1981, Lem. 4.2], where also the following characterization of proper
independence was proved. (See also Forney [1975].)

LEMMA 4.3. A set of nonzero elements u 1, ", Uk AU is properly independent if
and only if for every set of scalars a 1, ak AK, or alternatively, if and only if for
every set of scalars a 1, ", ak f+K, the following holds:

k

ord Y. aiui =min{ordaiui[i 1,. ., k }.
i=1

Proper bases play a role in the theory of causal AK-linear maps analogous to the
role of bases in general in the theory of linear maps. In particular, let f’ AU AY
be a AK-linear map and let u 1,’" ’, u,, be a basis for AU. If acts causally on every
element ui, that is ord f(ui)>_ ord u, it is not necessarily implied that f is a causal
map. Yet, if Ul,.. ’, u,, is a proper basis, the causality of f is assured. This is shown
in the following proposition (see also Wolovich [1974])"

PROPOSITION 4.4. Let ul, u,, be a proper basis for the AK-linear space AU
and let f" AU AY be a AK-linear map. Then f is causal if and only if ord f(ui) >=
ord ui for all 1,..., m.

Proof. The "only if" part is true by definiton. To prove the "if" part, assume
ord f(u)>-ord u, 1,..., m, let 0u AU be any element and write u ==1 aiui
for appropriate scalars O AK, 1, , m. Then,

ord (u) ord E ai[(ui) >= min {ord a,/(u)li 1,. ., rn }
i=1

>-min{ordaiui[i 1,..., m}=ord u,

where the last step is by Lemma 4.3. Thus f is causal. [3
Through a similar application of Lemma 4.3, we also have the following:
COROLLARY 4.5. Let ul," u,, be a proper basis for AU and let l" AU AU

be a AK-linear map. Then is bicausal if and only if the following conditions both hold"
(i) ord (ui)=ord ug, i= 1,..., m, and
(ii) The set (u 1), ", (u,,) is a proper basis for AU.
A basis u 1," ’, u,, of an f/K-module A c AU is called proper if u 1, , u, are

properly independent, and it will be called ordered if ord ui >-ord Ui/l for all
1,2,... ,m-1.

THEOREM 4.6. Let A AU be a bounded f/K-submodule with order chain {S.}
and order list {txj}. Then (i) there exists an ordered proper basis for A. (ii) I1 u 1, , u,
is an order proper basis for A, then the following hold"

(4.7) ord u. fortx+l <f <-_txand <=ka;
For each integer <- k a, the set of leading coefficients

(4.8)
t31, ", t,,forms a basis for Si.
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Proof. The proof is essentially the same as that of Theorem 6.11 in Hammer and
Heymann [1981], which deals with proper bases for fl-K-submodules of AU. We
shall therefore give only an outline. In view of the chain property of the Ss, there
exists a set u 1," , u,, of vectors in U (where m /Xk rank A) such that for each
ka<i<ka ou, u,, is a basis for Ss. Then, for each ka<-_i <-k a and each tZS+l</" --<
/xs, there is an element uj A having order and leading coefficient tj u. Obviously,
the set u 1,’", u,, is properly independent and the fl/K-module A’ generated by
u 1, , um satisfies A’ c A. That actually A’ A follows upon application of Proposition
4.2 (ii). Hence u1," ", u, is an ordered proper basis for A and satisfies conditions
(4.7) and (4.8) by construction Finally, that each ordered proper basis has these
properties follows from the fact that for each integer/’, every ordered proper basis
ul,." ", u, of A has precisely/xi elements whose order is greater than or equal to/"
and spank {tl," ", tk} S. [’]

fl K-submodules. An fl/K-homomorphism q" A-> A’ is calledLet A, A’ c AU be
order preserving if ord q(u)=ord u for each 0 # u A. If an order preserving q is
surjective it is obviously an isomorphism, and we call it in this case an order (preserving)
isomorphism. The submodules A and A’ are then called order isomorphic (compare
with the polynomial case in Hautus and Heymann [1978]).

PROPOSITION 4.9. Let A, A’ AU be bounded fl+K-submodules. Then A and A’
are order isomorphic if and only if they have the same order lists.

Proof. If A and A’ are order isomorphic, then it follows directly from Theorem
4.6 and Corollary 4.5 that they have the same order lists. Conversely, assume that
the bounded modules A and A’ are nonzero and have the same order lists. Then, by
Theorem 4.6, the following hold" (i) A and A’ have ordered proper bases u

respectively, (ii) m’and u , u,, m, and (iii) ord us ord us for all 1,. m.
By Hammer and Heymann [1981, Thm. 4.4], there exist then elements u,,+l, ",

and u.,+l,’’’, u, such that both of the sets ul," ", u, and u,..., u’ form proper
bases of AU, and ord us =ord us for all 1,..., n. But then, the AK-linear map
I’AUAU defined through its values as lus=us, i=l,...,n, is bicausal by
Corollary 4.5, and, since evidently lift,] fi,, our proof is complete.

It will be convenient in the sequel to define for a bounded fl+K module A AU
of rank m, a set of integers {ul, ’, u,,} called the degree indices of A, as follows. Let
u 1," ’, u,, be an ordered proper basis of A and for each i= 1,..., m define t,

-ord u. The relationship between the degree indices and the order list of h is
established by Theorem 4.6 through (4.7) and (4.8), as follows:

(4.10) v =-i for/-/,i+1 <f /-i, i-<k a.
An l)/K-submodule A = AU is called full if it contains a basis for AU. In case

A is a bounded module, then, clearly, A is full if and only if ranka+: A dim U.

5. The precompensation orbit of injective i/o maps. In the present section we
shall study the structure of the fl+K-module ker 7r+/r for injective linear i/o maps.
We shall also investigate the structural invariants of bicausal precompensation orbits.

It is well known from linear realization theory (see e.g. Fuhrmann [1976]) that
in view of the rationality of [ ker r//"/

is a full submodule of AU. It follows then
immediately, since ker 7r = ker r//r, that ker 7r is also full.

Let f" AU--> AY be an injective linear i/o map. We define the reduced reach-
ability indices {v1,’", v,,} of f as the degree indices of ker 7r+f. We observe that
in view of the strict causality of f, the ui are all positive integers. Indeed, if 0 u s
ker r/ then 0 ]r(u) s fl+ Y and ord u < ord )r(u) -< 0.
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Consider now an injective linear i/o map f" AU AY and let AU AU be
a bicausal precompensator for f[ Clearly - is also an order preserving Iq/K
isomorphism on AU, and since -[ker 7r//r"] ker 7r//7 we see (in view of Proposition
4.9) that the reduced reachability list or, equivalently, the set of reduced reachability
indices, is an orbital invariant of bicausal precompensation. Combining this fact with
Corollary 3.8, we obtain the following central factorization result"

THEOREM 5.1. Let f, f" AU AUbe injective linear i/o maps with reduced reach-
ability indices {u1,’", u,,} and {u’, u,,}, respectively. Then ui ui, 1,..., m
if and only if there exists a polynomial unimodular map M" AY AY and a bicausal
precompensator ’" AU - AUsuch that f" Mf.

Proof. If f’Mfl with M polynomial unimodular and bicausal, then, by
/f’ /f, whence ’[kerr/f’] kerr//"e, and by Prop-Corollary 3.8, ker r ker zr

osition 4.9, ker zr and ker have the same order lists (or equivalently the
same reduced reachability indices). Conversely, if ui u for 1,..., m, then

/fker zr and ker 7r/f have the same order lists,, and by Proposition 4.9 are order
isomorphic. Thus, there exists a bicausal isomorphism on AU, say --1, such that
ker zr//7’= --1 ker r/f ker r/f-. By Corollary 3.8 there exists then a unimodular
polynomial map M" AY AY such that f’ Mf l, concluding the proof.

A factorization of the type obtained in Theorem 5.1 is sometimes called in the
literature a Wiener-Hopf factorization (compare Fuhrmann and Willems [1979]).

Before proceeding with our discussion, we turn to the proof of Theorem 3.2,
which is an immediate consequence of Theorem 5.1.

Proof 5.2. Proof of Theorem 3.2. Assume that f has reduced reachability indices
{u1," .,u,,}. The injectivity of f implies that r:=dim Y->_m(=dim U). Let
f" AU AY be the AK-linear map whose transfer matrix is given by

f,= 0 z-
0

Clearly f’ is strictly observable and has the same reduced reachability indices
{u1,"’, u,} as f. Theorem 5.1 then implies that f=Mf’l for some polynomial
unimodular map M and a bicausal AK-linear map l- Then the map /--1 is a bicausal
precompensator for /r and the map f-,,=./r--1 is strictly observable since /r,,=
and by Corollary 3.8 ker 7r+/r’’= ker r+/r’( c f*U).

We conclude this section with a discussion of the problem of "dynamics assign-
ment" through bicausal precompensation. That is, we ask to what extent it is possible
to modify a system’s essential dynamic characteristics through the application of
bicausal precompensator.

We first recall some classical concepts. Let f" AU AY be a linear i/o map and
let := zr +./r././ be the restricted i/o map associated with/ The f/K-submodule
A := ker/= ker zr//r f’) 1)/ U, called the realization kernel (or realization module) of
f, uniquely defines the class of all canonical realizations of f (see e.g. Hautus and
Heymann [1978]). In particular, let XA := f/U/A, let gA := +UXA be the canonical
projection and let hA’Xa AY/I/Y denote the (unique) f/K-homomorphism such
that/ gA" ha. Then (XA, ga, ha) is a canonical realization of/e. Thus, the realization
kernel A characterizes the essential dynamical properties of f and its teachability
indices are the degree indices of the realization kernel A. (The reachability indices
are, of course, the well known Kronecker invariants of canonical realizations of f--see
also Hautus and Heymann [1978], Kalman [1971] and Kailath [1980]).
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Let jr. AU AY be an injective i/o map with reachability indices {rl,"’", r,,}
and reduced reachability indices {vl, , v,}. Since, clearly, kerf
ker r+j"+ c ker +-f, it follows upon application of Proposition 4.2 (i) and formula
(4.10), that v for 1, , m. We have seen previously that the reduced reacha-
bility indices are orbital invariants for injective orbits of precompensation and they
are shared by all i/o maps in the orbit. This, in particular, holds also for the strictly
observable i/o maps. If f is strictly observable, then ker U, whence

+ffker ker +f]+, implying that the reduced reachability indices of coincide
with its reachability indices, that is, v, 1,..., m. Conversely, suppose an i/o
map ff in the precompensation orbit satisfies , 1,..., m. Then ker +=
ker (see Proposition 4.2 (ii)) and it follows that ker +ff= U, implying
that f is strictly observable. We just proved the following"

THEOREM 5.3. Consider a fixed infective bicausal precompensation orbit 0 and
&t {v, u} denote the reduced teachability indices of elements in O. Consider an
i/o map ff 0 with teachability indices {, }. Then (i) v, 1,..., m;
(ii) v, 1,. , m g and only gf is strictly observable.

In 3 we saw that the McMillan degrees of i/o maps in an injective bicausal
precompensation orbit are bounded below by the McMillan degree of the strictly
observable i/o maps in the orbit. Since the McMillan degree of an i/o map is equal
to the sum of its reachability indices, this result is of course contained in Theorem
5.3, which gives a much stronger minimality result.

Before we proceed further, we wish to make a few remarks on the explicit
construction of ker and the computation of the reduced reachability indices.
Suppose ff is an injective linear i/o map with transfer matrix if= (z-). Then
rank ff m and we let (z) denote the least common denominator of the entries
of . Then . ff is a polynomial matrix and there exists a unimodular polynomial
matrix M, such that M($. if)= [], where D is a nonsingular polynomial matrix.
Hence M.ff=[*], and we claim that ker+ff=O .D-+U. Indeed, u
ker w if and only if /(u)= ff u Y (where we do not distinguish sharply
between the map and its associated transfer matrix). But, since M is a unimodular
polynomial matrix, ft. u +Y if and only if M. ft. u fl+Y, which in turn holds
if and only if $-Du +Y. Now, ker+ is a full bounded submodule of AU and
hence has an ordered proper basis {dr,..., din}. The reduced reachability indices of

ff are then {v1,’’ ", } where =-ord d. Finally, we note that upon defining the
matrix D+ := [d, , d], we can also write ker +ff=D++U, whence there exists
a unimodular polynomial matrix N such that ($-D)N =D+.

LEMMA 5.4. Let K be an infinite field and let A +U be a full +K-submodule
with order indices {, ., }, (i i+x). Further, let {vx, ., v}, (vi ui+), be a
set of positive integers such that v , 1, , m. Let Y be a K-linear space such
that dim Y =r m. Then there exists an infective linear i/o map f’AU AY with
reduced reachability indices {Vl," ", v} and ker[= A.

Proof. Let d,...,d be an ordered proper basis for A and define the matrix
D := [d, , d]. Let a K be any element which is not a zero of det D. (Such an

exists since K is infinite.) For each 1,..., m let 8 :=-v and define the
(m x m)-matrix D0:= diag ((z-a), (z-a)*). We now let ff’AUAY be the
K-linear map whose transfer matrix is defined by

=[D0 D-]0

where the zero submatrix is (m-r) m and may be empty. To see that f has the
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desired properties, note first that Do and D are right coprime and ker/r DI+U (see
// f/also Hautus and Heymann [1978]). Furthermore, ker 7r =DD- U, whence it

follows that the set (z-a)-1. d1,’", (z-a)-m. d, forms a proper basis for
ker r+ff, and since ord [(z -ct)-’di] -vi, the proof is complete.

THEOREM 5.5. Let K be an infinite field and consider an infective bicausal
precompensation orbit 0 with reduced reachability indices {ul,"’’, u,}. Let A c f/U
be a full f+K-submodule with order indices {trl,"" ,tr,}. There exists an i/o map
ff 0 such that ker/= A/f and only if tri >- ui, 1,..., m.

Proof. Necessity follows from Theorem 5.3 (i). To see the sufficiency, let tr >_-,i,
1, .., m. By Lemma 5.4 there exists an injective linear i/o map f0, (not necessarily

in O), which has {’1,""’, ,,,} as reduced reachability indices and ker0 A. Let
be any i/o map in O. By Theorem 5.1 there exist then a unimodular polynomial map
M and a bicausal AK-linear map such that fl=Mfo. Thus,
where f O, and by Corollary 3.8 ker 7r+/ ker 7r f0, concluding the proof.

It is noteworthy that the requirement of infinite fields in Theorem 5.5 and Lemma
5.4 is an essential one. To demonstrate this fact, consider the following elementary
example. Let K be the field of integers modulo 2. Let dim Y dim U 1 and consider
as realization kernel the module A= z(z + 1)f+U. The degree index of A is cr 2,
but A cannot be (canonically) associated with precompensation orbits whose reduced
reachability index is u 1.

6. Strict observability and output feedback. In 3 we have seen that every
injective i/o map can be rendered strictly observable by static state feedback. The
main result of the present section is that every injective i/o map can be rendered
strictly observable also by application of (dynamic) causal output feedback.

We begin with some preliminaries. Let f’AU AY be a linear i/o map and
let l" AU AU be a bicausal precompensator for [. We shall say that is f-causal
if there exist a causal AK-linear (ouput feedback) map " AY AU, and an invertible
static map V" AU AU such that " (I + -)-1V. Similarly, we shall say that " is
]’-polynomial if there exist a polynomial AK-linear map g," AY AU and an invertible
static map V" AU -AU such that is strictly causal and -= (! + -)-1V. Denot-
ing ’ :=/r-, we obtain through a simple calculation that if - is f-polynomial, then
[-1 is/r, polynomial, and if/" is )Lcausal, then/--1 is/r’-causal.

While it is always true that ker r//’= ’[ker r/[’], it is in general not true that
a similar formula relates ker/’ (cker 7r//r’) with ker[ (ker r/[). An exception
to this general situation is given in the following:

LEMMA 6.1. Let 1" AU AY be a linear i/o map, let AU AU be a bicausal
precompensator and let ’ := . If is f--polynomial, then ker [= ’[ker)’].

Prool. If u ker [ then u fVU and/r(u) f/Y. Since ff is a polynomial map,
it then also follows that g,[(u) f/U. Thus, ’-l(u) V-I(I +,f-)u f/U. Moreover
f-’[-l(u)=[[[-l(u)=f(u)f/Y. Hence /’-l(u)ker/r’ (or u/-[kerf"]) and
consequently ker[ [[ker [’]. The inverse inclusion follows similarly from the fact
that/’-1 is/r’-polynomial, and the lemma follows.

Combining Lemma 6.1 with Proposition 4.9, we obtain
THEOREM 6.2. Let f’AUAY be a linear i/o map, let I’AUAU be a

bicausal precompensator and write f-’=f. . If is f-polynomial then f and
f’ have the same sets of teachability indices.

Consider now an injective linear i/o map f’ AU- AY, and let AU AU be
a bicausal precompensator for f. Clearly, in view of the injectivity of f, there exist
a AK-linear map g,’ AY - AU and an invertible static map V" AU AU such that
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-= (I + gff)-I V and gj is strictly causal. Next, let g g-+ g+ where g- is causal and
g+ is (strictly) polynomial. Then g-. J is obviously strictly causal, and so also is g+ if,
being the difference of two strictly causal maps. Thus, we have the following:

= (z + gf-v (z + g-+g+)-v
(6.3)

(I + g-f)-[I + g+f(I + g-ff)-]- V F- -+

where -:=(I+g-f- is a bicausal precompensator for ff and is fZcausal, and
where + := [I + g+ff(I + g-)-]-t V = (I + g+(ff-))- V is a bicausal precom-
pensator for f l- and is (f/-)-polynomial. If we now apply Theorem 6.2, we
conclude that the maps f and f l- have the same sets of reachability indices,
the important fact being that l- represents a (dynamic) causal output feedback
around f. This proves the following"

THEOREM 6.4. Let " AU AY be an injective linear i/o map and assume that

" AU AU is a bicausal precompensator for ff such that ff is rational and has
reachability indices 1, ",. Then there exists a causal -linear map g" AY AU
such that ff(I + gff)- also has teachability indices t, ", .

As an immediate consequence of Theorems 3.2 and 6.4, we have the following
result:

THEOREM 6.5. Let f" AU AY be an infective linear i/o map. Then f can be
transformed into a strictly observable map by application of causal (dynamic) output
feedback.

Finally, upon application of Theorem 6.4 to Theorem 5.5, we obtain
THEOREM 6.6. Let K be an infinite field and let f" AU AY be an infective i/o

map with reduced reachability indices vt, ., v. For every set of integers , ,
satisfying v, 1,.. , m, there exists a causal -linear map g" AY AU such
that ff(I + gff)- has , ., as reachability indices.

7. Some/urther properties o[ ker +. In the present section, we wish to make
formal contact between the present theory and some concepts that appeared in the
linear system theory literature. In particular, we wish to make contact with concepts
from the geometric theory as expounded by Wonham and Morse (see e.g. Wonham
[1979]). It will be assumed that the reader is familiar with the basic concepts of that
theory, and with the basic algebraic framework of linear realization theory (as pre-
sented, e.g., in Hautus and Heymann [1978]).

Let f" AU AY be a linear i/o map and let (X, g, h) be a reachable realization
of ff (i.e., +’+ h.g, and g "+UX is surjective). The unobservable subspace
(submodule) of (X, g, h) is defined as ker h X and we say that (X, g, h) is observable
if ker h 0, i.e., if h is injective. Let g" AU denote the (extended) i/s map
associated with g and let f =Hg be the corresponding state representation (i.e.,
H=p.h).

We recall that a subspace S X is called weakly invariant if the controlled
trajectory for every x S can be maintained in S by choice of control action. Weakly
invariant subspaces coincide with the well known (A, B)-invariant spaces of geometric
linear system theory (see in particular Hautus [1979] for comparison of the various
concepts). Of particular interest is the maximal weakly invariant subspace contained
in ker H, which is frequently denoted in the literature by v*. We shall show below
that v* is related to ker +ff and, in particular, that v* pxg[ker +].

The g+K-module ker +ff consists of the class of all inputs for which the
corresponding output is identically zero for all t 1. Let u ker +ff be any control
and write u =u + +u-, where u ++U and u-z--U. Then O=pffu =pHgu
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Hpxgu Hplgu + +Hplgu- and, in view of the strict causality of g, pxgu-= 0 and we
havepgu pxgu + e ker H. The state pxgu + gu + X is the state at time I generated
by the control u +. This state is maintained in kerH by application (after 0) of the
control u-, and hence it is clear that plgu v*, so that pg[ker r+]v] c v*. To see that
the inverse inclusion also holds, let x e v* be any state. In view of the reachability of

/ t’l+ =pgu Further, there exists u(X, g, h), there exists u U such that x gu + +

-1z ll-U such that the corresponding state trajectory (starting at x) remains in ker H,
i.e., the output trajectory is identically zero. Thus, pkf(U + U-)=0 for all k >_-1,
whence u u++u- ker r+/. We summarize the above discussion in the following:

THEOREM 7.1. Let (X, g, h) be a reachable realization of a liner i/o map f" AU -AY and let f H. be the corresponding (reachable) state representation. Then the
maximal weakly invariant subspace in ker H is given by

(7.2) v* pxg[ker
We shall next investigate several properties of v * and its relation to unobservability

and feedback. First, the following can be readily verified.
LEMMA 7.3. Let f" AU- AY be a linear i/o map and let f =Hg be a state

representation for f. Then,
(i) pg[ker zr+/] ker H.

(ii) If A AU is an tl+K-module satisfying plg[A]
Consider now the reachable realization (X, g, h) and let =H.g be the asso-

ciated state representation. Clearly, the unobservable subspace $ ker h satisfies
S = ker H, and it is easily seen that, in fact, S is the maximal gl+K-module contained
in ker H. Let us apply static state feedback F’X U in the reachable realization
(X, g, h) (see Hautus and Heymann [1978] for details). Then the reachable extended
linear i/s map g" AU AX is transformed into the reachable i/s map F :-- g(I +Fg)-,
and the i/o map /r is transformed into fF:=f(I+Fg)- (so that fF=Hgl). Let
gF := P gF i+ be the output response map associated with gF. Then there is a reachable
realization (XF, gF, hF) of fF, and we denote the unobservable subspace of this
realization by SF := ker hv. We then have the following theorem, which gives a sharp
insight into the nature of the subspace v*( i6g[ker

THEOREM 7.4. Let f’AU AY be an infective linear i/o map, let (X, g, h) be
a reachable realization and let f H.g be the associated state representation. Then
the following hold"

(i) For every static state feedback F’X
(ii) There exists a static state feedback Fo"X U (for which Fo is strictly observ-

able) such that SFo pg[ker
Proof. (i) The reachability of (X, g, h) implies that, for each feedback F, the

realization (XF, gv, h) is also reachable (see e.g. Hautus and Heymann [1978]).
Hence gF is surjective and there is an f+K-module A c I)+U such that SF gF[A]
plgv[A] and, since SF =ker H, it follows by Lemma 7.3 that A cker 7r+]. Thus,
denoting ’:= (I +Fg)-a, we obtain

Sv pvEA] pav[ker zr+fF plg’[ker r+/-] pg-’-l[ker r+]] plg[ker zr+],
as claimed.

(ii) By Theorem 3.3, there exists an Fo such that fFo is strictly observable (i.e.,
ker +-zr frof+U), so that gFo[kerTr+fro]X is an f+K-module. Then since
gF[ker +-r fFo] PlgVo[ker r+-fFo] pg[ker r+[], it follows that pg[ker
(= plg,Fo[ker zr+Fo]) is an f+K-module in ker H, so that plg[ker zr+/7] Sro. Combin-
ing this with (i) above, we have that pl,[ker
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In the special case when f is a strictly observable i/o map, we have that
pl[ker r/f] g[ker g]=0, implying that for every static state feedback F’X--> U,
SF 0. Thus, the observability is preserved under state feedback, in agreement with
Theorem 3.4.

8. Remarks on noninjective i/o maps. We turn now to some observations and
comments on noninjective i/o maps. If f" AU AY is a linear i/o map, we say that
f has a static kernel if there exists a K-linear subspace Uo U such that ker f AUo.
If ker f is static, f can be made injective by simple restriction of the input value
space. The noninjectivity of f then stems from the fact that its input value space was
chosen to be too large. We proceed now to extend the framework of our theory to
noninjective i/o maps.

In Hammer and Heymann [1981, Prop. 5.6], it was shown that a linear i/s map
always has a static kernel. Consider now a linear i/s map f" AU-AY and assume
that kerf AUo for a subspace Uo U. Choose a direct sum complement U U
for Uo such that U UoU and let P" U U denote the projection of U onto
U along Uo. There evidently exists then an injective i/s map/’" AU AY such that

(8.1) f =fP.
The above restriction procedure, and the fact that injective i/s maps are always

strictly observable, motivate us in extending the concept of strict observability to
noninjective i/o maps as follows:

DEFINITION 8.2. A linear i/o map f’AU-->AY is called extended strictly
observable if the following conditions hold"

(i) f has a static kernel AU0 c AU.
(ii) There exists a subspace U1 c U such that U1 U0 U and a strictly observ-

able i/o map fl’ AUa - AY such that f fx. P1, where PI" U --> Ua is the projection
onto U along U0.

The following theorem generalizes Theorem 3.2 to noninjective linear i/o maps.
THEOREM 8.3. Let if" AU AY be a linear i/o map. There exists a bicausal

precompensator l" AU --> AU such that f is extended strictly observable.
The proof of Theorem 8.3 depends on the following:
LEMMA 8.4. Let ff’AU->AY be a linear i/o map. There exists a bicausal

precompensator " AU --> AU such that has a static kernel.
The proof of Lemma 8.4 depends on (and is an easy consequence of)he existence

of proper bases for AK-linear spaces as discussed in Hammer and Heymann [1981].
The details of the proof are omitted.

Proof 8.5. Outline ofproofof Theorem 8.3. By Lemma 8.4, there exists a bicausal
precompensator ’" AU AU such that the map ’ := f" has a static kernel AUo.
There exists then a direct sum complement AUt to AU0 and an injective i/o map
f"" AUI- AY such that f-’ =f-". P1, where PI’ U--> U1 is the projection onto U1
along U0. By Theorem 3.2 there exists a bicausal precompensator 12’ AUt--> AU1
such that f- :=f". l-2 is strictly observable. Finally, it can be shown that 1-2 can
be extended to a bicausal AK-linear map I"3’ AU--> AU such that l"2Px =Px 1"3, and
we have f- P1 f’-" l-2P f-"P: i3 f" l-3 f(l/3), concluding the proof. [3
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DISCRETE APPROXIMATION OF CONTINUOUS TIME
STOCHASTIC CONTROL SYSTEMS*

NORBERT CHRISTOPEIT"

Abstract. In this paper it is shown how a continuous time stochastic control problem can be solved
by discretization in time. A condition is given under which the optimal strategies for the discrete time

problemsEobtained by dynamic programminguapproximate the solution of the original continuous time

problem.

Key words, stochastic control, discrete approximation.

1. Introduction. We consider a system whose dynamics are described by the
stochastic differential equation

(1.1) dX f(t, X(t), U(t)) dt + dB, 0-<t<-l,

with initial condition

(1.2) X(0) =x.

Here B is a standard Brownian motion, X is the state and U the control process.
The objective is to minimize the expected final loss

(1.3) J(U)=Eg(X(1))

in some class of admissible controls. The class of admissible controls to be considered
will be fairly broad, including randomized controls as well as feedback controls
depending on the whole past of the state process.

The approach to be taken is to approximate the continuous time system (1.1)-(1.2)
by a sequence of discrete time systems described by stochastic difference equations,
with control action taking place only at the beginning of each decision interval. For
the discrete time problems, we have then the powerful machinery of dynamic program-
ming at our disposal. This will lead to an analytic expression or at least to a numerical
approximation for the discrete time strategies, which turn out to be--generally non-
stationary--Markovian. These ideas are explained in 2. The main step is then to
obtain the optimal control law for the original continuous time problem as the limit
in a certain weak sense of the discrete time optimal controls as the decision intervals
get smaller and smaller. This is done in 5. For the proof, some estimates on transition
probability densities related to solutions of the discrete time systems are needed,
which are developed in 3 and 4. These estimates are basically discrete time analogues
of corresponding estimates known in the theory of diffusion processes (cf. [15]).

The method of discretizing the system equation is not new. In [16], Yamada
treats the control of a system by stationary Markov controls over an infinite time
horizon. However, the approximating "discrete" decision problems are discrete only
as far as the controls are concerned; the state of the approximating systems still evolve
in continuous time according to a stochastic differential equation. Hence, the dynamic
programming algorithm cannot be immediately applied to these problems, but some
intermediate considerations are necessary (cf. 5). Our approach, in the general

* Received by the editors September 8, 1980, and in revised form November 15, 1981. This work
was supported by the SFB 21 at the University of Bonn.

t Institute for Econometrics and Operations Research, University of Bonn, Adenauerallee 24-42, 53
Bonn, West Germany.
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nonstationary finite horizon case, leads directly to discrete time systems governed by
stochastic difference equations and hence to problems that are directly amenable to
the dynamic programming technique. In addition, we would like to stress one important
point. Of course, discretization techniques can be and have been used to derive
existence results for continuous time stochastic control problems (cf. [13]). Such results
can be obtained as a by-product of our approach, as indicated at the end of 2. Our
main point of interest is, however, the possibility of actually identifying the optimal
control of the continuous time problem by looking at the optimal control laws for the
discrete time problems, which will generally be easier to obtain. Finally, let us remark
that we confine ourselves to the one-dimensional case in order to keep notation as
simple as possible. The general multidimensional case can be treated along the same
lines and does not offer any new difficulties.

2. Formulation of the continuous and discrete time problems. Throughout the
paper let 0// denote some compact and convex set of control points. The following
assumptions about f will be made.

(A1) There exists a constant L1 such that for all (s,x,u), (s’,x’,u’)
[0, 1] 0//the inequality

If(s, x, u f(s’, x’, u’)[ <- Z (lS S’l + lx x’l + [u-u’[)

is valid.
Looking through the proofs the reader will notice that this global Lipschitz condition
can be weakened to a local one by means of the usual truncation procedures (cf. [8]).
But, in order not to obscure the basic ideas of the analysis, which will become rather
involved anyway, we desist from working out these additional technical details.
Secondly, we shall require that f satisfy the linear growth condition

(A2) There exists a constant Cf such that

If(t, x, u )12 <_- Cr(1 + Ix 12)

for all (t,x, u) [0, 1] x Rx q/.

Let us now make precise what we understand by an admissible control. An
admissible control will be any measurable process U(t), 0-<t-<_ 1, defined on some
probability space (f, , P), taking on values in 0// for almost all (t, o) and for which
there exists on (f, , P) a standard Wiener process (B (t), ,), 0 <= <_- 1, such that
U (U(t)) is adapted to (,) and the equation

+J0 f(s,X(s), U(s))ds+B(t), 0<-_t-< 1,(2.1) X(t)=x

possesses a unique solution X (X(t)) with continuous sample paths. X will be called
the solution corresponding to the control U. Actually, the statement about existence
and uniqueness of a solution to (2.1) is something of a hoax, as will be seen in a
moment, and should rather be viewed as a way of identifying X.

By virtue of (A1), the random function F(t, x, w) defined by

F(t, x, o) f(t, x, U(t, o))

is measurable and for fixed and x t-measurable, and satisfies

IF(t,x,o)-F(t, y, a,)l-<_Lxlx-yl
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for all and all o9. But then it is known that the equation

X(t)=x + Io F(s,X(s)) ds +B(t)

possesses a unique (in the sense of sample path uniqueness) solution with continuous
sample paths, which is adapted to (t) (cf. [8]). And this solution apparently solves
(2.1), the two equations being identical.

Let us discuss one further point. Of course we want to admit feedback controls
u(t,X), where u :[0, 1]x Ca// is a measurable function adapted to (c8,) (C =space
of continuous functions on [0, 1] with the sup-norm, (qt)= canonical filtration on C),
or, as a special case, Markov controls u(t, X(t)), where now u is a measurable function
on [0, 1]x. How do these controls fit in our framework? The answer is simple.
Under the assumptions made we may start with an arbitrary Brownian motion B(t)
on some probability space (l, , P) and define a new probability measure pu on
(f, ) by the Girsanow measure transformation formula, i.e.

where, with X(t)=x +B(t),

dP (f") dP,

r(f") exp f(t,X(t), u(t,X)) dX-- If(t,X(t), u(t,X))l2 dt

Then, under measure P", X solves (2.1) with the new Wiener process (BU(t), -x)
given by

dB"= dX-f(t,X(t), u(t,X)) dt

(cf. [1]). So, if we set U(t)=u(t,X), U is adapted to (tx) and X is the unique
solution of

X(t) x + Io f(s,X(s), U(s)) ds +BU(t).

So our class of admissible controls contains indeed all feedback control laws.
We shall use the notation J(U)=Eg(X(1)) if X is the (unique) solution corre-

sponding to the admissible control U. We shall also write J(u) for the cost resulting
from the use of the feedback control law u. This notation is justified since under the
assumptions made the weak solution of the stochastic differential equation dX
f(t,X(t), u(t,X)) dt +dB is unique in law andJ(u)=J(U) if U(t)= u(t,X).

Remark. It should be noted that, though the solution to (2.1) is unique for a
given probability space with a given Brownian motion, corresponding to one and the
same process U there may nevertheless be different probability measures P and
different Wiener processes (B(t), ;) fulfilling the requirements in the definition of
admissibility, which may lead to different distributions of the solution process X and
hence to different values for J(U). So, to be rigorous, we should write J[U;P, B] or
J[U;P, X] to take account of this ambiguity. We shall, however, continue to use the
simpler notation J(U), interpreting U as a shorthand symbol for the triple (U, P, X)
if necessary. There will be no confusion, since in the sequel there will always be a
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definite measure P and a definite Brownian motion B associated with each U.
Moreover, for Markov controls u, the distribution of X is unique.

Let us now turn to the cost functional g. We shall impose the following growth
condition.

(A3) g is continuous, and g(x) O(exp (Klx[) for some K >0.
This condition will ensure that the loss functions g(Xu (1)) of the discrete problems
to be defined below are uniformly integrable. Note that it incurs no loss of generality
that we did not include cost functionals of integral type, since such functionals may
be transformed into endpoint criteria by the usual trick of introducing an additional
component to the system equation.

The basic idea of our approach is to discretize the system equation (1.1). The
corresponding discrete time systems will be described by the stochastic difference
equations

(2.2) ux.+t x. +f.(x., U.)A’ + e., n =0, 1,. , A-u-l,

with initial condition

(2.3) Xo x.

f, (x, u)= f(n Au, x, u). h-1 is some natural number bigger than 2Here we have put u

(any other partition of the unit interval with mesh tending to 0 would also do). The
N

e, are independent normal random variables with mean 0 and variance A which
are defined on a probability space (12, , P) (clearly this may be taken to be the same
for all N, n). As controls U, we admit all nonanticipating random variables on (12, 5F, P)

N Nwith values in /t, i.e., all random variables U, which are independent of e
We shall call an A-U-tuple r (U0, , Ua-,,_ an admissible strategy for the Nth
system and denote the class of admissible strategies by 5’u. The objective is then to
choose a strategy zr in such a way as to minimize

(2.4) JU (zr) Eg(X/,-"r),

X (X0, , XA-") being the solution of (2.2)-(2.3) corresponding to ,r. This problem
will be referred to as the Nth stage discrete problem.

We shall imbed the discrete time problems in a more general sequential decision
problem. To this end, define for zr (U0, , Ua-"-x 5eu and any one-dimensional
Borel set B

u up,, (Blxu)=P{X,, +f(X,,, U,,)Au +e,, eBIX,,=x, U,, =u}

=P{e u,, eB-x-f, (x, u) }.

Then p is a transition function which is independent of the particular choice of Un.
Let us recall the definition of a randomized strategy in dynamic programming.

We shall understand by it a A-U-tuple 7r =(,to,"" ", rA-"-X), where r.(FIh.) is a
transition function from the histories h,=XUoXUlX2...u,_x,, to 07/. Any
(U0,’", UA-"-X)u may then be viewed as a randomized strategy zr=
(,to, ", zrA-’- if we take r, to be a regular version of the conditional distribution

zr.(FIh.) P{U e rlXoUoX1 Vn-lXn hn}.
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Then (2.4) may be written

Eg(Xa-,’,) Iou zro(duolx) I p(dxxlxuo) f ’n’l(dUlXUoX)

x I p-"- (dxa-,_ Ix a--ua--2)

M f a-_I(dUa-_IlXUoXI’’’ Ua-_2XA-_I)

=:E g.

An important role is played by the Markov strategies, which are A-U-tuples
u (Uo, , ua--x) of measurable functions u,’ N . For such strategies,

,(rlh,) =r(u,(x,)),

(6r(a) Dirac measure concentrated at point a), where x, is the last state of the
history h,. It is then well known from dynamic programming that, under assumptions
(A1)-(A3), the problemof minimizing E=g in the class of all randomized strategies
possesses a solution in the subclass of Markov strategies (cf. [7], the lower semicon-
tinuous case). Hence, in solving our Nth stage problem, we may restrict ourselves to
Markov strategies, and the optimal strategy can be found by running through the

Nrecurrence relations of dynamic programming. Henceforth, let u (u,. , ua-_x
be the optimal (Markov) strategy found this way, i.e.,

"g g(xf-) j(u)j()

for all , where X (X, ,X-) is the solution of the stochastic difference
equation

N -N(2.5) u (xf))a+.,X,+ X, +[, (X,, u, n 0, 1 1,

(2.6) xg =x.

In many cases, the solutions uu obtained for the discrete problems either analytically
or, approximately, by machine calculation, suggest that there exists a limit control
u(t, x) such that the u converge to u in some sense. A simple example is given in
[4], where the stationary control laws u(x) converge almost everywhere to u(x)=
-sign (x), which indeed turns out to be the optimal control for the continuous time
problem. Actually, pointwise (a.e.) convergence can be expected to be the easiest one
to handle, but to be realized only in singular cases. On the other hand, the kind of
convergence which is likely to occur most often, but will at the same time be the most
tough one to handle, should be some sort of weak convergence. So this is what we
are going to require.

(A4) There exist a subsequence (N’) c (N) and a measurable function u" [0, 1] x
N such that for every measurable bounded function (t,x) with
compact support

lim
N’o i=0
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This kind of convergence of control laws is a particularly appropriate one since under
Roxin’s condition of convex velocity sets f(t, x, all)--the usual condition guaranteeing
existence of an optimal feedback control (cf. [1])--such a limit u will exist (cf.
[16, Cor. 1]).

Without restricting generality, we shall assume henceforth that (N’)= (N). The
main result to be proved is then the

THEOREM. Under assumptions (A1)-(A4), the control u(t, x) is optimal for the
continuous time problem, and the values of the discrete time problems converge to the
value of the continuous time problem: J(u)-->J(u).

3. Some facts about discrete exponentials. The preceding section showed that
we shall have to deal with difference equations of the form

(3.1) n=O, 1,... ,M-l,

(3.2) Xo=x,

where At AN, M A-N (for notational simplicity, since N will be fixed in this section),
the e, are independent normal random variables with mean 0 and variance At, and
the random variables f, are independent of e,,’’’, eM-x.

Let (,), n 0, 1, .., M, denote an increasing sequence of -algebras such that
X, and f, are measurable with respect to ,, while e, is measurable with respect
to ,+ and independent of ,. For example, we may take , ={X0,’" ,X,;
fo,’’’,f;eo,’’’,e,-x}, where we agree to put feO. Let now =(0,’", -) be any random M-vector adapted to (,). For k =0, 1,... ,M,
n O, 1,..., M-k, we introduce the exponential

i=k i=k(3.3)
C[()=1.

Note that ff[+" is measurable with respect to +,. Let us list some useful properties
of exponentials, which the reader will easily recognize as the discrete time analogues
of well known properties of continuous time exponentials (cf. [9]).

Property 1. If IilC for all i=O, 1,... ,M-l, then E[(+"()] < for all
a > 0 and all k, n.

This follows at once from

E exp a,e- At NE exp[aClel]<m.

Property 2. Suppose that all expectations are finite. Then, for cz -> 1,

[’+"- (&)]’E exp ck+.-xe k+.- ---+.- At I’k
(3.4)

[(kk +,-1 ()], e

>_ [,,+-- (4,)]
which means that, for all k, ([r+" (4,)], k+,), n 0, 1,. ., M- k, is a submartingale.
In particular, for c 1, (’+"(), ’k+,) is a martingale and

(3.5) E{(kk+" ()]’k} 1

for all admissible k, n.
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Property 3. If 11-<_ C for all 0, 1,..., M-1, then it follows from (3.4) that

E{[’+" ()]c [’k+n-l} [+n-1 ()]a e (a(-l)/2)C2At,
from which by induction

(3.6) E{[+"()]I} e((-)/)c"a’ e ((-)/)c.

Property 4. For unbounded, define ,t,ca (xa indicator of A). Then
(+,( c) +,() as C , and, by Fatou’s lemma,

E{C+n()lk} 61im inf E{C+" (0 c)[k} 1.
C

Actually, we then know that the results of Property 2 for a 1 are valid and (3.5)
holds. In particular,

(3.7) E{’g ()} 1

for all n 0, 1,. , M.
On the underlying probability space (11, , P) consider now the measure P

defined by

(3.8) d/ ’0m()dP.

By virtue of (3.7),/; is actually a probability measure. Let/ denote expectation with
respect to P. We then have the following:

LEMMA 1. Let the random variable g be measurable with respect to ;n/k and
integrable with respect to . Then

{gl.} E{g",+()lr,}.

Proof. For A e n

I,,. E{gr,+’(4,)[..,} dJ5 (O)E{gff+(o)l,} dP
A

A A

Define random variables

e,-,At, n =0, 1,... ,M-1.

Note that , is measurable with respect to,+. We have the following important result.
PROPOSITION 1. Under the measure the , are independent normal random

variables with mean 0 and variance At.
Proof.. According to Lemma 1, for every real number z

{eg6"l,}={eZe"+ ()[,}-

E{eZ(.-.a’) e ..-a,/= i.}

Since , is ,-measurable and e, is .independent of ,,. the last conditional expectation
can be calculated to equal exp [(iz +,)=At/2]. Hence the conditional characteristic
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function of g. under P is

j{eiZ;:,l..n}= e-atz:/2"

This proves the assertion.
This result shows that under the measure P the random vectorX (Xo, , XM)

solves the difference equation

X+ =X +(f +,)At + ,, n =0, 1,... ,M-l,

Xo X,

with independent N(0, At)-distributed disturbances. This is a discrete version of the
Girsanov measure transformation theorem (cf. [1], [9]).

Let us now come back to the difference equations (2.5)-(2.6) of 2. For fixed
N RM+IN and xN=(x,’’’,XM)e (still M=A-N, At=AN denote by fN(xN)

Nthe M-dimensional vector whose components are f(x N., u, (x)) and let yN=
(yr,..., y) be the solution of the difference equation

(3.9) N N NY,+=Y, +e,, n=O,l,...,M-1,

x

Nunder the measure P and XN= (X,...,X) the solution of (2.5)-(2.6). Let Ix
/xvN and txxN denote the (M + 1)-dimensional distribution of yN and XN under P,
respectively, and gN gv the distribution of yN under/SN, where now

dN y(fN yN)) dP.
NThen, by the argument just given, yN solves (2.5)-(2.6) under /SN with the e,

replaced by

and

e, e, -f, (Y,, u Y,))At,

~N
X

since the solution of (2.5)-(2.6) is uniquely defined in distribution by the joint
distribution of the disturbances. Moreover, AN is absolutely continuous with respect

Nto tz, with Radon-Nikod,m derivative given by

dN

dlx N
(x N) E{y(fN YN))[ yN x

N N N(3.11)

x. The way of writing used in the last equation is justified sincewhere x x+
under the measure the x, =0, 1,... ,M-l, are independent N(O,t)-
distributed random variables on
x,..., x_. Hence +((x))is indeed an exponential on the probability
space (N+, and with respect to the natural filtration (+) (where

* is the -field generated by the first n components of x). We shall use this lact
later on without further mentioning, in particular, the validity of (3.5), (3.6) and
Lemma 1.
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In the following sections, we shall work with the probability measures P and/SN
N Non some reference space (l), ’) and with the probability measures/x and/2 on

(+1, +). We shall denote expectation with respect to and/2 by and
/, respectively, while the symbol E will be reserved to denote expectation with
respect to P (there will be no need to denote expectation with respect to/).

4. Some estimates on transition probabilities. Denote byp(k, x, i, ) the density
of the transition probability

NP[Y eBIY=x]= [xeBlx=x]
and by/5s (k, x, i, ) the density of the transition probability

P[X BIX=x]=P[YBIY=x]=[xBIx=x]
for > k. The existence ofp is clear, since the distribution of (Y, , Y-) given
Y x is nondegenerate multivariate Gaussian. The transition density ff may then
be calculated from p using formula (3.11); its actual form is, however, not very useful
for our purposes.

In the next section we shall embed the discrete time problems in a continuous
time framework by defining random functionsX (t), 0 1, with continuous sample
paths through

(4.1) XfiAt)=X fori=0,1,...,A-,
interpolating linearly between neighboring grid points. In accordance with this, it will
also turn out useful to have the transition densities defined for continuous time. To
this end, committing a little abuse of notation, we shall use p(s, x, t, ) to denote the
step function whose value for k A s < (k + 1)h, h t < (i + 1)A is given by
Np (k, x, i, ), and similarly for-ff (s, x, t, ). Or, if we introduce the useful notation

[s]=kA ifkAs<(k+l)A
the above convention means that we agree to use

[t], )p (s,x,t, 6)= (Isis, x,

and
N([s]a-L x, [t]a-L )

to denote the same thing. It will always be clear from the context which interpretation
is to be given to the time variables. Similarly, we shall use

to denote the same thing as

Accordingly, we shall often switch from discrete time sample space to continuous
sample functions. Therefore, with each (h- + 1)-vector (x,..., x[-) we associate
a continuous function x (t), 0 1, defined in accordance with (4.1). In particular,

N Nx (Iris)= x,-.

Moreover, we shall use the shorthand notation

E ([s])=x]E,.L[g(x)]=Et.[g(x)]= [g(x)x
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and
"N "N N __.NE,x[g(x)] (x )3 [g(xl’C)lx=EEsN,x[g ([s]) x]

for integrable functions g (x).
Remark. In the sequel, conditional expectations E,x and E, with k =<s <

(k + 1)Au will be taken only o such unctions g(x) that depend only on the present
and the future components of x i.e., g(x) g(x,..., x-). In this case,

,[g(x)] p(k, x, k + 1 x+) dX+l (k + 1, x+, k + 2, x+) dx+

I g(xN) dt’t’NS,X
r is the probability measure defined by the iterated integral over indicatorwhere tx s,x

*Nfunctions XEx,xk/l,..., -,)Aa, and a simlar formula holds for Es,. Henceforth we shall
always mean these versions of the conditional expectations.

The first thing we need is a powerful estimate for the solutions of difference
equations.

LEMMA 2 (discrete Gronwall-Bellman inequality). Let a, cb andL be nonnegative
numbers such that

Then

i=o
n-O, 1,...,N-1.

for all n =0, 1, ,N-1 (with Ilall, =max{a0,’", a}).
The proof is easily done by induction.
Next we derive a uniform Lp-bound for discrete exponentials corresponding to

admissible drifts.
LEMMA 3. Let f(t, x, u) satisfy the linear growth condition (A2). Then there exist

numbers p > 1, a > 0 and Kf > 0 such that for allN O, 1, 2, , and every admissible
simple strategy u (Uo, , uu-) (with M -as in 3)

E,{[ (f"(x))]p} Kfe11 for all Os 1,

where f(x) is the M-vector with components =f, (x,, u,(x)), i=0, 1,
.,M-1.
Proof. The proof is similar to the one in [1] for the continuous time case. For

l<p N2, put y =Q(pz-p)/2 and let [s]u =kA. Denote by z u., n =k,... ,M, the
process determined by

AzN N N=Ax,-pf(x )At, n=k,...,M-1,
(4.2)

Zk =X
N N AN.with Az =z,+-z, and At Then, under the probability measure ., on

(R+,+) defined by
y. C (p[(x))d
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the Az are independent N(0, At)-distributed random variables (cf. Proposition 1).
We then have

N NEs,x {[.1 (f. (x))]P}

NJ p-P N vf. (x., u. (x ))2AtEs,,,.I (pf" (x)) exp
2 .=k

< e E,,, (pf’(x u)) exp Y E IxlZAt.

by virtue of the growth condition. But, from (4.2),

whence

n-1

x. =z. +p Z f(xr)At, n=k+l,...,M,
i=k

n-1

i=k

n-1

2(Iz1=. +4C) + 8CrAt E Ix/I2,
i=k

again by the growth condition and since p2 _<_ 4. By Lemma 2,

Ix l <= (1 + 8GAt)"--a[8Crztlxl2 + 8G + 2 max
i=k,. ,n-1

for n =k +I,...,M. But then

M-1

E Ix.12at--<[l/lxl=/
n=k

max

for some constant K independent of N. Hence
NE,x{[ (/" (x))]’}

<-eVeV(l+l12)E’O{exp yK max [ZnNI2
n=k,...,M

=< e(+)e3Vlxl2I’{exp_s. [2yx max
n=k, M

.0 each (z.o Since, under #,x, x)where E; denotes expectation with respect to/z ,x.
is the sum of (n-k) independent N(0, At)-distributed increments Az, the last
expectation is bounded by some finite constant A independent of N, provided p > 1
is chosen sufficiently small to make 3’ near 0. Put a 3y and K=Ae"/(1+) to get
the assertion. 1

We shall now derive some estimates on transition densities.
PROPOSITION 2. For every 0 <= k < <=M and every positive real number R

Np (k, x, i, ) d <= Kle -R,
-xl>R

and, with p, a chosen as in Lemma 3, 1/p + 1/q 1,

(k, x, i, ) d <=K2ell/Oe -n/,
i-xl>R

where the constants K1 and K2 are independent ofN, k, and x.
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Proof. Note that the conditional distribution of Y-x given Y x under P is

v.the same as the distribution of Y. k e Hence the term to be estimated is

But

P[IY-xI>RIY=x]=2P e>R

P[,=ke>R]=P[exp(,e,-----A) > exp

P[’,+ (1) > e --k)a/2 e /2e -R.
Nby Chebyshev’s L-inequality and (3.5). Repeating with -= e yields the first

assertion with K 2e /2. By Lemmas 1 and 3

[grelxl:]/p’PEIY-xI>RIY =X]1/".

In the following lemmas we shall make use of the continuous time notation
introduced at the beginning of this section.

LEMMA 4. For > s, there exists a function ,-(Ihl) such that

f [P (S, X, t, )-P(S, X, t, + h )] de ,-(Ihl)

for all x and allNsatisfying <(t-s)/2, and ,-(Ihl) 0 as h 0.
Proof. With [s] kA, [t] A, the term to be estimated becomes

f [pl, (k, x, i, )-p(k, x, i, + h )] d:

212"tr (i k)Am/2]-1/:

(C-x)2 h(-x) h 2

I
[r(i k)A]-/ (l -exp [-4(i --.)Ar])

Since, for As <(t-s) (i-k)A >(t-s) the last expression is smaller than

(4.3) ,_s(h)=/-[zr(t-s)]-l/2(1-e-h2/2’-s))). [

A condition like A <t-s must be imposed to avoid [s]’= [t]N and hence singularity of pN. We
choose the above for esthetical reasons’ it makes the normal density appear in the bounds.
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LEMMA 5. For > s, there exists a function q,_(lh 1) such that

I IpN(s,x,t,)-pN(s,x,t,+h)[d<=,-s(Ihl)

for all x and all Nsatisfying Ar <(t-s)/2, and ’t,-(Ih I)--, 0 as h 0.
Proof. For an arbitrary real number R we have

where we have put ApN (:) pN (S, X, t, :)--pN (S, X, t, : + h) for a moment. By
Proposition 2,

I2 <=Kl(e -R + e-Re Ihl) <=g3e -R

for Ihl< min (R, 1). As to the first term,

I _<- x/- (I IAp (’)12 d) 1/2"
With the special choice R 1/x/-], it follows from Lemma 4 and formula (4.3) that
fbr AN <(t-s)

(4.4) 11 + I2 < K3e -1/ ,/T(+ { 2/- 1 e-"=/2(’-*) 1/2

LEMMA 6. There exists a function ,(Ih 1) such that

I,s+2aN,^l du I IpN(s’x’u’)-pN(s’x’u’+h)Id<----*([hl)

uniformly in N, x and s, and (Ih I) 0 as h O.
Proof. From Lemma 5 and formula (4.4),

f( du I lpN (s, x, u, ’)-pN (s, x, u, ’ + h )’ d
s+2hN)^l

<_ f du{Kae_l/,/+ ( 24" 1--e-h2/2(u-s) 1/2

(S+2N)A1 S

o (l--e-h/2)1/

K3e +K dv
4

Substituting w 1/# we obtain

1 1 e -h2/2v 1 e -h2w2/2 2
dv x/-- x/-[

<=2 dW
w2 4-1 [x/__ lh

l,,/- 2x/-]x/-/2

(cf. [10]). Hence the function

(4.5) 0(Ih 1) K3e-/g +K41244]/2

will meet our requirements.
The following lemma is an easy consequence of Lemma 6.
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LEMMA 7. Let g be any bounded measurable function on 2 and put gh(S, )-"
g(s, - h ). Then, for every s and x,

EU xudul .x[g(u, ([U]N))--gh(U,X([U]))]I<--IIglI(O(Ihl)/4AN)

uniformly in N (with I1" II- ess-sup).
The next lemma shows that a similar estimate is true for the tilded measures.
LEMMA 8. There exists a function (Ihl) such that for any bounded measurable

]:unction g and every (s, x)

"N N
X
NduE,x[g(u, x ([u]ull--gh(U, ([u]ul)] gell=/Ollgll(47(Ih I)+ a/")

uniformly in N, and (Ihl)-0 as h 0. Here a and the confugate pair of numbers
(p, q) are determined as in Lemma 3.

Proof. Remember our continuous time notation for the discrete exponentials and
put AgV(u) g(u, xU([u]u))--gh(U, XU([U]u)). Then, using a (p, q)-H61der estimate,
we obtain from Lemmas 1 and 3 that

and (noting that q > 2)

Agu (u) du

Agu (u du
1/q

q 2

--< II) F,x Ag" (u) du

Since, by partial integration, [Ib h (u) du ]2= 2 b h (u) du Ib, h (v) dr, we obtain
2

duE,x (turN) Agv (v dv

2[Igll((Ih I) + 4AU) "Es, Io lag (u)l du

--< 411g11=(4 (Ih I) + 4Au),

since Agu (u) is measurable with respect to tr{xr, xu ([u]u)}, and the coordinate
Nmapping xu x, 0,.. , A-u, is a Markov process under/z and upon using the

estimate of Lemma 7 for uE,,x[ Agu (v) dv ]. Thus the assertion holds with

(Ihl)- (Ih[)a/o and K5 =2qK/p.
From this result we finally arrive at
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PROPOSITION 3. For every s and x,

I(+zau)^x du I
uniformly in N.

Proof. From Lemma 8 we find that for any bounded measurable g

"N N NduEs.x[g(u,x ([U]N))--gh(U,X ([U]N))]
S+2N)I

[ du f[ffN(s, x, u, ,)__fiN (S, X, u,,+h)]g(u,
s+2)l

ge=/llgll[g(Ih I) + a/" + 411g Ila.
For N fixed, choose g(u,) to be the indicator of the set [ff (s, x, u, )
ff (s, x, u, + h) 0]. Then, from the relation above,

I(s+2AN)al du f
Repeating with g equal to the indicator of the set [ff (s, x, u, ) -ff (s, x, u, + h) < 0]
gives the desired result.

$. Proof of the theorem. Coming back to our difference equation (2.5)-(2.6),
we write the solution in the form

,(xy, ux.+ x + f(x))a + .
=0 =0

and obtain from Lemma 2, for f satisfying (A2), the estimate

from which

i=O,...,n i=0

r 14 Ar 4-"fAN)4nEIX,+I <_-K711+ (n )2](1+
since E[max=o,...,, ]2=o el]4 E[max=o,...,, 12=o ei ] () EI2i=o e Since
the constant K7 is independent of n and N, finally

(5.1) EIX[4K8

uniformly in N 0, 1, , n 0, 1, , -.
In accordance with (4.1), define processes F (t) and B (t), 0 1, with con-

tinuous sample paths by

F (t) f ([s], X (Isis), u (s, X (Isis))) s
0

and

[t]NA--r--1
Br(t) E

i=0
e + (t- [t]r)A-er[t]tea-t.
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Here uN(s,) denotes the step function (in s) taking the value u() tor ihN <=s <
(i + 1)AN. Then the difference equations (2.5)-(2.6) may be written in the compact form

(5.2) XN (t) x +F (t) +B (t).

From a little exercise in H61der estimates it then follows that

ElF (t)-F (S)I4 (t- s)3 s EI([r], S ([r]), u (r, X ([r]N)))[4 dr

(5.3) N (t-s)3 3C}E(1 + IS([r])l4) dr

3C (1 +g8)(t- s)4.

As to the process B (t), it follows from a simple geometrical consideration that for < s

IB (s) B ([t] + A)l N max{lB ([s]) B ([t] + A

IB (Es] +A)-B (Et] +

Hence, for fixed and h >0, denoting k [t]&- and (It + h IN + &N)&- for a
moment,

sup [B(s)-B(t)1424 max e +leVI4
tst+h k<il =
NSince =+1 e i, k + 1,..., l, is a martingale,

{ 4} ()4 14E max e E e
k<il ]=k+l /=k+l

Calculating the last expectation we obtain

E sup IB(s)-B(t)lK9[(l-k)+l]AK9(h2+4hA +5A).
tst+h

Hence, given e > 0, > 0, we may first choose h so small and then No so large that

e-4K9(h +4A +5A/h) for allNNo,

thus achieving

P[ sup ]BN(s)-BN(t)l->e]<=lh
ts<--t+h

for all N->No and all t. Together with (5.3) and (5.2) this implies that the sequence
of random functions (X, F, BN), N 1, 2,. ., is tight in C3 (C =space of con-
tinuous functions on [0, 1]) (el. [2], [13]). Hence, by Skorokhod’s embedding theorem
we may assume (after passing to a subsequence and changing the probability space)
that there exists a random function (X, F, B) with values in C3 such that

(5.4) (XN, FN, BN)(X,F,B) a.e.

in the topology of uniform convergence (for a more detailed description of this
technique see [3], [12], [13]; the use of N to denote the convergent subsequence will
be justified shortly). Moreover,

(5.5) X(t)=x +F(t)+B(t)
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holds with probability one for all t, and B (t) is easily recognized as Brownian motion.
Also, by Fatou’s lemma, the estimates (5.1) and (5.3) carry over to the limits X(t)
and F(t):

E[X(t)I4<-_K8 and E[r(t)-r(s)14<-_3C (l +K8)(t-s)4.
Further, F(t) is absolutely continuous:

F(t, o) f(s, oo)ds

lor some integrable function/(s, o), and --x vf v’ is independent of the
incrementsB (t) -B (s) for s < t. To see this, take any two bounded continuous functions
g and h. Then

E{g[X(s ), F(s ), B (s )]h [B (t) B (s)]}

lim E{g[Xr ([s]r), Fr (Is]N), Br([s]r)]h[Br([tier)-Br ([sin + Ar)]}

lim E{g[Xv ([s]v), Fv ([s]v), Br ([S]l)]}’E{h[B ([t]v)-Br([s]v + Ar)]}
N-x

E{g[X(s), F(s), B (s)]}. E{h [B (t) B (s)]}.

This argument immediately extends to functions g[X(sl), ", X(s,),F(sl), , F(s,),
B(s),..., B(s,)], sx <s2 <’" <s, <=s, thus proving the assertion.

As a consequence, we may take f adapted to (t) and X satisfying the stochastic
differential equation

(5.6) dX f dt + dB,

is an Ito process (cf. [14]). Moreover, since

If(t, to)l4 lim h-4lF(t + h, to)-F(t, (.O)14
h$0

for all (t, o) in a set A, h x P(A)= 1, it follows again by Fatou’s lemma that

tri0 I/V(t, o)1‘ dt<-3f}(l+g8),

so that X satisfying (5.6) is indeed an Ito process whose distribution measure is
absolutely continuous with respect to Wiener measure (cf. [14, Thm. 7.2]).
The crucial step in the analysis is now to show that for all times s -<

(5.7)
Is f([r]r, Xr ([r]r), u u (r, Xr ([r]v))) dr

- Is f(r,X(r), u(r,X(r))) dr as N-, o

in probability. Here u (r, s) is the function appearing in assumption (A4). Then it will
follow from (5.4) and (5.5) that

F(t) Io f(r,X(r), u(r,X(r))) dr
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for all with probability one and hence

(5.8) dX f(t, X(t), u(t, X(t))) dt + dB.

This is the desired result, saying that the limit process X(t) is a solution of our
stochastic differential equation corresponding to the limit control u determined
by (A4).

Remark. Starting from Xr (Xr, ,Xr-,) defined by (2.5)-(2.6) (on any
probability space) and defining the Xr (t) by linear interpolation, the above reasoning
shows that every weakly convergent subsequence of the Xre (.) has the same limit,
namely the unique distribution measure (on C) of the solution to (5.8). Since, by
tightness, every subsequence possesses a further subsequence which converges weakly
to this limit, it follows readily that the sequence XN (.) itself converges in distribution
to the solution of (5.8).

We now come to the
Proof of (5.7). For shortness, let us introduce the notation g(r, ) f(r, , u (r, ))

and gr(r, c)=f([r]r, :, ur(r, :)). Take a C-function with compact support such
that 0<-<-1, &(-)=(:) and &()d=l. For e >0, define &(:)=e-(:/e)
and set

g(r, :) I (-rl)g (r, "0) dn

and

g(r, )= J (-rl)g(r, rl) dr/.

Observing that the growth condition (A2) carries over to the functions gr(s,x),
g (s, X) and g (s, x) with a constant independent of N and e (for e small enough),
we can see that the random variables gr (s, Xr ([s]r)), g(s, X (Isis)) and g (s, X(s))
have uniformly (in N and e) bounded fourth moments with respect to the product
measure ds x dP. Then it follows from assumption (A4) that for each e > 0 and each
continuous function O having compact support

where 0 *. From this it follows, arguing with the Arzela-Ascoli theorem as in
[15, proof of Lem. 11.4.1], that for all s <-t and fixed e > 0

boundedly and uniformly in c on compact sets. For fixed sample paths xr (t) Xr (t, o9),
x(t) =X(t, w) and h >0 we can find a partition s zl <" < ’l"k(h) such that

sup sup IxN([r]r)-x(r’)l<=h
i=1," k(h)-I r,r’e[’ri,’ri+l]

for all N >_-N(h). This follows from the uniform convergence of x
rq

(.) to x (.) together
with the uniform continuity of x(.). Moreover, Ig(r,,)-g(r,+h)l<-_Klhl
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uniformly in r and s on compact sets (with the constants K depending on the set),
and a similar estimate holds for g (r, so). Hence

g (r,x ([r])) dr- g(r,x(r)) dr

k(h)-I

i< Y IgN(r, XN([r]s))-g (r, x(’i))l dr

k(h)-I

i=l

k(h)-I

g (r,x(’i))dr- g(r,x(’ri))dr
q’i

,/11g(r,x(zi))-g(r,x(r))l dr

<= 3 (t s)Kh + second term.

But the second term converges to 0 as N o for each h > 0. Taking h0 yields

lim g (r, ([r], o)) dr g (r, X(r, o)) dr

for almost every o.
Hence, in order to prove (5.6), it remains to show that

(5.9) g(r,X(r)) dr g(r,X(r)) dr as e,0

in probability and

(5.10) lim sup lim sup P g(r, X ([r])) dr
e0 N-c

g (r, ([r]N)) dr >- 0

for all 6 > 0.
In order to show (5.9), note that, for each r, g (r, )- g(r, ) for all sc not in a set

F of Lebesgue measure 0 (cf. [11]). Consider the set S of points (r, o) where
g(r,X(r,o))g(r,X(r,o)). $ is measurable and its r-sections $ are contained in
X(r,. )-(F). Since X is an Ito process satisfying (5.6), its finite dimensional distribu-
tions are absolutely continuous with respect to Lebesgue measure; hence P($)=0
for all r. It follows that g(r,X(r, oo)) g(r,X(r, o)) for almost all (r, o), whence (5.9)
by bounded convergence.

The estimate (5.10) is more delicate. Put AN,K {(r, so) IgN (G )l <- g}, gN,K (r, )
Ng (r, es)XAN.K(r,)and gN’C(r, se)=(gNdC)(r,)=.glV’C(r, .)(se). Then

2

A(N, e E [gU (r, X (Jr]s))-g (r, ([r]N))] dr

2

2

2

+9E/ [g’g(r, XN([r]N))--g(r, XN([r]N))-]dr}
9(Jl + J2 +J3).
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Putting VY’rg (r, ) gN.r (r, ) gy,r (r, ) for a moment and changing to sample space
notation, we write (with x being the fixed initial value (1.2))

2

g(r,x ([r]N)) dr

V’ g(r, x ([r])) drr, ([ ]N

IE, V’ g (u, x ([u ])) du

8K dr([Ix([r])-xl >g])

r "N NK N+4K(t-s). sup duEr.[V" g(u,x ([u]s))]
r,lz-xlK

8K2eII/p K2e-/o + 16K2(t s)A

r N N,K NKsup du (r, z, u, )[g (u, )-g’ (u, )] d,+4K(t s),l_l +a

where we have again used the partial integration formula, Proposition 2 and split the
integral over It, t] into one over Jr, r + 2AN and one over [r + 2AN, t]. Using Proposition
3, the term under the sup may be further estimated by

with

I l)e () d Ir du I [N(r, z, u, )_fin (r, z, u, ’)l]gN’: (u, )[ d:
+2A

<= K6K e =lzl2/p 6 (N, e)

(X, )= f (c)g( Icl) dc + a’/.

Since (Ih I) is continuous in h and converges to 0 as h --> 0 (cf. Lemma 8 and formula
(4.5)),

lim sup lim sup 8 (N, e) O.
e$O N

So, finally, the sup may be estimated by K6Ke4lxl2/pe4tc2/pS(N, e), thus leading to
the estimate

J <-MK2(e -K/q + AN +ec/’8(N, e))

with some suitably chosen constant M1.
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Since gN (r, :) gN’/ (r, sc) gN (r, )X,N.K(r, ) (fi denoting complement), we have
for J the estimate

2

dr[g(r, X (Iris))]. P[Ig (r, X ([r]))l >g]

NK- {E[g(r,X ([r]))]}.dr

NMK-.
Finally turning to J3, note first that g(r, )-g’(r, )= ()h’(r, +) d=
h’(r, ) with h’ (r, )= g(r, )X.(r, ). But then

But the last integral may be estimated by

K-Q (1 +11)(-()d.

Hence

_-< M3K-(1 + Il4)
with some constant M3 independent of N, K and e (for e small). From this

J3 <- M3K-2(1 + K8).

Collecting the results on the Ji, we find that

(5.11) lim sup lim sup A(N, e)<=9[M1K2e -KIp +M.K-2+M3K-2(1 +K8)].
J,0 N-oo

Coming back to (5.10), we find that, by Chebyshev’s inequality, the probability to be
estimated is smaller than

-2. A(N, e).

Since (5.11) is true for every K, assertion (5.10) follows. This completes at the same
time the proof of (5.7).

As indicated above, we now know that X satisfies the stochastic differential
equation (5.8) and

(5.12) J(u)=Eg(Xr(1))+Eg(X(1))=J(u),

where ur was the optimal strategy for the Nth stage discrete problem and u (t, x) the
limit feedback control determined by assumption (A4). (5.12) follows from the growth
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condition imposed on g, which ensures uniform integrability of the g(XN (1)). Hence,
if it can be shown that any admissible control U of the original continuous time
problem can be approximated by discrete strategies rN= (U0, U-’-I) (note
that from now on the 7r may be any admissible discrete strategies, not just the
optimal ones as before) in the sense thatJN (TrN) - J(U), then it will follow from (5.12)
that the control u determined by assumption (A4) is indeed the optimal one for the
continuous time problem.

So, to attack this last step, take an arbitrary admissible control U defined on
some fixed probability space (1, , P) with corresponding solution X of the stochastic
differential equation

(5.13) X(t) x + | f(s,X(s), U(s)) ds + +B(t),
.o

where X and U are nonanticipative with respect to the Brownian motion B. Define
the smoothed controls

with corresponding solutions

U (t)
1 It’ U(s) ds

X (t) x + J0 f(s, X (s), U (s)) ds +B (t).

It is easy to see that the U are indeed admissible. Since U (t)--> U(t) for almost every
t, from the estimate

(Io Io
it follows with the Gronwall-Bellman inequality and by bounded convergence that

(t) X(t) almost everywhere for all t. In particular, J(U) Eg(X (1)) Eg(X(1))
J(U). Hence, for showing that any admissible control U can be approximated
by discrete strategies in the sense mentioned above, we may suppose that U has
continuous sample paths.

For such U, look again at equation (5.13) and set

N AN AN A-NU U(nA), e =B((n+l) )-B(n n=0,1,... -1

NThen r (U," ", U-’-I) is an admissible strategy for the Nth stage discrete
problem. Let XN (Xo, , X-,) be the solution of the difference equation

N N N UN AN N --1,Xn+l --Xn +f(nAN, Xn, +e,, n =0, 1,.. A-N

X’ =x.

Let the processes XN (t), 0 =< _-< 1, be defined as in the preceding sections. Then

with

xN(t)=x + Io f([S]N’XN([s]N)’ U([S]N)) ds +BN(t)

BN (t) B (It]N) + (t It]N)A-N[B ([t]N + AN) B ([t]N)]
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(cf. the beginning of 5). From the assumptions made about the function f it then
follows that

Ix(t)-xm (It]N)

-[t]N
<- Io If(s,X(s), U(sll-f([s],X([S]l), U(Es]))I ds

+ I[ [f(s,X(s), U(s))l ds +lB(t)-B([t])[

+ c/= It (x + IX(s)l) ds + I(t)-B ([t]N)l.
t]

By the Gronwall-Bellman inequality (cf. [5]) this implies that

where

[X(t)--XN ([t]N)I <=SN(t)+L110 eLl(t-s)tN(S) ds,

+c/= It (X+lX(s)l) as +lB(t)-B([t])l.
tin

Since, with probability one, 8iv(t) 0 boundedly for all t, it follows thatXv ([t]n) X(t)
almost everywhere for all t. In particular, Xn(1)X(1) almost everywhere, whence
J(Un)J(U), which gives the desired approximation.

Remarks. a) If in assumption (A4) the ur are only assumed to be e-optimalmi.e.,
Jn (u n) -<_ Vn + e, where Vn denotes the value of the Nth stage problem--then the
same proof shows that u is e-optimal for the continuous time problem. Moreover, if
the ur are en-optimal with e n$0, then u is optimal.

b) It can be seen from the last step of the proof that continuity of the cost
functional g may be replaced by the weaker requirement that the set G of discontinuity
points has Lebesgue measure zero. Then, since X(1) takes values in G with probability
0, the convergence Eg(X (1))Eg(X(1)) will continue to hold. This allows one, for
example, to treat maximum inclusion probability problems in the presented framework.
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DIRICHLET BOUNDARY CONTROL PROBLEM FOR PARABOLIC
EQUATIONS WITH QUADRATIC COST: ANALYTICITY AND

RICCAT!’S FEEDBACK SYNTHESIS*

i. LASIECKA" AND R. TRIGGIANI"

Abstract. For a parabolic equation in y defined on a bounded open domain II with boundary F and
with control function u acting in the Dirichlet boundary condition, we study the optimal quadratic cost
problem, which penalizes over an assigned time interval [0, T] the L2(0, T; L2(" ))-norm of the solution y
and of the control u, as well as the L2(II)-norm of the final state y(T). Feedback synthesis (pointwise in
time) of Riccati type: u(t)= CP(t)y(t) of the optimal solution u, y0 is established through a semigroup
approach. Moreover, in contrast with the indirect approach of much of the literature, which relies on a
Riccati equation to establish existence and numerical computability of the operator P(t), the present
approach is instead direct: i.e., the operator P(t) is first defined by an explicit formula in terms of the
system data, and only subsequently shown to satisfy, in an appropriate sense, a Riccati-type operator
equation.

Solution to the Riccati feedback synthesis ( 3) required some regularity results of the optimal solution
u o, yO. Accordingly, the regularity question is taken up preliminarily (in 2) and is carried out, in its own
right and in full generality, much beyond the need of the Riccati synthesis.

Key words, parabolic boundary control, Riccati equation

1. Introduction.
1.1. Statement of the problem and reference to the literature. Let f be a bounded

open domain in R" with boundary F, assumed to be an (n- 1)-dimensional variety
with f locally on one side of F. Here, F may have finitely many conical points with
f convex [K2, p. 227]. Let A (f, 0) be a uniformly strongly elliptic operator of order
two in f of the form

A(6, ) E a(6),

with smooth real coecients a, where the symbol denotes differentiation. We
consider the optimal boundary control problem (P)"

Minimize the performance index

(I.0) J(u,

over all u L2(E), subject to

(t, ) -A(j, O)y (t, ) in (0, T] II Q,

y (0, )= y0(’), e n,
y (t, tr) u (t, tr) in (0, T] x F =- E.

Here and throughout, u(t,. is the boundary control acting in the Dirichlet B.C. and
a denotes either 1 or else 0.

* Received by the editors February 9, 1981, and in revised form January 26, 1982. This research was
supported in part by the National Science Foundation under grant MCS 81-02837.

5 Department of Mathematics, University of Florida, Gainesville, Florida 32611.
All norms are L2-norms over the specified domains, unless a completely self-explanatory subindex

is used. Moreover, the results of this paper trivially extend to the cost functional that includes, in the usual
way, selfadjoint nonnegative operators on y and y (T), and strictly positive on u.
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Remark 1.1. It is known [L4, p. 202] that the response y to an L2(E)-control
may not have a well-defined final point y(T) in the sense that it may well happen that
y(T),’L2(l)) for some u LE(E). In this case, the corresponding value of J is
J(u, y(u)) m, for a 1. This is a pathology that will have to be treated.

A main goal of the present article can be informally described as follows" Establish
the feasibility of a pointwise (in t) feedback synthesis of the optimal control u in
terms of the corresponding optimal solution yO, as expressed by2

(.) u(t) CP(t)y(t), 0 <- < T.

Here, C is a time independent operator known in terms of the original parabolic
equation (1.1)-(1.3), and P(t) is a suitable operator. Further extending known theory,
we shall prove the validity of (.) and, moreover, that P(t) satisfies in an appropriate
sense a Riccati type (nonlinear, in fact quadratic) operator differential equation in
0-< < T with assigned condition at T.

Feedback synthesis of optimal control problems with quadratic cost has been, of
course, the object of extensive investigation over the past twenty years, since the
fundamental work of R. E. Kalman originally centered on linear ordinary differential
equations. The intimate relationship between the pointwise feedback realization of
the optimal control and Riccati equations has been extended in various meanings and
directions to a large variety of dynamical systems. This being the case, the burden is
on us to justify another contribution to the subject, particularly when the final result
is somehow expected and taken for granted.

The extensive literature on quadratic control problems and Riccati equations
shrinks, however, to only a few references, when it comes to boundary control problems
for partial differential equations; this is even more so in the most challenging case,
where the control function acts within the Dirichlet boundary conditions.3 For instance,
a satisfactory fully L-theory of the optimal quadratic cost problem for Dirichlet
boundary input hyperbolic equations is altogether lacking.4 As to an L2-theory for
parabolic equations, the only article that treats the Dirichlet boundary input casethe
one of our present paperis Balakrishnan [B2]. The fundamental book by Lions
treats only the parabolic boundary control problem with control function acting
through the Neumann boundary condition, where higher regularity properties of the
solutions are available (see [L4, pp. 159-163]). As to Curtain and Pritchard [C1], [C2],
their evolution model5 is not capable of treating L2(0, T; L(F))-Dirichlet boundary
control for parabolic equations with solutions y eL2(0, T; L2(f)) even for a one-

The pointwise feedback synthesis is of established crucial importance in engineering practice, where
it is termed "real time" or "on line" implementation.

The Dirichlet boundary control problem is the most challenging case, due to the lowest regularity
properties of the solutions of a second order P.D.E., as compared to the other two cases of Neumann or
elastic (mixed) boundary conditions.

4 See: Lions [L4, Ch. IV, 8, p. 325] under the "very strong assumption" u H (E)’ Curtain and
Pritchard [C2, pp. 602-604], explicitly stating that their model cannot treat Lg(Z)-control, whereby control
action in L2(0, T; H1/2(F)) is considered" similarly Vinter and Johnson [VI] with control in L2(0, T’ H1/E(F)).

In Curtain and Pritchard [C2], the overall viewpoint is considerably different from ours. Their
analysis starts off, in its first stage, from a dynamical model consisting of an inhomogeneous time dependent
evolution equation, on which they endeavor to impose the weakest possible assumptions that they can.
Only at their second stage do they attempt to cast various specific dynamical equations, including some
boundary control problems, within the original framework of their evolution equation, by trying to match
the original standing assumptions. Also centered on an volution operator model is the paper [G1] by
Gibson: This, however, says nothing about boundary control, as weakest possible assumptions are attempted
only on the free dynamics (evolution operator of the free system), while the control acts on the system
through a bounded time dependent operator. We will have more to say about [G1] later on.
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dimensional 1 (0, 1): See their example [C2, Ex. 6.2, p. 600], where y is taken in
the undesirable space L2(0, T; H-- (lq)) and hence the performance index J is
penalized in y with respect to the "artificial" norm L2(0, T; H-- (f)), with final
state penalized in the corresponding norm (fl). Thus, the only work specifically
pertinent to our parabolic problem here, is Balakrishnan [B2], where indeed an
L2-theory for Dirichlet boundary control with no final state (ct =0 in (1.0)) is presented.

Our approach to modeling the dynamics of boundary input parabolic equations
owes much to Balakrishnan, as we also work not directly with the parabolic equation,
but rather with a semigroup rooted input-solution formula (a sort of variation of
parameter formula) first introduced and studied by Balakrishnan and his former
student Washburn [B1], [B2], [Wl], [W2]. Regarding, however, the Riccati feedback
synthesis, there are notably important differences between Balakrishnan’s treatment
[B1], [B2] and ours here in 3. The main ones are the following:

(i) As to the problem studied, our cost functional penalizes also the final state
(c 1 in (1.0)), which was instead omitted in [B2] (a 0 in Eq. (1.0)). This addition
is responsible for further technical difficulties and complications, in view of the general
Remark 1.1.

(ii) As to the method of solution proposed for finding the Riccati operator P(t),
Balakrishnan’s approach falls in with the general trend that may be labeled as indirect.
In this trend, which is motivated by finite dimensional theory, one attempts to express
the optimal control u in terms of the optimal trajectory yO by means of the pointwise
relation (.), for some postulated operator P(t) and then deduce a Riccati-type equation
for P(t). This way, one runs into the difficulty of having to settle the technical issue
of existence, i.e., that the obtained Riccati equation does admit a solution. On this
point Balakrishnan’s strategy consists in: (i) first proving existence of the Riccati
equation in the case of distributed control [B1, 5.2 and 6.8]; (ii) then in cleverly
recovering the Dirichlet boundary case as a limit process of a suitable sequence of
distributed control problems [B2], to which the previous theory from [B 1] applies. It
is undesirable, however, that the existence proof of the distributed case, and hence
of the boundary case, is based on a stochastic technique (for the corresponding filtering
problem [B2, 6.8]). In any case, in Balakrishnan’s approach, the numerical solution
of the Riccati operator equation is the only way available to determine P(t).

By contrast, our approach is direct and explicit, in that we first define (construct)
an operator P(t) in terms of the original parabolic equation (1.1)-(1.3) and then
deduce that P(t) must, in fact, satisfy a Riccati-type equation. Here, therefore, P(t)
is not postulated but actually defined in terms of the system’s data, and the existence
question of the Riccati equation is automatically taken care of.6’7 See (3.10).) We are
also grateful to an anonymous referee for pointing out to us, that our present derivation
of the closed loop evolution operator and the solution of the Riccati equation in 3
bears a closer connection with Gibson’s corresponding derivation for the regulator

6 The first to use a direct approach is, apparently, Lions [L4, pp. 135-6; p. 266] in connection with
parabolic equations with distributed control: here the operator P(t) is first defined by

P(t)x =p(t, x) (r(t)=-O with zero final state),

where p(t, x) is the solution (not explicitly available, though!) of a coupled system of P.D.E.s that arise
from application of the Hamilton-Jacobi theory. Next, Lions verifies that P(t) satisfies, in fact, a Riccati
equation. Gibson’s approach in [G1] is likewise direct and explicit.

Our approach, therefore, provides by means of the defining formula (3.10) for P(t) an alternative
route to the convergence analysis of numerical approximation schemes of P(t). This way, the needmpresent
in existing literaturemto compute P(t) as a solution of a (quadratic) operator Riccati equation is altogether
eliminated.
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problem in [G1] than we were originally aware of. In fact, even though [G1] says
nothing about boundary control, if however one formally replaces the bounded
operator B in [G1] with the operatorAD (whose domain in L2(II) consists, technically,
only of the zero vector!), one will obtain some remarkable formal similarities between
the two treatments involving P(t). (We leave it to the footnotes to point out formulas
in [G1] which formally correspond to ours.) This is an inherent bonus of our present
semigroup approach to the study of the significantly different boundary control
problems. At the conceptual level, the operators we introduce and study come directly
from the original partial differential equation with nonhomogeneous boundary control.
At the technical level, they introduce further pathologies, due to intrinsically
unbounded operators which describe the action of the boundary control as well as
the not-always well defined final state" all this is reflected in the milder statements of
our final results.

To achieve the Riccati (pointwise) feedback synthesis of the optimal control u
(in 3), we shall need, to be sure, certain regularity properties of the optimal solution
o 0u and y Therefore, we shall first study (in 2) the question of regularity of the

optimal solution to problem (P). This will be done in its own right and full generality,
regardless of what is strictly needed for the Riccati synthesis. Only a much weaker
version of the regularity results of 2 will be actually invoked in 3 (e.g., rather than
full analyticity of u and yO in (0, T), the Riccati synthesis will need only continuity
of yO in [0, T] (endpoints included) and, say, Cl-smoothness in (0, T), together with
continuity of u in [0, T) (when c 1 in (1.0))" compare with full statement of
Theorem 1.1). Accordingly, some of the technical analysis of 2, including the
extension to complex variables, should not be viewed as a necessary prerequisite to
establish Riccati’s synthesis.

The question of regularity of the optimal boundary control u , which solves the
problem (P), has already been the subject of certain recent studies. In this connection,
we cite particularly ILl], [L3, 6] and IS1]. Both works ILl] and [L3, 6], in which
the author was primarily interested in describing the regularity of u over the entire
interval [0, T], refer to the problem (P) with a 0. Her results are" (i) that u
H2-’1- (F x [0, T]) for smooth F (e > 0), and (ii) that u e H-2’- (F x [0, T]) in the
case of conical domains 12. In addition, for smooth F, [L3] proves also that u
C(F x {0 < < T}). No attempt was made, however, to treat the case a 1 in (1.0),
which will be needed in 3.

Credit goes to T. Seidman for having first pointed out that, in the case of smooth
F and for the problem (P) with a 1, the optimal control u is, in fact, analytic in
(0, T) as an abstract function with values in H (F), for any s >= 0; see his main theorem
in IS1]. As a result of their contacts with Seidman, the authors have consequently
re-examined the problem of regularity for (Px) with general nonsmooth boundary F
(conical points are allowed), but this time with a 1. It was then realized that a new,
quicker alternative proof of the analyticity of u in (0, T) could be given, different in
spirit and in many technicalities from Seidman’s original proof. This is the object of

2, which is essentially self-contained. Our approach starts with the line of argument
previously used by I. Lasiecka to study (Px) with a 0" in particular, an explicit
representation8 of u, obtained via a novel application of optimization techniques to
the integral version (2.2b) of the dynamics, rather than to the differential version
(1.1)-(1.3).

Seidman’s approach in [S1] does not provide an explicit representation for u. Rather, u is identified,
and hence studied, through two coupled equations.
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1.2. Statement of main results. The main result on regularity of the optimal solution
o ou and y to problem (P) is as follows (see 2)"

THEOREM . 1. The unique optimal control u for problem (P) is an L2(F)-function
analytic in (0, T) and continuous at O. If a 0 in (1.0), then u is also continuous
at T. The corresponding optimal solution y0 is an L2(l))-function analytic in (0, T)
and continuous at the endpoints 0 and T.

Once analyticity is achieved in L2(F) H(F), it can readily be extended to higher
order Sobolev spaces based on F.

COROLLARY 1.2. Let the boundary F be such that, for all s >-O,

the Dirichlet map D9 is continuous from Hs(F)->Hs+1/2 (),

and likewise for D*. Then u is analytic in (0, T) as a function with values in HS(F)
for any s >-0 and likewise yO in H (1).

Remark 1.2. This assumption on F holds for all smooth fl [L5, I, p. 188] and
also for all ll with conical points, provided that certain relations between the dimension
of [1 and the solid angles of the conical points hold, as specified in [K2, Thms. 4.1,
4.2]. As to the fulfillment of the assumption on D*, however, the literature that we
are aware of assumes smooth F.

As to the feedback synthesis problem, our analysis in 3 culminates with the
statement that the optimal control u can be synthesized (implemented) as a pointwise
(in t) feedback realization of the corresponding optimal solution y0, as dictated by (.),
where P(t) is a Riccati operator. The full description of the situation is contained in
the results of 3 which, in the more demanding case of final state penalization (a 1
in (1.0)), claim in particular that: (i) for 0 _<- < T the operator P(t) satisfies a Riccati
operator equation only in a sense slightly weaker than the weak topology of
(i.e., x, y s (A) rather than x, y sL2(l) in subsequent eq. (3.22)); (ii) the terminal
value P(T) is defined in the sense of the strong topology; (iii) the Riccati feedback
synthesis holds only for 0 _-< < T (even though u and yO are analytic in 0 < < T)"
see subsequent equation (3.9), which also shows that the operator C of (.) is, in fact,
-D’A* (i.e., the normal derivative operator [B 1, p. 220]).

By contrast, the situation without final state penalization (i.e., a =0 in (1.0) is
regular including the final point T.

2. Proof of Theorem 1.1 and Corollary 1.2.
2.1. Analyticity of the optimal control u. Our proof will be articulated in the

following steps.
A) Introduction of a semigroup-rooted integral model to study the non-

homogeneous mixed problem (1.1)-(1.3), essentially due to [B1, 4.1], [B2], [W1],
[W2] in the form (2.2b) (left), as modified by the authors by means of fractional
powers in (2.2b) (right).

B) Derivation of an explicit expression for the optimal control u (see (2.10)),
by means of the Lagrange multiplier theory (Luisternik’s theorem) as applied to the
integral version (2.2b), rather than the differential form (1.1)-(1.3), of the dynamics.
This is, we believe, a much more advantageous route. It was first used in [L2, 7] for
the case a 0 in (1.0) and led to a quick derivation of the same expression for u as
was previously obtained in [B2] through a lengthier limit process based on finite
dimension theory.

C) Extension from real to complex z (in a suitable sector of C based on
[0, T]) of the quantities entering in the definition of u in (2.10). In particular,

9 D is defined in 2, Step A(i).
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assertion of elementary but useful properties of the operators L and L* on the space
4(; L2(" )) (see Lemma 2.1 below).

D) (This step is needed only when c 1 in (1.0).) Modification of the expression
defining u to an equivalent form, more suitable for the inversion of the operator
(I +L’L) in (; L2(F)).

E) Inversion1 of (! +L’L) over s4(; L2(F)) through the crucial fact that L is
a compact operator from (; L2(F)) into (St; L2(f)).

Step A. The semigroup model ]:or (1.1)-(1.3) and preliminaries.
(i) Let D be the Dirichlet map, defined by y Dr, where

-A (:, 0)y 0 in f; Y Ir v.

It is known, through the combination of various results (IF2], [L3, App. B], [L5, p.
107], [L6, Thm. 5.1], [K2, p. 227]) that for smooth and for conical convex domains

(2.1) D is a continuous operator from L2(F)- @(A1/4-),1 0<e _-<1/4

In IN1, Prob. 1.1, p. 252], this property is believed to be true for all f belonging
to the very large class .

(ii) Let (-A): L2(fD = @(-A)-L2(I)) be the elliptic operator-A(, 0) with zero
Dirichlet B.C.

(iii) Let S(t) be the C0-semigroup on L2(f), t->0, generated by (-A) IF1, Ex.
p. 101], which is analytic (holomorphic) on a triangular sector containing the positive
real line.

Recently, Balakrishnan and Washburn [B1], [B2], [Wl], [W2] have established
that the nonhomogeneous mixed problem (1.1)-(1.3) admits the following semigroup
model on L2(fD:

(2.2a) y(t)=S(t)yo+(Lu)(t), yo L2(a),

where Lu is given by the left-hand side integral of

(2.2b)

(Lu)(t) Io AS(t-’)Du(z) dr

A+S(t-’)A1/4-Du(") dr, 0<e _--<1/4,

to be interpreted in the sense that a control u L2(E) produces, through (2.2), a
response y LE(Q).12 (Compare with Remark 1.1; see also [L3] for a quite general
treatment of the regularity problem based on (2.2).) As in our previous work on
parabolic boundary input problems, we prefer, however, to use the crucial fact (2.1)
and rewrite Lu as the right-hand side integral in (2.2b), by means of fractional powers.
This is a more convenient way which makessome of the properties of L more apparent.
From (2.2b), on can deduce directly the property (recalled above) that L is a continuous
([B2], [W1], [W2]) linear operator form LE(Z) into LE(Q). The dual operator L* of

lO In [L3], instead, inversion of (I +L’L) was proved in the space H2-’1- (Fx[0, T]) and used to
conclude that u belongs to such a space.

11 At the price of considering a suitable translation of A, rather than A itself, we may assume that
the fractional powers of A are well defined; this does not change the local regularity in time of the solutions,
the object of this section.

xz However, u Lp(0, T; L2(F)) for p > 4 produces a meaningful pointwise response y(T) L2() [Wl],
[W23.



DIRICHLET BOUNDARY CONTROL FOR PARABOLIC EQUATIONS 47

L, continuous from L2(Q) into L2(), is [B1, p. 219]’.
T

(2.3) (L*v)(t)= Jt D*(AS(r-t))*v(’) dr,.

as one can easily deduce from the definition13 (Lu, v)o (u, L*v). We next introduce
the operator LT"

T

(2.4) Lru Io A+S(T-t)A1/4-Du(t) dt, 0<e <-1/4,

unbounded from L2(Z) = @(Lr) into L2(f), as noted in Remark 1.1 with

(2.5) @(LT) {u L(E)" LTU L(l)}.

Notice that A-1/4-ZLT is a bounded operator from Lz(N) into Lz(II), since the integral
kernel then becomes O(I/(T-t)-). Therefore, LT is closed, being the product of
A, which is closed and invertible in Lz(fl), with A-ILr, which is bounded on Lz(Z)
[KI, Prob. 5.7, p. 164].

The dual L*T is given by [WI, p. 69]"

(2.6) L*y =D*A*S*(T-t)y, O<-t < T,

as can easily be seen from the definition (LTU, y)n=(u,Ly) for u (LT) and
y @(L*). The operator L* is unbounded from L2(1)@(Lr) into L2(E). Notice that
@(L) is dense in L2(E) (e.g., C([0, T]; L2(F))c (L-). Since L- is closed, we then
introduce, with reference to Remark 1.1, the Hilbert space U given by U (LT)
(eq. (2.5)), equipped with the graph norm lull:= lu]2 + [LTUl2.

Instead of the original minimization problem (P), we are then led to consider
the following minimization problem (Per)"

Minimize the performance index

J(u, y(u)) 1/2{lu 12 + [YI+ IS(T)yo + Lrul2a}
over all u U, subject to (2.2a), where L is given by (2.2b).
Problem (Per) is a classical quadratic problem with continuous, strictly convex

J(u, y), having therefore a unique solution in U. Such a solution is then the unique
minimizing solution also of problem (P); i.e., what we have denoted by u. As for
U L2(Z) but u’ U, the corresponding index value J(u, y(u))= .

Step B. Explicit characterization of the optimal u via Lagrange multiplier theory
as applied to (Per). For u U, y L2(Q), p LE(Q), we define the Lagrangian

=1/2 1.(2.7) (u, y,p) [+lylo+[S(T)yo+Lru[}+(p, y S( )yo Lu)o.

Since y-S(’)yo-Lu obviously maps U L2(Q) onto L2(Q) (for any g 6L2(Q) take
u 0 and y S(. )yo + g), Liusternik’s general Lagrange multiplier theorem, as in [L7,
Thin. 1, p. 243] applies and gives" there exist u U, yO L2(Q), pO L2(Q) such that
’, ’y Lp 0 at (u o, yO, pO). From (2.7), we compute’y Lt’u 0 to obtain, respec-
tively,

(y,By)o+(p 6y)o=0 VByL2(Q)orp=-y
(u-L*p, 8u)=-(S(T)yo+LTu,LT.Su) tSu U.

Inner product notation on L2(" will specify only the domain (.).
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As the left-hand side of the above equation is well defined and continuous for all
u L2(E), we deduce that

(2.8)14 S(T)yo +LTU (L*T), and hence that" LTU (L*T),
since S(T)yo (Lr). (This is apparent from the definition of L*T in (2.6), which makes
the t-trajectory L*S(T)yo well defined also at t= T, since S(T)yo(A*)=(A))
[LS, p. 196].) Since (as recalled) U is dense in L2(E), it follows that

(2.9a) 14 u L’p _L,Ty O(T) -L*T[S(T)yo +LTU].
After replacing _pO with y0 and using the dynamics for y0, we obtain

(2.9b) [I +L*L +L*TLT]u=-L*S(.)yo-LS(T)yo.
The operator in square brackets on the left is obviously invertible with bounded
inverse on all of L2(E)15 and therefore

(2.10) 16 0u -[I +L*L +LrLT]-I[L*S( )Yo +LS(T)yo]

is the explicit expression of the optimal control that we seek. However, to deduce the
analyticity of u , further work is needed for which we find (2.9) more suitable. We
rewrite it as

(2.11) (I +L*L)u= b + g,

where the vectors b and g, defined as

b =--L*S(’)yo=bt--{-L*S(t)yo, O<=t<= T},
(2.12)

g =- -L*T[S(T)yo +LTU] =-- gt =-- {-D*A*S*(T t)[S(T)yo +LTU], 0 <= <= T}
are well defined vectors of L2(Z)-L2(O, T;L2(F)) (see (2.8) and (2.6)) and where
the subindex is added to emphasize the t-dependence of the vectors as L2(F)-
trajectories. The fact that g is defined in terms of u will have no implication, so
explicit dependence is omitted.

Step C. Extension from real to complex z properties ofL and L* on (; L2(" )).
In order to obtain the desired analyticity result of u, it is essential to extend the
definition of the quantities entering into (2.11) from (0, T) to z r, with r an
appropriate complex sector [$1]. Let r be the open symmetric sector of C based

"+’icb,on (0, T) and delimited by the four line segments p e p e +T,
0--</9--<Pmax for some 4" 0< b < rr/2 so that is entirely contained in the infinite
sector of analyticity of the semigroups S(z) and S*(z). Let be its closure.

Remark 2.1. The choice of this particular sector, based on (0, T), is not really
essential, and other sectors will do as well. However, T is particularly convenient,
since the transformation z --> T- z, needed below, maps onto itself.

We introduce the space (; L2([’)) of all L2(fl)-functions f(z) that are" (i)
analytic (holomorphic on and (ii) continuous on ;. Equipped with the norm

Ifla.a max If(z
z

14 As was pointed out by an anonymous referee, the final conclusions in (2.8) and (2.9a) can be arrived
at in a more elementary way (i.e., without use of Lagrange multiplier theory) through a simple direct
computation of the nonnegative difference: J(u o + v, y (u o + v )) J(u o, Y o), for v @(LT). Setting the Fr6chet
derivative of J to zero will also do the job.

15 This follows since, for u s (LT), ([I +L*L + L*TLT]U, U)X lul / Itulo/ ILTUI >--lull. Moreover,
the operator I +L*L + LrLT, being selfadjoint in L2(E), has an empty residual spectrum.

16 Compare with G1, eq. (3.14)].
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domain of
analyticity of
S(z) and S*(z)

FXG. 1

the space is a Banach space, completeness being a consequence of Weierstrass’
uniform convergence theorem. 17 A similar definition applies for (; L2(I’)) and its
relative norm.

The following simple but important lemma will be used repeatedly below.
LEMMA 2.1. The following properties holdfor the operators L and L*, once extended

in a natural way to z ;.
(i) L continuously maps t(; L2(F)) into (; L2(I))):

ILu], <= T-K[ui,v
(ii) L* continuously maps (’; L2()) into (’; L2(I’))’

IL*vl,r <- T1/4-KIvI,..
Here, the constant K is defined by

(2.13) K MI[A1/4-DII
where [[. are the unambiguous operator norms from L2(F) into Lz(f) in one case, and
from L2() into Lz(F) in the other case (see eq. (2.1)). Moreover, M is a constant so that

M
<
M

(2.14) [A+S(z)l.lZl/ and IA*+"S*(z)i.=lz[+----
([F1; p. 101 plus interpolation) for z .

Proof of Lemma 2.1. (i) Let u(z)Es(5;;L2([’)). With z-r e , take a line
segment r =O e i, 0 <p= < r, from 0 to z and extend Lu in (2.2b) by

(2.15) (Lu)(z) AS(z -()Du(() d( A1/4+S(z -()A1/4-Du(() d(,

Dividing the integration of the left integral into two parts and integrating by parts,
we find that the second term yields

eeiO

(Lu)(z)=AS(z-eei) Io S(eei-)Du()d+Du(z)-S(z-eei)Du(eei)

S(z -)D
du

-d
17 The real version of this theorem does not hold and, for this reason, extension from into z is essential.
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and exhibits (Lu)(z) as the sum of four L2(f)-analytic functions in . This
is so because u (.) and S(.) are analytic in , AS(z e e io)
S(z-3(e/2) ei)AS((e/2)e) and, moreover, because the integral of the first term is
a well defined L2(l))-vector, u being an L2(F)-continuous function in . To show the
continuity of L, we use instead the more convenient right integral in (2.15) so that

K
[(Lu )(z)la -<

(r O)k+ do ]u (.)[a,r,

and the desired conclusion for L follows.
Remark 2.2. In the Appendix, we shall also make use of the following properties"
a) The operator L takes an L2(F)-function, which is Loo in z , into an L2(t)-

function, which is continuous in z . (The proof is identical to that given above,
using sup rather than max.)

b) The operator L continuously maps the space

into the space

with norm

{h(z): h GL2(’; Lz(F)), h(z) analytic in

{O(z): 0 Lz(;; Lz(II)), O(z) analytic in r}

Ih I Ih (z)l d,

and similarly ofor . The same proof applies as that following (2.15), except that now
the vector e’ S(e e

go -)Du() d( need not be well defined in L2(I)). It is well defined,
however, in, say, the dual space [@(A1/4+)]’, to which the semigroup can be extended
to be still analytic. 18

Property (b) has a similar counterpart for L*.
(ii) The proof of L* is similar, using (2.3) instead of (2.2b) and noticing that

D*A*- is bounded in Lz(f)L2(F), being the dual of a bounded operator (see
(2.2)).

We now return to (2.11)-(2.12). We first extend b, and g, to Lz(F)-trajectories
bz and gz in a natural way by setting, in accordance with (2.12),

so that, by Lemma 2.1(ii),

(2.16)

and setting

bz =-{-L*S(z)yo, z

b /(; L2(F)),

g =-{-D*A*S*(T-z)[S(T)yo+LTU], z },

well defined by Remark 2.1. Notice that, at z T, gz is not well defined, so extension
to is not allowed. Therefore, while gg4(r; L2(F)), what holds instead is

(2.17) g is an L2(F)-function, analytic in -{T},

since S*(z)L2(f)c @(A*) for z 0, and was chosen properly contained in the
sector of analyticity of S(. ), hence of S*(. ).

18 By standard isomorphism techniques; see e.g. [L5], [L9].
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Remark 2.3. If a 0 in (1.0), the term g is missing from (2.11). Interpreted for
z e , (2.11) is in this case

(I+L*L)u=b.
Later arguments will show that the needed inversion is justified in 4(; L2(F)) and
that u= (! +L*L)-bz. Restricting to real t, we conclude that: The optimal control
u(t) ]’or the problem (P), with a O, is an L2(F)-function, analytic for 0 < < T, and
continuous in [0, T]. This conclusion complements, but does not replace, the results
of [L1]-[L3] over [0, T], recalled in the Introduction.

Step D. A more suitable expression for u. Since, as remarked, gg(; L2(F)),
we are not allowed to write (! +L*L)-(bz +g) in 4(;L2(F)). To overcome this
difficulty, we rewrite (2.11) with complex variable z as

(I +L*L)u=(I +L*L)(b +g)-(I +L*L)L*L(b +g)
(2.18)

+(L*L)2(b + g),

obtained by adding and subtracting the same quantities. It will be shown in the
Appendix that:

(2.19) (L*L)2gz is an Lz(F)-function continuous in r,
so that, by (2.16), (2.17) and Lemma 2.1, it follows that

(2.20) (L,L)2(bz + g) (r; L2(F)).

If we can show that (I +L’L) is invertible with bounded inverse in (; L2(F)), then
(2.18) provides

(2.21) u b +g -L*L(b + g) + (I +L*L)-(L*L)2(bz + gz),

which exhibits u as an L2(F)-function analytic over , as desired. In fact, analyticity
of the first two terms is contained in (2.16)-(2.17), analyticity of the third term stems
from Remark 2.2(b) via (A.1) of the Appendix, and analyticity of the fourth term is
contained in (2.20).

Therefore, all that remains to show is:
Step E. (I +L’L) is invertible with bounded inverse in (’; L2(l")). 19 The value

A --1 cannot be an eigenvalue of the operator in L*L in (r; L2(1-’)) since, as we
know, it is not an eigenvalue of L*L in L2(; LE(F)). To complete step E, it is therefore
enough to show that L is compact as an operator from (; LE(F)) into (; L2(’)).
The compactness of L as an operator from C([0, T]; LE(F)) into C([0, T]; L2()) was
already observed (with no explicit proof given) in [B2, below (4.1)]. As a matter of
fact, the following standard proof is technically the same on C or on .

The operators L defined from (; L2(I’)) into (; L2(I))) by
z-8

(Lu)(z)= Io A1/4+S(z-ff)A1/4-Du(C) dff, z =re i, ff =pe i,

converge to L in the uniform operator norm as 60

[(L-L)uI..(Z;L:z(r) <-sup l lr" K }
9 This is the only step where our proof conceptually benefits from [$1], although it is technically much

simplified over [$1]. In fact, our analysis has revealed the perturbation of the identity factorized as L’L;
thus while [$1] has to prove compactness of the full perturbation, we need only prove compactness of its
factor L, a much easier task.
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To show that L is compact for fixed 6, we apply the generalized Ascoli theorem JR1,
p. 179] to the family of functions {Luk} from 9 into L2([I), with unit norm in
(; L2(F)) for the uk. The family is plainly equicontinuous (in k), the kernel being
continuous. Moreover, for each fixed z ,, the totality of points

z--

(Luk)(z) A-1 J0 A2S(z C)Du (C) dC

clearly lies in a precompact set of L2(fl), since the integral points lie in a bounded
set of L2(fl) and A-1 is compact. The Ascoli theorem then guarantees uniform
convergence on , i.e., convergence in , of a subsequence {LUk,}, andL is compact.

The proof of analyticity of u in , hence in (0, T), is thus complete,
Note, however, that all terms on the right side of (2.21) are continuous at the

origin z 0. Thus, u(t) is continuous at 0. The properties of u in Theorem 1.1
are thus all proved.

2.2. Properties of the optimal trajectory yO. Once analyticity of the optimal
control u as L2(F)-function in is established, it follows (see the proof of Lemma
2.1, following (2.15)) that the optimal trajectory y0 as L2(fl)-function is likewise
analytic in , hence in (0, T). As to continuity of y(t) at T, we readily deduce
from (2.2) with u u that lim[y(t),x]=[y(T),x] as tT, (the last term is well
defined by (2.8)) at least when, say, x s (A*). Furthermore, this limit can be extended
to all x in L2(fl), hence in the strong topology of L2(fl)since (A*) is dense in it
and y(t) is uniformly bounded2 in the L2(fl)-norm on [0, T].

Proof of Corollary 1.2. The proof is based on the following steps"
(i) The vectors bt and gt are analytic in (0, T) with values in any H (F), s => 0.
(ii) The operator L maps {h(t):h(t)sH2(F), and analytic in (0, T)}tq

L2(0, T; L2(F))

into

{b (t)" 4, (t) H+1/2(fl), and analytic in (0, T)} fq L2(0, T; L2(fl)),

for s >-0. A similar statement holds for L*, mutatis mutandis, i.e., F with
(iii) By (i) and (ii), an iteration procedure applied to (2.11), now rewritten as

0 0u =-L*Lu + b + g, provides the desired conclusion.

To justify (i), we note that (A") (A*"), n 0, 1,.. and that

A*S*(’-t)S(’)yod’s(A*) =- CI (A*") 71 H2"(fl),
n=l n=l

and therefore bt =-[TD*A*S*(’r-t)S(’r)yodT" has values in any HS(F).
The analyticity of bt in (0, T) is settled, as in Lemma 2.1, by integration by parts.

As to gt, the desired conclusions are apparent from its very definition in (2.12).
(ii) For a function u which is in L2(0, T; L2(F)) and which is also an H2(F)-function

analytic in (0, T), we can write:

Io(Lu)(t) AS(t e S (e ’)Du (’) d" + 2 A-Du)(t)
/=0

-S I S(t-’)Du+)(’) dr,+ Y A (t-e)Du<)(e)-A-+x
/=0

-o Of course, y(T) is a priori known to be a well defined vector in Lz(fl).
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where k (s) k is an integer such that k < s/2 < k + 1. This expression is obtained by
proceeding as above, following (2.15), except that now integration by parts over (e, T)
is carried out (k + 1) times (see, e.g. [L3, Eq. (5.1)]). Then the first and third terms
in (2.23) are analytic and in (A)cH(f) for > e. (The first integral in (2.23) is
well defined by Remark 2.2(b).) The second term in (2.23) is analytic in (0, t), since
so is u((t), and in HS+1/2(f) (l 0). Moreover, since u (k+l is analytic on (e, t), the term

A I S(t--’)Du(k+)(’) dz H}()

and is analytic. Therefore, the fourth term in (2.23) is in H+2k(fl)H+(), as
desired, as A-k is bounded from H () H+2k (), a 0 (e.g., [L3, following
(6.8iii)]).

A similar analysis applies to L*, after we notice that D* is continuous in
H ()H (F). This is so either as a consequence of D being an isomorphism2a

from H--(F) ontoD () (H2(fl)) [L5, Thm. 5.7, p. 179; (6.24), (6.20)], or else
(more simply, in the present Dirichlet second-order case) as a consequence of Green’s
formula (h, Dv)a ((O/O)w, V)r where, for all h e H(fl), there is w H+2(fl), s 0,

+1such that -A(, O)w h i and W]r=O. Theq,2x (O/O)w eH (fl) and (h, Dv) is
well defined for all h H (fl) and all v e+fl))’, yextendin inner products to
duality pairings; i.e., D is continuous: (H (F)) H-- (F) (H ())’.

As a third alternative route, one may use Kellogg’s review [A1, Thm. 3.8.1, p.
71].

3. Feedback synthesis ot optimal control via a Rieeati operator. In the present
section, the problem of synthesizing the optimal control u(t) as a "real time" feedback
of the optimal solution y(t) is considered. Informally, what one seeks is a realization
of u(t) as expressed by

(.) u(t) CP(t)y(t)
pointwise in 0 < T. Here C is an operator known in terms of the original parabolic
system (1.1)-(1.3) while the operator P(t) is expected (from finite [C3] and some
infinite dimensional feedback theory, e.g., [B1], [C1]-[C3], [G1], [L4], [L8]) to be a
Riccati operator, i.e., to satisfy in an appropriate sense a Riccati operator equation
(quadratic) for 0 < T. The real time ("on line") realization (.) should be contrasted
with (2.10), which gives, instead, u as an LE(F)-trajectory over [0, T] (analytic over
(0, T) and continuous at 0, cf. Theorem 1.1) in terms of the initial datum yo and
of the operators describing y(t) as an LE()-trajectory. In order to achieve the
pointwise feedback realization (.) of u, what is clearly needed is a pointwise descrip-
tion of the dynamics of y(t) in terms of the initial datum at an arbitrary initial time’
such description will be accomplished by an appropriate evolution operator, as
described below. Henceforth, unless otherwise stated explicitly, our analysis will refer
specifically to the case where the performance index penalizes also the final state (i.e.,
a 1 in eq. (1.0)). This inclusion, as we shall see, adds further technical diculties
to the problem of synthesis through a Riccati operator. Corresponding relevant results
without penalization of the final state (a 0 in (1.0)) will be relegated to the footnotes.

Step. 1. Derivation of (t, s) and P(t) for a 1 in (1.0)., Let s be an arbitrary
time 0 s < T. Henceforth, we take s as the new initial time of our control problem
with corresponding initial datum y 6L2(); i.e., we consider the optimal control
problem of the introduction over the time interval Is, T], rather than over [0, T]. We

These are the only places where smoothness of the boundary F is used.
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shall denote22 the corresponding optimal solution by y(t, s; ys) and u(t, s; ys). The
procedure of 2 leading to (2.9a) and (2.10), once applied to the new problem, gives
for u(.,s;ys) as an element of LE(S,T;L2()) the ollowing corresponding
expressions:

(3.1) u(., s ys) L*y +L*sTy (T)
and

(3.2) u(,s,ys) [/+L*Ls+L* ]-1 *SsTLsT [L +L*sTS(T-s)y s)y],

where Ls and Lsr are the operators obtained, respectively, from the operators L and
LT by changing the initial time from zero to s. Explicitly, Ls is given by

(3.3a) (Lsu)(t)= A+S(t-r)A-Du(r) dr, s <-t<- T,

bounded from L2(s, T; L2(F)) into Lz(s, T; Lz([I)) (in fact, even L2(s, T; H()). Its
corresponding adjoint is now

T

(3.3b) (L* v)(t)= | D*A*S*(z-t)v(r) dz, s <= <= T,

bounded from L2(s, T; L2()) into L2(s, T; L2(F)). The operator LsT is given by
T

(3.4a) LsTU Is A1/4+S(T-r)A1/4-Du(z) dr,

unbounded from LE(S, T; L2(1-’)) (LsT) into L2(), while its dual is now

(3.4b) L’sTy D*A*S*(T t)y, s -< < T,

unbounded from L2(12) @(L*T) into L2(s, T; L2(F)).
Substituting u( s; ys) from (3.2) into the dynamics

(3.5a)

(3.5b)

yields

(3.6)

y(t, s ys)=S(t-s)ys+(Lsu(’,s; ys))(t), O<--s<--t<-T,

(Lsu( s; ys))(t) Is A+S(t-r)A1/4-Du(r’ s; Ys) dr

y(t, s; ys) (t, s)ys, O<_s<_t<__T,

where, for x L2(), we have defined by

(3.7)23 (t, s)x --S(t-s)x + {LE[Is +L*Ls +L*TLsT]-I[L*S(’-s)x +L*TS(T-s)x]}(t).
The operator (t, s) is well defined on the triangle AT----{(S, t): 0<_--s--<t_< T} and acts
from all of Lz(f) into itself; moreover, at least by virtue of (3.7), (., s) is a bounded
operator from L2(1)) into LE(S, T’, L2(’)). But, in fact, (t, s)x is continuous in Is, T],
and thus (., s) is a bounded operator from Lz(f) into C([s, T]; L2()), by virtue of
the closed graph theorem, applied to the composition of the following three maps:

bounded 0 bounded
0(.

A

Y
0

Ys ;u (.,s;ys) ,A ly ,s,ys)--- (.,s;
by (3.2) by (3.5)

Lz(I)) L2(s, t; Lz(II)) C([s, T]; Lz(12)),

22 In the new notation, the optimal solution in [0, T], so far denoted by y(t) and u(t), will be
y(t, 0; Yo) and u(t, 0; Yo), respectively.

23 Compare with [G1, Eq. (3.18)].
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along withA being closed and invertible [K1, Prob. 5.7, p. 164]. Some of the properties
of cI)(t, s) will be recorded below in Proposition 3.2 (and subsequent Proposition 3.6),
which will show that (t, s) is the desired evolution operator.

Substituting (3.6) into (3.1) yields

-u( s; y)= L*(cD(., s)y,)+L*7.((T, s)y,),

i.e., explicitly, by (3.3a) and (3.4b).
T

-u(t’ s; Y)= It D*A*S*(--t)(-, s)ydz +D*A*S*(T-t)cD(T, t)y,(3.8)
O<=t<T.

If we now choose the initial time s equal to with corresponding initial datum y(t),
we obtain from (3.8) the desired pointwise relation

(3.9) -u(t) D*A*P(t)y(t), 0 <= < T,

where, for x L2(II), the operator P(t) is defined by
T

(3.10)24 e(t)x Jt S*(z t)d)(’, t)x d" + S*(T- t)d(T, t)x, 0 <--_ < T.

Note that, via (3.7) and (3.3)-(3.4), the operator P(t) in (3.10) is given in a constructive
manner explicitly in terms of the original parabolic system.

Remark 3.1. As remarked in the Introduction, our approach in studying the
quadratic cost problem is within the spirit of Balakrishnan’s in that input-solution
operators (e.g., L, L* etc.) in appropriate function spaces are stressed in place of, and
substitute for, the equivalent original parabolic equation; yet his approach and ours
also differ in some important aspects. In his treatment of the quadratic cost problem
with distributed (rather than boundary) control and no final state (cf. [B1, 5.2, p.
229]) as an abstract ordinary differential equation in Hilbert space, Balakrishnan
obtains a formula [B1, Eq. (5.2.12)] which coincides with the first term of our (3.10)
above (the second term in (3.10) refers to the final state). There is, however, an
important difference in the way this formula occurs, and may be employed, in his
development, as opposed to ours, which we now explain. Balakrishnan’s approach
first postulates the existence of a feedback operator P(t), then introduces the corre-
sponding evolution operator (t, s) depending on the postulated P(t), hence obtains
that P(t) and (t, s) are related to each other by his equation (5.2.12). Therefore,
P(t) given by his equation (5.2.12) is available only implicitly, and not in a direct,
computable form. In the final stage of his analysis, Balakrishnan proves that P(t) has
to be, in fact, the unique selfadjoint solution of a Riccati equation. (The existence
issue is proved via a stochastic technique in the context of the filtering problem,
treated in his subsequent chapter.) In Balakrishnan’s approach, therefore, actual
determination of P(t) rests exclusively with the numerical solution of the Riccati
equation. By contrast, our equation (3.10) provides P(t) in an explicit, direct way, as
we have already derived an expression for the evolution operator (t, s) based on
the original parabolic equation (our (3.7) above), whose counterpart is missing in
Balakrishnan’s treatment. We shall prove below that our P(t), constructively defined
by (3.10), does satisfy a Riccati equation. The existence issue of the Riccati equation
is thus automatically taken care of in our treatment.

24 Compare with [G1, Eq. (3.25)].
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It is also expected that (3.10) can be used for convergence analysis of numerical
approximation schemes of P(t).

Finally, comments on the connection with Gibson’s work [G1] for the regulator
problem were already made in the Introduction, and are being reinforced in the
footnotes.

Step 2. Properties of dO(t, s) and P(t). Our next major goal is to show that the
operator P(t) defined by (3.10) is, in fact, a Riccati operator, i.e., that it satisfies a
Riccati (quadratic) differential equation. To this end, some preliminary properties of

(t, s) and P(t) are needed. We begin with a lemma.
LEMMA 3.1. With the notation previously introduced (see footnote 22), for any

0 < e < T- s, the following uniform bound in s holds:

(3.11a)9-5 lu( S; ys)lC([s,T-e];L:z(r))<= CT-[YsIL2(O)
where Cr- is a constant depending on T- e, but not on s. Moreover,

(3.11b) lu( s Y)I.(,;.(r))
Proof. With Vs the selfadjoint operator, Vs --/ +Ls Ls +LsrLsr on

Lz(s, T; L2(I))), conclusion (3.11b) is a consequence of

obtained as in footnote 14. Thus, V, and hence Vx, is uniformly bounded in s.
Equation (3.11b) then follows from (3.2).

To prove (3.11a) we use the counterpart of (2.21) with initial time s; i.e.

(#) u(.,s; ys)=(I-LL)[b+g]

where
+[Is +L*Ls]-l(L*Ls)2[bs,

bst =-{-L*S(t-s)y, s <-t <- T-e},

gst =- {-D*A*S*(T t)y (T, s; ys), s -<_ <- T e },

so that bst, gst C ([s, T e ], L2(F)). Next, for a function f(., s) defined for s <_-. <_- T e,
the following three inequalities hold, uniformly in s"

(i) ILff(’, s)lc(s.T-a;m)) <- CT-lf(’,

(ii) IL* f(" S)lC([s,T-e];L2(n)) CT-eIf(’, S)IC([s,T-e];L2(I’I)),
(iii) [(L*Ls)2f(., S)]c(s.T_ l;L(a)) ----< CT- If(’, S)IL(s.T-
Here and below CT- denotes a generic constant depending on T-e but not on s,
and f is assumed in each case to have the appropriate regularity claimed in the
respective right-hand side. The first two inequalities are obvious, while the third is
obtained by examination of the proof in the Appendix (simplified, as now the extension
to complex variables is not needed).

Now the operator Is +L*Ls has a bounded inverse in C([s, T];L2(F)), for any
s <- Tx <- T, which is uniformly bounded in s.

In fact, given y =y (., s) in this space, we seek a unique x x (., s) in the same
space, which solves the equation

x +L*Lx y.

2s If a 0 in (1.0) (i.e., there is no final state in the performance index), then e can be taken to be
equal to zero in (3.11).
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That a unique solution x L2(s, T1; L2(F)) exists is a consequence of footnote 14, and
moreover

]x(" s)l,,r,;r <-Cly(" s)l_,r;r
holds. But then (LL)2x is, in fact, in C([s, T]; L2(F)) (from Lemma A.1). From

LLx , 2 ,
-(L L) x +LLy

we next deduce that LLx C([s, T1]; LE(F)) and, returning to the above original
equation, that x C(Is, T1]; LE(F)). Moreover, inequalities (i)-(iii) and # # give

(iv) ][I +LL]-ay

Applying inequalities (i)-(iv) to the above equation # ), we obtain

[u( s;
But, as desired,

from the definition of bt. As to gt, we have, with y(T,s;y)=
S(T-s)y +Lru( s; y),

(*** +c_lu( s; yl(,;,
since the integral kernel D*A*S*(T- t)AS(T-z)D of Ly, rewritten as

(D*A*-)(A*+2S*(T z))(A*--OA+o)(S(T z)A-D)

is strongly continuous, as T-e. Application of (3.11b) to (***) then yields (3.11a),
as desired.

PROPOSITION 3.2. For the operawr (t,s), defined by (3.7), OstT, as a
bounded operawr from L2() inW itself, the following properties hold gue

(i) (t, t) I (identity on L2(fl)), 0 < T.
(ii) (t, s)(s, z) (t, z) (gansition), 0 z s < T.

(iii) For each fixed s, Os < T, the operawr (t, s) is strongly continuous in
Is, T], and is actually analytic in (s, T).

(iv) For any e, 0 < e < T, the operawr (t, s) is uniformly bounded in (s, t) A_
i.e.,

(3.12)26 [(t, s)lMw_, for all Ost T-e.

(v) For < T, the operawr (t, s) is strongly continuous in s [0, t] (left continuity
at s t); as w T, the operawr (T, s) is strongly continuous in s [0, T).

Moreover,
lim A--(T, t)x A--x, x L2(fl),
tT

and likewise
-X- X.A*--(T, t)x A*

(vi) Let 0 s < < z T. The following identity holds :27
O(z, t)

(t, s)x -(z, t)(t, s)x, x L2().(3.3)
0t

26 If a 0 in (1.0), i.e. (no final state in the performance index), then e can be taken as equal to zero

in (3.12).
27 It reduces the second argument derivative of , computed along the optimal trajectory y(t, s; x),

in terms of its first argument derivative.
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Proof. Properties (i) and (ii) follow from (3.6), via uniqueness of the optimal
control trajectory y0 initiating at z and s, in the usual way. Property (iii) is a restatement
of the properties of y(t, s; ys) via (3.6).

Property (iv) is a consequence of Lemma 3.1 and (3.5)-(3.6) and the principle
of uniform boundedness.

Property (v). With s < < T given, choose h > 0 and e > 0 such that s + h < <-
T- e. Then, right continuity follows from

I(t, s + h )x -(t, s)x[ [(t, s + h )Ix -P(s + h, s)x ]l

<--MT- IgP(s + h, s)x -xl (by (iv))

and the right-hand side goes to zero by (iii). The case T is now reduced to the
previous one"

dp(T, s + h)x -dp(T, s)x (P(T, t)[(t, s + h)x -dp(t, s)x]

withs+h<t<T.

As to left continuity, we compute for s _-< < T and h > 0

Idp(t, s -h)x -dp(t, s)xl [(t, s)[(s, s -h)x -x]l
<--I(t, s)l IdP(s,s-h)x-x[.

That the right-hand side goes to zero as h $0 is now a consequence of (3.5), whereby

[dp(s,s-h)x-xl<-lS(h)x-xl+ [A1/4+S(s--)A-Du(-,s-h;x)ld
-h

follows. Then, the above integral goes to zero as h +0 by Lemma 3.1 (since s-< T- e,
for suitable e >0) combined with the kernel C/(s _.)+o (cf. (2.14)).

To complete property (v), we must prove that, for x 6 L2(f), the limit as tT of

T

/A--(T, t)x S(T- t)A--x + A-+S(T-’)A-Du(", t; x) dr

is A-1/4-x. By the Schwarz inequality, this is a consequence of

IA-+S(T-r)I <-_ C/(T-r)-/ L:(t, T)

(by taking O less than the preassigned e) and of the uniform bound (in t)"

lu(-, t; x) dr <_-constr

which, in fact, was established in (3.11b). The proof of A-1/4- is complete. The
analogous result for A*-1/4- follows then from IN ---A- ]=const by the closed
graph theorem.

Property (vi). For h > 0 so that + h < r _-< T, we compute

1 1
-[(-, t + h)dP(t, s)x -dp(-, t)dP(t, s)x] P(’, + h)-[(t, s)x -dp(t + h, t)dP(t, s)x]h

By differentiability of (P in its first argument at t, since s < < T (property (ii)) and
by right continuity of in its second argument, since < " <_-T (property (v)), we
deduce identity (3.13) for the right derivative.
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Similarly for the left derivative: with h > 0 so that s <= t- h, we compute,

[(z, t-h)(t, s)x -(z, t)(t, s)x] (z, t-h)--[(t, s)x -d(t-h, s)x],

and the desired conclusion follows again from (ii) and (v). El
Preliminary properties of the operator P(t) are collected next.
PROPOSITION 3.3. For the operator P(t) from L2(fl) into itself defined by (3.10),

the following properties hold:
(i) P(t) is a bounded operator on L2(12) for 0 <= <= T.
(ii) For each [0, T) and 0<e < 1, the following inclusion holds: range of

P(t) P(t)L(fl) (A*a-).
1) Thus, by the closed graph theorem, the operator A*-P(t) is a well defined

bounded operator on Lz(fl).
2) Moreover, the operator D*A*P(t) is a well defined bounded operator from

Lz() into Lz(F), and, in fact, ]:or any 0 < e < T and x Lz(f),

D*a*P(t)x C([0, T-e];Lz(F)).

(iii) For each [0, T), the following identity, symmetric in x and y (both in L(fl))
holds,z8

T

[e(t)x, y] | [(r, t)x, (, t)y] dr + [(T, t)x, p(T, t)y]
(3.14)z9

at

T

+J, (D*A*P(z)dp(z, t)x,D*A*P(z)dp(z, t)y) dr.

Thus

1) P(t)= e*(t), and P(t) is selfadfoint.
2) P(t) is positive definite.

(iv) The minimal (optimal) value of the performance index J as in (1.0) of the
optimal control problem on Is, T], s < T that initiates at ys at time s is

J(u(., s; y), yO(., s; y))= [P(s)y, ys].

Hence, for any x L(f), the map t- [P(t)x, x] is monotone decreasing.
(v) P(t) is uniformly bounded on [0, T]: [P(t)l <= C7-, 0 <- <-_ T, andr3 limtCrP(t)x

x for all x L2(f).
Proof. Property (i). Boundedness of P(t) is immediate from (3.10), once con-

tinuity of d)(z, t)x in - e It, T] (property (iii) of Proposition 3.2) is used.
Property (ii). This same fact, along with estimate (2.14) of the kernel, implies

that for < T, the expression
T

(3.15) A*x-P(t)x It A*X-s*(7"-t)dp(’r’ t)x +A*-S*(T-t)d(T, t)x

is well defined for any x e L2(f), thus establishing (ii.1). Moreover, the operator

D*A*P(t)=D*A*1/4-OA*+P(t), 0<p <1/4,
is bounded, by virtue of (ii.1) and D*A*1/4- being bounded (cf. (2.2) or (2.13)).
Property (ii.2) is then a consequence of (3.15) via (iii) in Proposition 3.2.

9.8 Throughout 3, [., denotes the L2(f)-inner product and (., .) the L2(F)-inner product,
9 Compare with [Gl,.eq. (3.32)].
30 for a 0 in (1.0), P(T)= O.
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Property (iii). From the definition of P(t) in (3.10), we have
T

[P(t)x, y]= Jt [dP(’, t)x,S(’-t)y]dz+[dp(T, t)x,S(T-t)y].

We next substitute for S("- t)y the expression obtained from the identity

yO(., t; y)--(z, t)y S(’- t)y AS(’-o’)DD*A*P(o’)(o’, t)y do’,

which results from combining (3.5) (ii) with (3.9). We do likewise for S(T-t)y. We
thus obtain

T

(3.16)31 [P(t)x, y]= | [(-r, t)x, (-, t)y] d’r + [(T, t)x, dO(T, t)y]+I3 "+’I4,
-t

where
r

I3----It It [(’r,t)x, AS(’r-o’)DD*A*P(cr)(tr, t)y]&rd’r,

T

I4= ft [(T, t)x, AS(T-o’)DD*A*P(o’)d(o’, t)y] do’.

After interchanging the order of integration, we rewrite I3 aS

T T

I3: I f [*(,,t)x, AS(,-)DD*A*P()*(,t)y]d,d

T T

It I [[(z, t)x, S(" -tr)DD*a*P(tr)(o’, t)y]] d" do"

where, in the last step, we have extended32 the original A" L2(D.)N(A)-L(I)to
continuous operator from L.(I)= N() into the dual space [(A)]’, and likewise

by continuity the L2(l)-inner product [,] to the duality pairing [[,]] on (A) x [(A)]’.
Therefore

T T

/3=It [[f $*(’-r)I’(r, r)*(r, t)x dz,DD*A*P(r)I,(r, t)y]] dr.

Similarly for I4"

I4=It
Thus, by (3.10)

T

[[S*(T-tr)(T, tr)(o’, t)x, DD*A*P(tr)d(tr, t)y]] dtr.

T

I3 +I4 [ [[P(o’)(tr, t)x,DD*A*P(tr)(o’, t)y]] do"

(3.17)

as desired, since D*A*P(r) is well defined in L2(F) for r < T (property (ii.2)), and
hence A can be replaced by A in the last step. Equations (3.16)-(3.17) provide the
desired conclusion (3.14).

31 Compare with [G1, eq. (3.30)].
32 By standard isomorphism techniques; see e.g. [L5], [L9]: A(resp. A*) defines an isomorphism from

(A) (resp. (A*)) onto L2(I); thus the dual A** of A* defines an isomorphism from L.(I) onto

[(A*)]’ [(A)]’.
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Property (iv). Setting x =y in (3.14) yields P(t) as a positive definite operator,
and, moreover, proves property (iv) via (3.6) and (3.9).

Property (v). It follows from (iv) that limtCr [P(t)x, x] exists and is nonnegative,
for each x L2(’). Since P(t) is selfadjoint by (iii.1), we have in the usual way

2[P(t)x, y]=[P(t)(x + y), (x + y)]-[P(t)x, x]-[P(t)y, y],

and so lim [P(t)x, y] exists for all x, y in L2(’) and is finite as tT. Next, with a 1
in (1.0), and for x L2(’) and y (AZ+), we have

lim [P(t)x, y]= [limA*-1/4-p(t)x, A1/4+y]=[x, y]
tT L tT

as soon as we prove that the limit, as ’T, of
T

|

A*--P(t)x Jt S*(’-t)A*--(z, t)x d" +S*(T-t)A*-X-(T, t)x

is A*--x. But this is, in fact, true, as a consequence of Proposition 3.2(v). It then
routinely follows that limt,r [P(t)x, y] Ix, y] for all x and y in L2(II), and hence T1,
p. 353] that limtTP(t)x- X, as desired. The principle of uniform boundedness gives
the uniform bound of IP(t)l on [0, T]. The proof of Proposition 3.3 is thus complete.

The expected interplay between and P is revealed by the following proposition.
PROPOSITION 3.4. Given 0 <-s < < T, the following inclusion holds"

(3.18) range {[I-DD*A*P(t)](t, s)}= [I-DD*A*P(t)](t, s)L2(l)) (A).

Moreover, for any x L2(’), the following differential equation is satisfied

(3.19)
O(t, s)x= A[I-DD*A*P(t)](t, s)x

Ot

(i.e., f(t, s; x)=A[I-DD*A*P(t)]y(t, s; x)).

Proof. We already know that

(3.20) (t, s)x =S(t-s)x Js AS(t-z)DD*A*P(’)dO(z, s)x d"

(cf. (3.5b) and (3.9)). With x L2(I)) and y (A*)=(A),33 we then obtain by
differentiation for 0 _-< s < < T

d
d--[(t, s)x, y] [S(t-s)x, A*y]-[DD*A*P(t)d(t, s)x, A*y]

AS(t-z)DD*A*P(z)(z, s)x d’,A*y

(3.21) (well defined by Proposition 3.3(iii.2))

=[(t,s)x,A*y]-[DV*A*P(t)(t,s)x,A*y] (by 3.20)

[(I -DD*A*P(t))(t, s)x, A*y ].

Now, observe that for x L2(I)) and s < t, one obtains from Corollary 1.2 and (2.1)
(I-DD*A*P(t))(t, s)x H2(I) a fortiori, and that its restriction on the boundary

33 See e.g. [L5, p. 196].
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vanishes as

(I-DD*A*P(t))(t, s)xlr (t, s)xlr-D*A*P(t)(t, s)x

u(t, s; x)- u(t, s; x) =- O.

In other words, the desired inclusion (3.18) holds. Therefore, A* on the inner product
in (3.21) can be moved to the left, thereby yielding

s)x, y]=[A(I-DD*A*P(t))(t, s)x, y].

Since (A*) is dense in L2(fl), the above identity can be extended to all y L2(f),
and thus (3.19) is proved.

We can finally state and prove the property that the operator P(t) defined by
(3.10) is, in fact, a Riccati operator.

THEOREM 3.5. The operator P(t) defined by (3.10) satisfies the following Riccati
equation"

[/5(t)x, y] =-[x, y]-[P(t)x, Ay]-[P(t)Ax, y]

(3.22)34 +(D*A*P(t)x,D*A*P(t)y), O<-t<T, x, y (A),

limP(t)x =x.
tT

Proof. With x e L2(f) and y e @(A) and 0 -<_ s < < T, we compute from (3.10)
via (3.13):

I [9.(", t) ][(t)(t,s)x, y]=-[(t,s)x, y]+ (t,s)x,S(r-t)y dr
[ Ot

T

Jt [(r, t)(t, s)x, S(" t)Ay dr]

[O(T,t)+ i_(t, s)x, S(T- t)y]
[(T, t)(t, s)x, S(T-t)Ay]

-[(t, s)x, y]-[P(t)dP(t, s)x, Ay]
T [,O(z, t)

(t, s)x, S(r -t)y] dr+I L Ot

+ (t, s)x, S(T- t)y (by (3.10))
l 0t

-[(t, s)x, y]-[P(t)(t, s)x, Ay]
T

Jt [(r, t)A(I-DD*A*P(t))(t, s)x, S(z-t)y] dr

[(T, t)A(I-DD*A*P(t))(t, s)x, S(T-t)y]

(by combination of (3.13) and (3.19)).

3aBy Proposition 3.3(ii.1) and (iii.1), one may merely require x, y (A), for any e >0 since the
second and third term on the right-hand side of (3.22) can be rewritten as [A*-P(t)x,Ay]+
[P(t)A1-Ax, y].
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Using (3.10) again we finally obtain

[/i(t)(t, s)x, y]= -[(t, s)x, y]-[P(t)dp(t, s)x, Ay]
(3.23)

-[P(t)A(I-DD*A*P(t))(t, s)x, y],

valid for 0 _-< s < < T, for x L2() and y (A). Now, the right-hand side operator,

P(t)A(I-DD*A*P(t)) P(t)A1-A -P(t)AI-ADD*A*P(t)

where e <4a-, is clearly, by Proposition (ii.1) ((P(t)A-)* =A*-P(t)) and (ii.2), a
closed operator with domain (A); moreover,

lim P(t)A (I -DD*A*P(t))dp(t, s)x
s?t

P(t)A x- lim A(t, s)x +P(t)ADD*A*P(t)l! dp(t, s)
(3.24)

st

P(t)A1-Ax q-P(t)ADD*P(t)x

for any x (A). In fact, for e < 1/4

(3.25) A(t’s)x =S(t’s)Ax +I A1/4++$(t-r)A1/4-Du(t’s;x)d"

converges to Ax as s’t, as it follows from Lemma 3.1 (3.11a) (since < T).
We conclude that, as st, the right-hand side of (3.23) converges to the right-hand

side of (3.22) as desired. As to the left-hand side of (3.23), consider now the operator
/(t) well defined at least on the subspace

dZ, {y e L2(12): y =dp(t,s)x, O<--s <t,x eL2(f)} c(A) (by (3.25)).

Then,/(t) is closable xs edit,, x --> O, P(t)x --> v implies by the right-hand side of (3.23),
i.e., by (3.24), that v 0. We denote the closure of P(t) (smallest closed extension)
still by P(t). Then for x e (A) by Proposition 3.2(v)

lim (t)ep(t, s)x P(t)x,

and the left-hand side of (3.23) converges to the left-hand side of (3.22). The theorem
is thus proved.

We conclude by presenting another property of in the second variable, which
complements identity (3.13).

PROPOSITION 3.6. Thefollowing existence and regularity properties of the derivative
O(t,s)x/Os hold in for fixed s. Let 0 <1/4 be given such that r=-+e +0 <1, where e
is defined by (2.1) and henceforth fixed. Then

OdP(’, s)x= Ll(s, T-h H2(fD), x e (Ar),
(3.26)

Os )
(C([s+h, T-h];H2(fl)), x L2(),

where h is an arbitrary positive number (<T-s, or (T-s)/2 respectively).
Proof. Henceforth s is fixed and L and C denote, for brevity, the spaces at the

right side of (3.26). From

(t, s)x S(t-s)x + f A+S(t-’)A1/4-DD*A*P(z)gp(’, s)x dr,
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with <-T-h, one sees that we must show that Odp(t, s)/Ot is (in for fixed s) the
unique solution with the stated regularity (3.26) of the integral equation

o(t, s )x
OS

(3.27)

-AS(t s )x A1/4+S (t s)A1/4-DD*A*P(s)x

+ Is A+S(t-’)A1/4-DD*A*PO’) 00",0s s)x dz.

This will be done via the Banach fixed point theorem on L1 or C, respectively,
following the proof in [T2, Thm. 2.1]. Therefore, details are omitted here. For g (.)
or C, we introduce the operator F by setting

(Fg -AS s)x A+S s)A1/4-DD*A*P(s )x
(3.28)

+ A+S(t-z)A-DD*A*P(r)gO") dz.

With O < 1/4, the following identification applies

the identification being set theoretically and topologically with IXlH2(f)and
equivalent norms IF2], [L6, Thm. 5.1], [L3, App. B], [L5, I]. Therefore

A-+S(. -s)Ax eL when x fl(A), 3/>0 (from (2.14)),

S (. s h)A/os(h)x e C when x e L2(12),

and the first term at the right side of (3.28) is in L or C, respectively. Similar
considerations apply to the second term, since r < 1. TheH (l))-norm of the integrand
is integrable (cf. (3.29) below). Thus, F is well defined as an operator on L1 or C.
For the integral term, we compute for s <- -<_ T- h:

IArS(t -z)A1/4-DD*A*P(z)I <_ CT_hIArS(t-z)A1/4-DI
(where we have applied the principle of uniform boundedness to property (ii.2) of
Proposition 3.3)

CT-hK K(3.29)
(t-7" (t-’r))r

(by (2.13) and (2.14)).

F has a fixed point in C. In fact, setting v g-g2 we compute from (3.28)-(3.29):

KI(Fv)(t)[u(a) <-
(t r)r dlvlc <-KltqB(1, q)lvlc,

where [Vlc =max {iv(t)l.=o(a), s + h <=t <= T-hi and B(p, q)is the beta function

B(p, q)= ], t-(1-t)q- dt.

In general,

I(F"v)(t)lHO(a)<--KTt"qB(1, q)n(1 +q, q)... B(1 +(n 1)q,

Taking sup over [s +h, T-h] yields If%It <-c l lc where C, is, by virtue of the
known identities B(p, q)= F(p)F(q)/F(p +q) and F(x + 1)= xF(x), rewritten as

r(1)
C, =KIT"" =[K F(q)]"

r(1 + nq) nqF(nq)’
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and thus Cn$0 as n--> oo. The Banach fixed point theorem applies and provides the
unique solution of (3.27).

The proof is similar for L1 (see [T2] for details).

Appendix. Proof of (2.19). We already know that
(i) gt L2(0, T; L2(F)) (see (2.12) and subsequent paragraph),
(ii) gz is an L2(F)-function, analytic in -{T} (see (2.17)).

P.roperties (i) and (ii) then readily imply

(A.1) gz L2(’; L2(F)).

The following lemma proves afortiori, via Remark 2.2(a), the desired assertion (2.19).
LEMMA A. 1. Property (A. 1) for gz implies

LL*Lgz Loo(’; L2(fl)).

Proof. Throughout this appendix, we shall use the complex variable " =p e i,
0 <= p <= r, when integrating along the line segment from 0 to z r e io, and the complex
variable h when integrating along the line segment from z to T. Integrating by parts
on the integral (2.3), as extended to z , gives

(A.2)

T

(L*Lgc)(z)= I D*(AS(A -z))*(Lgc)(A) dA

-D*S*(T- z)(Lg)(T) +D*(Lgc)(z)
r d

+ D*S*(A -z)-(Lgc)(A) dA.

Assume for the moment the following:

(A.3) A*--- d
-z (Lgc)(z L2(’; L2(I))),

to be established at the end. Rewrite (A.2) more conveniently as

(L*Lg)(z) -D*A*-A*SS*(T z)A,-1/4-2 (Lg)(T)

+D*A*1/4-A*-1/4+ (Lgc;)(z)
(A.4)

T

+D*A*1/4- Iz A*1/2+Ees*(A z)A*-- d
dx

I + II +III.

In what follows, we shall use repeatedly, with no further mention, the fact that
the operators A-D and D*A*1/4- are bounded (see (2.1)) and, moreover, we shall
use equations like (2.13)-(2.14). However, instead of keeping track of the explicit
constants, we shall combine them into a generic const. As to the first term, I, we gets5

35 Here and henceforth, we shall use that (A) (A*) in our case; hence, (A) (A*), 0 -< 0 -< 1
by interpolation. Therefore,

See, e.g., [1.3] for details.
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from (2.2b)

(m.5)36
lily <= IID*A*--II M ejo M [IA--DII Igt[v dtIT-z[3 (T-t)

T z
< cnsl3 IIg[Ir

via the Schwarz inequality and assumption (A.1). Similarly for the second term, II,
we have

(A.6) [Ilir<--I[D*A*-I[ (r_p)+: [gclrdp-<-const (r-o- do.

As to the third term, III, by means of claim (A.3) we similarly obtain

cns(6 lA*-- (Lgc)(A )[ [dA ,(A.7) [IIIIr -IA -z dA

where z T means "along the line segment from z to T". Therefore, by (2.15), we
obtain

J;0[(LL*Lgc)(z)la A1/4+S(z -()A1/4-D(L*Lg.)(() d

const
(A.8) _<-

(r_o)k+
I(L*Lg)(p e’)lv dp

-<_ I’ + II’ + III’,

where by (A.4)-(A.7), the scalar quantities I’, II’, III’, are"

(A.9) I’=fo cnst Ilgcllr fo const

(r p)]-+ IT ’l3 do <-
(r p )-+4e Ilgcllr do -< const IIg

since IT rl -> (r p) (see choice of );

fO con f [g:]2r__ dtrdp<constllgz[l(A. 10) II’=
(r-P)+ (p O.)6e

as follows by changing the order of integration, where in (A.10) stands for tr e;

fo’COnstfc 1 d 2

III’=
(r p)43-+e T I/ rl6 A*--(Lgdh )(x) Idxl do

and, after setting T + r’ e it3, A T-tr e i, -r’ =<tr <= 0 along the line segment from
toT,

io, const i_o a,-- d 12III’-< - (Lg.)(A dtr dp
(r to )- (- dA

(A.11)
<_- const A*-- (Lg.)(h) dh,

dh

which follows by changing the order of integration and using (A.3). The conclusion
of Lemma A.1 then follows from (A.8) via (A.9)-(A.11).

36 Ilgllr is the L2(; L2(F))-norm of g.
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Finally, to establish claim (A.3) observe that from, say, (2.15), we obtain

I0A-- Lg)(z) A-Dg A$(z -)A-Dgd.

We then use (A.1) and footnote 35 for the first term. As to the integral term, we use
direct computation based, e.g., on the Laplace transform technique on generic rays
(as in [L3, Appendix A]) combined with a uniform bound. In this way, we obtain
claim (A.3).
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CONTROL OF WAVE PROCESSES WITH DISTRIBUTED CONTROLS
SUPPORTED ON A SUBREGION*

JOHN LAGNESE-

Abstract. It is proved that solutions of one-dimensional wave equations satisfying general boundary
conditions at the ends of a bounded interval I can be exactly controlled to any finite energy state by means
of distributed controls which vanish outside of any fixed nonempty subinterval of I. An example is given
which shows that no such general analogous result can hold in higher dimensions. In this case, f6r a spherical
region, those states are characterized which can be exactly controlled to zero by means of controls supported
in an annulus within the region. It is found that very strong controllability obtains when the controls are
distributed near the boundary, but that only rather weak controllability is possible with controls supported
in an interior annulus. Applications of these results to boundary control problems in annukar regions are
also discussed.

Key words, wave equation, distributed controls, boundary controls

1. Introduction. In this paper we will consider the question of exact controllability
of solutions of wave equations by means of distributed control forces constrained to
vanish outside of a given subset of the region in which the process evolves. Thus, for
example, we will consider the problem of controlling the motion of a vibrating string
or a vibrating membrane by means of external forces exerted only on a given portion
of the elastic medium. It will be shown that a vibrating string can be controlled to
any finite energy configuration whatever by means of such forces, but that the same
is not true for a vibrating membrane. In fact, given any open set 7 whose complement
in the membrane admits "trapped rays", in general there will be finite energy combina-
tions of frequencies and amplitudes which cannot be induced in or eliminated from
the membrane by means of external forces exerted on alone. On the other hand,
there are results in the opposite direction. For a circular membrane, we will characterize
those states which may be reached by means of control forces distributed in an annulus
within and concentric to the membrane. As is to be expected, only rather weak
controllability obtains for an annulus in the interior of the membrane due to the
presence of reflected waves which can be trapped in the uncontrolled portion of the
membrane. However, very strong controllability results are obtained if the controls
are distributed near the boundary of the membrane.

Controllability results of the type just discussed can be used to obtain boundary
controllability results. For example, consider a vibrating membrane in the shape of
an annulus with the outer boundary clamped. Suppose no external forces are present
and that motion is to be controlled by means of control forces acting on the inner
boundary. This problem, originally treated in [9], may be approached by solving the
control problem for the clamped circular membrane using distributed controls suppor-
ted in a small neighborhood of the center. The solution to this control problem, when
restricted to the original annulus, will provide a solution to the original boundary
control problem. Similarly, by controlling a clamped circular membrane by means of
distributed controls supported near the boundary, one obtains boundary controllability
results for a slightly smaller circular membrane. In this case our results are in agreement
with those of Graham and Russell [6]. This approach to boundary controllability will
be carried out in detail in 4.

* Received by the editors July 24, 1981.

" Department of Mathematics, Georgetown University, Washington, DC 20057, and Center for
Applied Mathematics, National Bureau of Standards, Washington, DC 20234.
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Our results for one-dimensional problems will be stated and proved in the next
section. The higher dimensional analogs are treated in 3.

2. One-dimensional Iroblems. We consider the problem

(2.1) p(x)-o---x p(x)-x g(x, t), O<-x <-l, t>0,

Ou
(2.2) u (x, 0) Uo(X ), --(x, O) Vo(X ), 0 <- x <- l,

Ou
(2.3) Ctou(O,t)+flOx(O,t)=alU(l,t)+X-x(l,t)=O, t>0.

It is assumed that [aol+[/3ol>0, [al[+lfll>0, ao/3o--<0, O11 ’0, and that p(x) and
p(x) are strictly positive and three times continuously ditterentiable on [0, l]. (2.1)
then describes the forced motion of an elastic string with local stiffness p (x) and local
density p (x).

By a standard transformation of the independent and dependent variables, (2.1)
may be brought to the form

(2.4)
02/1 02U
Ot Ox

q(x)u=h(x,t), 0-<x-<l, t>0,

where h differs from g by a factor depending on x only, and q(x) is continuously
ditterentiable on [0, 1]. The boundary conditions remain of the same form under this
transformation. Thus we consider the problem (2.4) and (2.2), (2.3) with 1. Given
(a,b)c(O, 1), the obiect is to select h eL((0, 1)x (0, T)) such that the x-support of
h is contained in [a, b] for each and

Ou
(2.5) u (x, T) Ur(X), -O-(x, T) vT-(x), 0 <= x <- 1,

for some T >0 independent of (Uo, Vo) and (uT, vT), where each pair is a fixed but
arbitrary "finite energy" state, e.g.,

[(Uo +Vo]dx < +.

This is equivalent to (2.10) below. Because of the time reversibility of (2.3), (2.4),
there is no loss of generality if we assume uT. VT O.

Following Russell (cf. [11]), (2.2)-(2.4) is transformed to a moment problem for
h. To do this one introduces the eigenvalues {,}]o and corresponding normalized
eigenfunctions {}’ of the regular Sturm-Liouville problem

(2.6) "(x)+q(x)(x)+,(x)=O, 0=<x-<l,

(2.7) ao& (0) +/30’(0) aa(1) +/31’(1) 0.

The are strictly increasing and in the present case , _-> 0. To simplify the presentation
we assume a0 + a > 0, so that > 0, but this is inessential.

Expand Uo, v0 in Fourier series in {}:

Uo= E 6, vo= Z ,
k=l k=l

Id, k fO Uo(X )k (x dx, lZk IO Vo(X )dpk (x dx.
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Then the problem (2.2)-(2.5) (UT VT 0) for a control h supported in [a, b for each
is equivalent to the moment problem

T b

(2.8) Io In h (x, t)Ck (x sin tOkt dx dt

T b

(2.9) fo Ia h(x’t)qbk(x)cstktdxdt=-l’k’ k=l,2,’" ,
where Wk X/kk.

(2.12)

where

THEOREM 2.1. Assume that Uo, Vo satisfy

(2.10)
2 (w ,/z + u)<

If T > 2, for any (a, b) (0, 1) the problem (2.8), (2.9) has a solution h which satisfies

(2.11) h 2 dx dt <- C E (wIz2 + v).

Remark 2.1. The constant C in (2.11) depends on both T and the interval (a, b)
and becomes unbounded as b-a - 0. The lower bound of 2 for T is optimal for an
arbitrary interval of support (a, b), but is not sharp for specific intervals of support.
For example, if (a, b) (0, 1) the control problem is solvable for every T > 0. It would
be of interest to determine the relation between the interval (a, b) and the optimal time.

Remark 2.2. Some authors [7], [11] have solved (2.2)-(2.5) with g(x, t) g(x)h(t)
in which g eL2(0, 1) is given and h is the control parameter. In these works it is
essential that the Fourier coefficients {g} of g(x) with respect to {} not converge
to zero too rapidly as k . Thus in [11], for example, it is assumed that

lim inf kg > 0.

One can see that even in the simplest cases (e.g., q(x) 0, o 1 0) this condition
cannot hold if g e C is required to be supported in (a, b) = (0, 1).

Proof of Theorem 2.1. Because of the asymptotic properties of the w, it is known
(see, e.g., [11]) that if T> 2 there is a sequence {g (t), (t)} in L2(0, T) biorthogonal
to {sin wkt, COS wkt} such that

T

[ ((t)+(t)) dt=M <+,sup
k o

where M depends on T. Thus
T T

Jo i(t) sin wt dt Jo Si(t) cos wt dt 6,

T T

fo J(t) cOSktdt=Io j(t) sinktdt=O

for j, k 1, 2,. . Define

g(x, t) E A (i(t) (t))i(x ),

b
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and set h(x,t)=xt(x)g(x,t), where Xx is the characteristic function of the interval
I (a, b). Then h is a formal solution to the moment problem (2.8), (2.9), and will
be a genuine solution if the right side of (2.12) is in L2((0, 1)x (0, T)). This will be
the case if

b

(2.13) infi I, $(x) dx >0,

in which case
T b

Io Ia Ih(x’t)12dxdt<=(cnst’)Y(olx+v)"

However, (2.13) is a consequence of
LEMMA 2.1. For any interval (a, b)c (0, 1),

b

lim I, r2(x)dx=b-a"
k

Proof. $k satisfies

(2.14) C+qCk+O2$k=O, 0=<X=<I,

the boundary conditions (2.7), and

o
eke(x)dx 1, k 1, 2,....

Multiplying (2.14) by b , and integrating from 0 to x gives

1 1 2.2 I0(2.15) -Ib (x)12 / [b (x)[= [b (0)] /I (0)1=- qdk’d.
(.Ok k k

Integrate this last expression from a to b to obtain

=(-a l(0 +1(01 - q(n)(n) (n) dn d.
k

Now multiply (2.14) by k and integrate by parts from a to b:

[(b15 (b) (a 15 (a 1] 12 d + $ d
k k

(2.17)

Add (2.16) and (2.17) to obtain

--[qb (b) ’ (b (a )4) ’ (a )] + 2
OAk

12 ](2.18) (b -a) /q()[bg(O)[2o)

o q6 dsc +o q’(n)6 (n) dr/d.



72 JOHN LAGNESE

The last two terms on the right clearly go to zero as k -)+. Also, using (2.18) with
a =0 and b 1 gives

+ (0)1 +
q (0)[

Ok

2 +[k(1)(1)--k(O)(O)]+O(1) 2 as k,
k

in view of the boundary conditions (2.7). In addition, from (2.15) it follows that for
every e > O, and x e [0, 1],

k k k
(2.20)

k

since {(x)} is uniformly bounded on [0, 1] [2, p. 335]. Lemma 2.1 now follows from
(2. 8)-(2.20).

3. Higher dimensional problems. Let be a bounded, open, connected set in
R" with a piecewise smooth boundary and let be a nonempty open set contained
in . We consider the problem

(3.1)
Ou
Ot

h,u g inOx(0, T),

(3.2) u (x, O) Uo(X), -:-:(x, O) Vo(X) in
Ot

O--U-U 0 on Of (0, T),(3.3) au +

where a and/3 are constants with la I+ 1/31> O, a/3 -> O, and v is the unit normal pointing
out of

Let (u0, Vo) and (UT, VT) be given in, say, H(fl) xL2(), and let T>0. We seek
a function g e L2(12 (0, T)) with x -supp g(x, t)c for each such that the solution
of (3.1)-(3.3) satisfies

Ou
(3.4) u (x, T) UT(X), --[(X, T) VT(X) in

If 7=fl, it is not difficult to show that (3.1)-(3.4) has a solution g for every T>0.
But if there are closed rays in , reflecting at the boundary as usual, which do not
meet in a nonzero angle, one might suspect that in general there will be no T for
which (3.1)-(3.4) has a solution g supported in 7 for arbitrary initial and final data.
We will verify this below in the case where 12 is the parallelepipedon

(3.5) 12 {x R "10 < xi < ai, 1,. ., n }.

THZOIEM 3.1. Let 12 be given by (3.5). Suppose a 0 in (3.3) and UT VT O.
Let {7 be an open set in fl such that does not meet every face of 012. Then there are
functions Uo, Vo infinitely differentiable in l) with OUo/Ou OVo/Ou 0 on Oil such that
(3.1)-(3.4) has no solution g LZ(12 (0, T)) with o=<,__<Tsupp g(x, t) c for any
T>0.
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Proof. This is a consequence of a result of H. Fattorini, showing the impossibility
of controlling all solutions of the Neumann problem for the homogeneous wave
equation in a parallelepipedon from only one face of the boundary. In fact, let u0, v0
be Coo in 1 with OUo/Ou OVo/Ou 0 on 012, and suppose that for some T >0 there
is a g L2(12 (0, T)) with g(x, t) supported in ff for each such that (3.1)-(3.4) hold.
Because of the particular geometry of 12, we know that u H2’2(11 (0, T)) (see [10,
p. 6] for the definition of Hr"(O)). Suppose that (7 does not meet the face X

say. Then there is a number all, 0<dl <al, such that g(x, t)=0 almost everywhere
for x all, X E ’. Let {x flx > dl} and w be the restriction of u to (0, T).
Then w satisfies the homogeneous wave equation in (0, T), has zero data in
at time T, and satisfies the homogeneous Neumann condition on all faces of 0 except
FI: Xx dl. Let f E L2(F1 (0, r)) be the restriction of Ou/Ou to F1 (0, T), and (t0, t0)
be the restriction of (Uo, Vo) to . f may be viewed as a boundary control function
on F1 which steers (to, 0) to (0, 0) in time T. Fattorini [4, Thm. 4.1] has proved that
there exists Coo (in fact, analytic) data in satisfying the homogeneous Neumann
conditions on 0 for which there is no control f L:(F1 (0, T)) steering this data to
zero in time T, for any T > 0. Such data have expansions in the eigenfunctions of An
in which satisfy the homogeneous Neumann conditions on, that is, in the functions

7rkl(Xl 1) 7rk2x2 7rknxn, (x) C cos cos cos
al --all a2 a,

where k (k 1,’’ ", k,) is an arbitrary n-tuple of nonnegative integers and C is a
constant. If we select ti1 in the form (m/(m + 1))al for some positive integer m, then
such data, extended to fl by periodicity, constitute C data in fl satisfying the
homogeneous Neumann condition on 0fl which cannot be steered to zero in any time
T by means of a control g e L2( x (0, T)) supported in for each t.

It is possible to obtain a positive result for control in a parallelepipedon along
the lines of [4, Thm. 4.2]: Data (Uo, v0) whose eigenfunction expansions converge
sufficiently rapidly may be steered to zero in some time T independent of (Uo, Vo) by
means of a control supported in (7 for each t, where 7 is any nonempty open subset
of f. However, we are instead going to establish such a result for a spherical region
II with (7 an annulus inside and concentric with II, because of some applications to
boundary control problems which we wish to discuss in the next section. Thus we
consider (3.1)-(3.4) with

a={x eR"llxl< 1}.

The desired terminal conditions are

Ou
(3.6) u (x, Y) --- (x, T) 0, Ix I< 1.

Following Graham and Russell [6], who studied the boundary control problem
for a spherical region, the problem (3.1)-(3.4) is transformed to a sequence of moment
problems. This is done by introducing the eigenvaiues and normalized eigenfunctions
of

(3.7) A,U+hU =0,

OU
(3.8) u //--r 0, ix[-- 1.

We are going to assume a 0 in order to eliminate the eigenvalue h 0, but our
arguments can easily be modified to handle the opposite case.
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It is well known that the eigenvalues of (3.7), (3.8) are a doubly indexed sequence
{Aklk 0, 1,...; 1, 2,...} of positive numbers which, for each k, are defined by

2Akl O) kl, O.)kl > O,

(Ol --fl ) Jk+p/2 (O)kl) + OAkIJk+p/2 (O)kl O,

1, 2,. , where p n 2 and J is the Bessel function of first kind of order u. One
has ok < o2 <’ +. In addition, aJkl ") +(X) as k , 1, 2, .

The corresponding normalized eigenfunctions are a triply indexed sequence given
by

Ukml(X Ukml(r, O, Rki(r) Yk,, (0, c ),

k=0,1,..., m=l,...,m(k,p), /=1,2,....

In these relations, r, 0, 4 are hyperspherical coordinates [3, p. 233] with 0 <- r <- 1 the
radial coordinate, 0 {0j]0 -< 0. =< rr,/" 1, , p} the coordinates of longitude, and
0 <=b <= 2rr the coordinate of latitude. The number m(k, p) is given by

(k +p-l)!
re(k, p)= (2k +p)

and {Y(0, 4)lm 1, 2, ., m (k, p)} is an orthonormal basis in L2(O) for the surface
spherical harmonics of degree k. The functions Rk(r) are defined as follows: If fl 0,

and if/3 # 0,

Rt,l(r)

Rk(r) x/- r-/
J+p/2(klr)
[Jtk +p/2 (O.)k/)[

/- toklr
-/2 J+v/2(to,r)

(tOl-(k +a/fl)(k +p-a/fl))/2

For each k, these functions are orthonormal in the sense that

Io R,(r)R,(r)rn- dr 8.

Furthermore, they have other properties listed in the following lemma. These will be
crucial to the interpretation of the controllability results given below and may be of
interest in themselves. (3.9) is analogous to Lemma 2.1, but concerns the normalized
eigenfunctions of a singular, rather than regular, Sturm-Liouville problem.

LEMMA 3.1. For any a [0, 1),

(3.9) lim R 2t(r)r"- dr a, k O, 1,

(3.10) lim R2l(r)r ’-1 dr O, 1 2,...
k-o

(3.11) lim_,inf Ia R 2l(r)r"-t dr > O.

The proof of this lemma is given in the Appendix.
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Now let u be a sufficiently.smooth solution to (3.1)-(3.3), (3.6) for some g
L2(I) (0, T)) supported in a region

7 {x e flr0 < Ix [< rl}

for each t, where 0 <= ro < rl -<- 1 are fixed. Also, let v be a sufficiently smooth solution
of (3.1) with g 0, and of (3.3). Then

T T

Io Ievgdxdt=Io Ia [v(ut’-Anu)-u(v’’-Anv)]dxdt
f [Uo(X)V,(X, O)-vo(x)v(x, 0)] dx.
x[<l

To obtain a moment problem for g, one substitutes for v (x, t) the separated solutions

v (x, t)=
Ukml (X sin .Oklt,

Uk,,g(x) cos wkgt,

and for Uo, Vo their expansions in

(3.12) Uo(X)= 2 2 .kmlUkml(X),
k=0 m=l /=1

m(k,p)

Vo(X Y E E .U..(x ),
(3.13)

=o

I’tkml Ixl<l Uo(x)Ukml(X) dx, 1,’kml Ixl<l Oo(x)Ukml(x) dx.

One then obtains the following moment problem for g"

T

(3.14) Jo Je g(x, t)U,(x) sin Oklt dx dt OAkl l.Lkmb

T

(3.15) Io Ie7 g(x’ t)Ukml(x) cs gklt dx dt -pkml’

with k, m, varying as above.
THEOREM 3.2. Let Uo, Vo be given by (3.12), (3.13) with

(3.16) r(Uo, Vo) . E al(ro, rx)(O)/2km! + P2kmt) < +CX3,
k,m,l

where

(3.17) Irrl dr.2a(ro, rl) 1/ R t(r)r -1

For T > 2, the moment problem (3.14), (3.15) has a solution g satisfying
T

(3.18) Io I Ig(x’ t)12dx dt <- Cr(uo, I) 0)

for some constant C C(T).
The degree of controllability guaranteed by Theorem 3.2 is thus determined by

the behavior of a,(ro, rl) for large k and l. Controllability of all finite energy states
can occur if and only if {aEkl(ro, rl)} is bounded. Lemma 3.1 shows this is possible if
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and only if rl 1. Consequently, the strongest controllability is obtained when the
controls are distributed near the boundary of the sphere. More precisely, Theorem
3.2 has the following corollaries.

COROLLARY 3.1. Let uoHl(),voL2() and suppose that rl 1. For T>2
the moment problem (3.14), (3.15) has a solution g satis]ying

T

(3.19) Ig(x, t)l

for some constant C C(ro, T).
CoaonY 3.2. Suppose that uo Ha(O), Vo L2() have expansions of the form

K m(k,p)

(3.20) uo(x) uo(r, o, ) 2 2 um (r)Y(0, ),
k=0 m=l

K m(k,p)

(3.21) vo(x) vo(r, o, ) E E vm(r)Y(0, )
k=0 m=l

for some finite K. For T>2, the moment problem (3.14), (3.15) has a solution g
satisfying (3.19) for some constant C C(ra-ro, K, T).

Remark 3.1. The constant C of Corollary 3.2 becomes unbounded as ra- r0 0.
The same is true as K m unless r 1.

Proof of Theorem 3.2. Expand g in hyperspherical coordinates:

(3.22) g(x,t)= E E g(r,t)Yk(O,O).
k=0 m=l

Substitute this into (3.14), (3.15) and carry out the angular integrations to obtain

(3.23) g(r, t)R(r)(sin t)r- dr dt ,

(3.24) g(r, t)R(r)(cos t)r- dr dt -.
For each fixed k and m, (3.23) and (3.24) comprise a moment problem for g. To
solve it we use the fact that if T > 2, for each fixed k there is a sequence {(t), (t)}
biorthogonal in L(0, T) to {sin mt, cos t} such that

T

where K depends on T but not on ] or k. This follows from

.+ ,>, 1, 2, ,
proved by K. D. Graham [5], and a result of A. E. Ingham [8]. Thus, for each k,

T T

]o (t)sintdt= 0 S(t)costdt ,
T T

Define

(3.26) ,k,(r, t) [o)kilx,,io’i(t)- ut,,i-i(t)]ai(ro, rl)Rki(r),



CONTROl_. OF WAVE PROCESSES 77

where a2kl(ro, rl) is given by (3.17), and set

(3.27) gk,(r, t) x(r),k,(r, t)

where X is the characteristic function of the annulus ro <lxl <rl. Then gk, satisfies
(3.23), (3.24), and using the orthogonality of {Rk}jl together with (3.25) gives

Iorlrrl oTog(r, t)r- dr dt ff(r, t)r- dr dt

K E a(ro, r,)(i 2

Thus g defined by (3.22) is a solution to (3.14), (3.15) satisfying (3.18).
Proof of Corollary 3.1. This is an immediate consequence of (3.11) and the

following result which, when a 0, was proved in [6, Lemma 7.1).
LEMMA 3.2. If uoH() then k.,lWl kml ()"

Proof. We first note that

VV VWdx +-- VWd

defines a scalar product on H() (the second term is omitted if 0) and { U}
is an orthonormal system in H() with respect to this scalar product. In fact

VU U&+

a UhUdx h]klhkimjl.

The Fourier coecients{} of uo with respect to this orthonormal system are given
by

1
VUo VUdx + uoUd

a uoUt dx

Hence, from Bessel’s inequality,

EEE,,< IVuol dx +
kml

Remark 3.2. One can also obtain the reverse inequality: If the left side is finite,
then Uo e H() and

kml
kml

(cf. [6, Lemma 8.1]).
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Proof of Corollary 3.2. The hypothesis on u0, v0 implies [d,km ---l/kin ---0 for all
k > K, m 1, , m (k, p), 1, 2, . Thus the solution g constructed above is given
by

K m(k,p)

g(x, t) x(r) Y Y k,,(r, t) Y,,(O, &),
k=O m=l

where ff, is given by (3.26). The conclusion therefore follows from (3.9) and Lemma
3.2.

The next result shows that if Uo, Vo are smoother than (3.16), a smoother solution
g to (3.14), (3.15) can be found. This fact will be needed for the boundary control
problems considered in the next section.

THEOREM 3.3. Let Uo, Vo be given by (3.12), (3.13) with

(Uo, VO) . a2kl(rO, rl)tO2kl(tO2klld, 2kml + p2kml) < +O0,

where a2kl(ro, rl) is given by (3.17). For T > 2, the moment problem (3.14), (3.15) has
a solution g H’((7 (0, T)) satisfying

g + dx dt <= C?(u0, Vo)

for some constant C C(T).
Proof. The proof is the same as the proof of Theorem 3.2, except that a different

biorthogonal sequence to {sin OOklt, COS tOklt} is used to ensure that gk,, (r, t) is smoother
with respect to t. Thus for T > 2 and for each k let {r/k (t), ki(t), ki(t)} be biorthogonal

-1in L2(0, T) to {1, Wkl sin klt, COSmklt} such that
To ((t)+(t)) dt<Kw 2

where K is independent of k and ]. Such a sequence exists for the same reasons as
before. Set

Then for each k, {, kj} is biorthogonal in L2(0, T) to {sin it, cos it} and
T

+ + + dt

Thus gkm defined by (3.26), (3.27) satisfies (3.23) and (3.24), and

g+1 drdtg Z ai(ro, rl)wi(wi,im

Hence g defined by (3.22) satisfies (3.14), (3.15) as well as (3.28).
COROLLARY 3.3. Suppose rx 1. Assume that uoHZ(),uxHa() and that

Uo satisfies (3.8). For T > 2, the problem (3.14), (3.15) has a solution g H’a(6 (0, T))
satisfying

(3.29) g2 +1 dx dt < C(lu 2

for some constant C C(r0, T).
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COROLLARY 3.4. Assume that Uo e H2(D), u H1(-) have expansions of the form
(3.20), (3.21) for some finite K, and that Uo satisfies (3.8). For T>2, the problem
(3.14), (3.15) has a solution g 6H’l( (0, T)) satisfying (3.29) for some constant
C C(rl to, K, T).

Proof. These corollaries are proved in the same manner as Corollaries 3.1 and
3.2, respectively. We only have to verify that

4(3.30) Y’, to kl ,.l CluolHm.

In fact, if are the Fourier coefficients of ,Uo with respect to {U}, then

kml+klkml (UkmlanUo+lUoUkml) dx

OUo OUmt] d O,Ioa (Uk no Or ]

since Uo and Ukl each satisfy (3.8). By Parseval’s equality,

2 2 2 Ila.uoll 2 Iluoll =L2() H2()
kml

Remark 3.3. A reverse inequality is also true. In fact, since zero is not an
eigenvalue of (3.7), (3.8), one has the a priori estimate

Iluoll =< clla.uoll   .) <= C E E E lml.

4. Application to boundary control. We first consider the problem of controlling
solutions of the wave equation in an annulus by means of controls applied on the
surface of the inner sphere. Let 0 < ro < 1 be fixed. For n => 2 set

fl={xeR"lro<lxl<l}, ro={xeRnlixl=ro}, F,={xeRnllxl =1}.

THEOREM 4.1. For x II let Uo, Vo be given by (3.12), (3.13). Suppose T > 2-to
and that

where

a kltokl l; kml)
kml

al 1/I R2l(r)r"-’ dr, 6 min (ro, -}(T + ro- 2)).

Assume further that Uo satisfies (4.3) on I’1. Then there is a control
H 1/2’a/2 (Fo X (0, T)) such that the solution to the problem

t92
(4.1)

u

Ot2
A,u O in f x (O, T),

On
(4.2) u (x, O) Uo(X), -yT(x, O) Vo(X) in f,

ot

On
(4.3) cau +1 Or

=0 on F x (0, T),

OU
(4.4) oou o f on Fo x (0, r),
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satisfies
c3U

(4.5) u (x, T) -:7(x, T) 0 in f.
Ot

Furthermore,

(4.6) IlfllH 1/2"I/2(IoX(O,T)) <--__ C(I/O, VO)

]:or some constant C C T).
In (4.3), (4.4), the alphas and betas are constants satisfying

We note that since the uncontrolled surface F1
can trap waves, one can expect only rather weak controllability to obtain in l if the
controls are constrained to act on Fo alone.

Analogous to Corollary 3.4 above, one has
COROLLARY 4.1. Assume that uo H2(fl), vo e Hl(f) have expansions of the form

(3.20), (3.21) for some finite K, and that Uo satisfies (4.3) on [1. Then the conclusions
of Theorem 4.1 hold with (4.6) replaced by

for some constant C C(ro, K, T).
Remark 4.1. Corollary 4.1 extends a result in [9] where the problem (4.1)-(4.5)

was considered with n 3,/31 0, and with initial data of the form (3.20), (3.21) but
slightly smoother, using methods completely different than those we shall use here.

Proof of Theorem 4.1. This is a consequence of Theorem 3.3. Let B denote the
ball [xl<l, let T>2-ro and set 6 =min (ro, (T+ro-2)/2). Then = T+ro-6>2.
For the data Uo, Vo, which are defined everywhere in B by (3.12), (3.13), there is a
function gH’(B x(O, )) such that the x-support of g is contained in Ixl<=6 for
each t, and such that the solution of

2W
tz Anw=g inB(0,),

OW
w(x, O)= Uo(X), -:7(x, O)= Vo(X) in B,

Ot

satisfies

cqw
OIW -I-l-------O on F1 (0, ),

Or

OW
(4.7) w(x, ’) --(x, ) 0 in B.

Moreover, g satisfies an estimate of the form (3.28). According to [10, Thm. 2.1, p.
95], w e H2’Z(B (0, )) and

IIW 1l2.2(B X(0,)) C(llUo[[2(., + IIoll 1(.)+ (Igl2 + dx d

C(uo, Vo).

Let u be the restriction of w to x (0, T) and f (aoW-oOw/Or)lro(O,r. Then
u,f satisfy (4.1)-(4.4), and from the trace theorem [10, Thm. 2.1, p. 9] f e
H1/’1/ (Fo x (0, T)) and

=. < C[lwll =.=,=(s < C (uo, vo),/2(Fox(0,T))
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It remains to show that u satisfies (4.5). To do so we note that w satisfies the
homogeneous wave equation in the region 6 < Ix < 1, 0 < < lb. It then follows from
(4.7) that w 0 at all points (x, t) such that the forward light cone with vertex (x, t)
intersects t= 5b totally in the region 6_-<1x1_-<1. In particular, w(x, t)=0 on [xl
ro, -ro+6 <=t<= ’, because of our choice of 3. Thus, in the annular cylinder
r0 -<- Ix --< 1, T ro + 3 _-< _-< T (when 3 < ro)w satisfies the homogeneous wave equation,
has zero Dirichlet data on the surface Ixl r0 and satisfies alW +/310w/0r 0 on [xl 1.
It follows that w 0 in this cylinder and so, in particular,

Ow
w(x, T-ro+3)=--OT(x, ]’-ro+3) 0, ro < Ix I< 1.

(4.5) follows immediately since T- r0 +
Corollary 4.1 is an immediate consequence of the preceding theorem, Lemmas

3.1 and 3.2, and (3.30).
One can treat in a similar way the problem of controlling solutions of the

homogeneous wave equation in a spherical region Ix < 1 by means of a control f
acting on the boundary through

oqU
yu +r--=f on Ixl= 1, t>0.

To do this, consider the distributed control problem (3.1)-(3.4) in a slightly larger
sphere 12: Ix < 1 + (with the original data appropriately extended) and solve this
problem using controls supported in 1 < Ix I< 1 + 6. In this case very strong controllabil-
ity obtains (cf. Corol. 3.1) since the admissible controls are supported near the
boundary. The solution w to (3.1)-(3.4), restricted to the original sphere, provides a
solution to the boundary control problem provided f is defined as the trace on Ix[= 1
of yw +r Ow/Ou. In order to ensure that fL2 on the boundary, it is necessary to
restrict the initial data to H2(fl)Hl(l), unless o-=0, and one obtains boundary
controllability in this space rather than in the finite energy space Ha()L2(I"/),
whenever T >2. Thus the result obtained in this manner is similar to but slightly
weaker than that obtained by Graham and Russell [6, Thm. 1.1].

Appendix. Proof of Lemma 3.1. The proof will be given under the assumption
that/3 # 0. The opposite case is handled in a similar fashion.

R,l satisfies the differential equation (cf. [6])

(A.1) Ul+P+r IR’/+[1-
in 0 < r _-< 1, and the boundary conditions

cR(1) + fiR (1) 0,

k(k+p)] Rkt 0
r

[Rtc/(0+)[ < +oo.

(A.1) is transformed to selfadjoint form by setting

k(r)

Then

(A.2)

(A.3)

l -}- [0) l ’- q (r)]b, O, 0<r<_-l,

(o -(p + 1)/2)k1(1)+ 0’1(1) 0, 4,,(0+) 0,
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where
k(k+p)+(p2-1)/4

(A.4) q(r) 2

and I0 bl(r)dr 1. bk is given explicitly by

4- (.Okl Jk +p/2(tOklF)

The beginning of the proof is similar to the proof of Lemma 2.1. We multiply
(A.2) by (r) and integrate from p to 1, where 0 <p 1, and then integrate again
with respect to p from a to 1, assuming a > 0. The result is

wt t(r) dr + [/(r) dr + [(r-a)q’(r)+q(r)]Ot(r) dr

a)[lo ,)[ + )+ ),)].
Next, multiply (A.2) by Ot(r) and integrate the first product by parts from a to 1 to
obtain , l(r) dr- fa ]t(r)lZ dr+ I q(r)l(r) dr

6(a)6(a (1)6l(1).

Add this equation to the preceding one:

2 ,(r)dr=(1-a)[l(1)l+(1)+q(1)(1)]

-(1)(1)+(a)(a)- . [(r-a)q’(r)+ 2q(r)](r) dr.

Using the boundary condition (A.3) at r 1, and the definition (A.4) of q(r), the last
equation can be written

+ a
2

(1) +,(a)(a) + 2ac, . r

where c =k(k +p)+(p:-l)/4. Noting the value of &(1) from (A.5) and dividing
by2 leads to

I, a ( p+l)’(r)dr=(1-a)+2, 2
,(1)

(A.6)
1 a a+a, ,.(a)(a) +, r

dr.

All conclusions of Lemma 3.1 will be deduced from this expression.
For fixed k, the second and fourth terms on the right in (A.6) clearly tend to

zero as , and so, to prove (3.9), we have to show that

(A.7) lira
&kl(a )& (a

2
l Okl
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This will follow from the asymptotic expressions [12, p. 199]

Jr(z)
2 1/2

cos z
2

z -+ ,
sin z

2
z -,

valid for fixed u. Hence, setting u k + p/2, we have from (A:5)

(A.8) lim sup I&kl(a)4’2 ’l(a)l <: lim
const.

l-+oo (.0 kl l-)oo wk/lcos (O)kl urr/2 rr/4)l"

The limit of the cosine term in the denominator must be unity as -+ oo for the following
reason. One has

0 (a Bp/2)J,(wt) + WklJ’ (OOkl)

.,- (sin Wk .
2

The expression on the right can be asymptotic to zero as -+ oo only if

lim sin O)kl 0
l-* 2

(A.7) therefore follows from (A.8) and (3.9) is proved.
We next prove (3.11). It clearly suffices to do so for values of a close to 1. Since

Ck > 0 for k => 1, we have from (A.6)

(b2,(r) dr => (l-a) +
a ( p+l.),(1) +2tOl 2

1
2092 4)l(a) l(a ).

kl

Replace a by p and integrate with respect to p from a to 1. After interchange of the
order of integration in the double integral on the left we obtain

’Ia 1 (l-a)2 4)/(1) [ 2)( p+l)](r a )c l(r) dr +-i----qb kl(a >=+ 1 +(1--a
4w ,l 2 400 2kl 2

The second term on the right is nonnegative if a is close enough to 1, and may
therefore be omitted. Again replace a by O and integrate with respect to p from a
to 1. The result is

(r a )2,(r) dr +
1 Ia (1 --a)3

4Wl & 2kl(r) dr >=------
hence

1 )2(1-a + 4092 2,(r) dr>=
kl

(l-a)3

and (3.11) is proved.
To prove (3.10) we write

IO 4)21(r’ dr=l- Ia 4)2l(r’ dr
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and insert (A.6) on the right. Thus

lt3(r) (Io (_ c, I, c r)
d a__a__ a pal-i,b2kt(r)dr=a 1 w r -2l 2

1
2l kl(a )6 l(a ).

The first term on the right does not exceed

(1 wt i t(r) =all-c
Hence

1--a C----k2 4’2’(r) dr<= 1-w,-----2to,, 2 ,(1)
kl/

1
2wl l(a)l(a ).

Replace a by p and integrate with respect to O from a to 1, assuming a > 0:

oIa (1--00kl/ ,(r)drdo_
1 w +4w2l’(a)+ 4Wl

(a -1)
2

-1

The last term is nonpositive if a is sufficiently close to 1, clearly the only case that
need be considered. We drop that term, replace a by and integrate with respect to
from a to 1 to obtain

1
(A.9) 1 -p l(r) dr dp d 1 +4"
The right-hand side goes to zero as k since, as we shall show in a moment,

Ck
lim= 1, 1, 2,....(A.10)

To show that this implies (3.10) we interchange the p and cr integrations on the left
side of (A.9). The resulting integral is

o

1 p- (p a) 4 2(r) dr do

((1-O)(o-a) (r) drdo+ 1-m O(o-a)

>(1-a)3 ( ] o,(r) dr + 1 p a) l(r) dr dp.
kl/

The last term is zero in the limit as k--> because of (A.10), and (3.10) follows
immediately.

To prove (A.10) we first note that for each k, the O.)kl are interlaced with the
positive zeros ]k of Jk +p/2(]kl) 0, 1, 2, ’. This fact is known as Dixon’s theorem
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[12, p. 480]. Secondly, we note the asymptotic expansion [1, p. 371]

jkt.(k +)Z((k +)-2/3a), k ore,

where Z is a certain continuous function which satisfies Z(0)= 1, and a is the /th
negative zero of the Airy function Ai(r). Consequently,

lim--k =1, I=1,2,...,
k..* ]kl

and therefore, because of the interlacing property of the O.)kl with the jkl,

k
(A.11) lirn 1, l= 1, 2,....

k O)kl

(A. 10) follows immediately from (A. 11).
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ON A CERTAIN CONTROLLABILITY GAP*

IAN R. PETERSEN- AND B. ROSS BARMISH"

Abstract. This paper is concerned with the problem of steering the state x(t) of the system (t)=
Ax(t) + Bu(t) to a prescribed closed and convex target set X in R n. In addition, admissible control values
u(t) are constrained to lie in a prescribed compact set I in R ’. In light of the constraint, the term constrained
controllability problem is often used to describe the situation above. More precisely, the system is said to
be globally fl-controllable to X if every initial state Xo can be steered to X in finite time. In a recent paper
lB. R. Barmish and W. E. Schmitendorf, IEEE Trans. Automat. Control, AC-25 (1980), pp. 540-547.]
two separate conditions were given for global fl-controllability to X. The first of these conditions was a
necessary condition and the second of these conditions was a sufficient condition. This led to the possibility
of a so-called controllability gap; that is, the possible existence of systems which satisfy one condition but
not the other.

In this paper, we show that the controllability gap vanishes for a large class of systems. Namely if X
is compact, the interior of fl is nonempty and rank [BiABiA2Bi An-lB]=n, then the sufficient
condition of Barmish and Schmitendorf is also a necessary condition for global O-controllability to X. We
also give examples to show that the controllability gap persists if these additional assumptions are not made.

Key words, controllability, target sets, rest points, optimal control

1. Introduction. In a recent paper [1], some new controllability criteria were
developed for systems with constraints on the input. The so-called constrained con-
trollability problems considered in [1] involve dynamical systems described by state
equations of the form

(t) A (t)x (t) +f(t, u (t)), s [0, o)

with the input u(t) restricted to a given set fl. Within this framework, the main result
given in [1] is a necessary condition and a sufficient condition which indicates whether
an arbitrary initial state Xo can be steered to a pre-specified target X, in finite time.
If such a control exists then the system is said to be globally ll-controllable to X.

The fact that a separate necessary condition and sufficient condition was obtained
leads one to investigate the possibility of a "controllability gap". That is, it is of
interest to know if there exist systems which satisfy the sufficient condition but not
the necessary condition. The objective of this paper is to show that for a large class
of linear time invariant systems, the sufficient condition given in [1] is also necessary.
Hence, there is no controllability gap for this class. We shall also give examples of
systems which are outside of this class and in fact fall within the gap described above.

Henceforth, we restrict our attention to linear time invariant state equations
described by

(S) A (t) Ax (t) +Bu (t), e [0, ),

where x (t) R is the state and u (t) R is the control. A pre-specified control restraint
set II_R is taken as given and an admissible control is a Lebesgue measurable
vector function u (.) such that u (t) s fl for all >= 0. The set of all such control functions
is denoted M(fl). Finally, a target set X R is also pre-specified. In the sequel we

* Received by the editors May 29, 1981, and in revised form March 8, 1982. This work was supported
in part by Rochester Gas and Electric Corporation and in part by the U.S. Department of Energy under
contract ET-78-S-01-3390; it was presented at the 1981 Conference on Systems and Information Sciences,
Johns Hopkins University.

t Department of Electrical Engineering, University of Rochester, Rochester, New York 14627.
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shall frequently use the following standard assumptions:
A1. X is closed and convex.
A2. lq is compact.
For the special case when X {0}, the problem of steering to the origin is referred

to as the l-null controllability problem. A classical result on the f-null controllability
problem is given in [2] for the case when the interior of l’l (denoted int l)) contains
the origin. In [3], the assumption that 0e int l) is removed and D, is assumed to be
the closed unit hypercube in the nonnegative orthant. Finally, further criteria for
O-null controllability are given in [4] for the case when lq is a more general restraint
set.

This paper generalizes the results in [4] by providing a constrained controllability
criterion for the case when the target is any compact set rather than the origin. For
this situation, some results are given in [5] and [6]. These results, however, apply only
if some further special assumptions are made on the system and target; that is, it must
be assumed that X is symmetric about the origin and satisfies a positive invariance
condition. For the linear time invariant system (S), this amounts to the requirement that

e-A"rX e-A"’X for all -’ >_- -.

More recently, it was shown in [1] that one can in fact obtain criteria for D.-control-
lability to X under much weaker hypotheses. It is within this context that the previously
mentioned controllability gap arises.

The plan of this paper is as follows. In 2, we provide the basic definitions and
notation. Section 3 describes the results of [1] and in particular the so-called control-
lability gap which arises in that paper.

Section 4 presents the main result of this paper. Namely, under a mild strengthen-
ing of hypotheses on A, B and X, it is shown that the controllability gap disappears.
Hence, the sufficient condition given in 1 is also necessary for global f-controllability
to X.

Section 5 gives examples to show that if we do not make any further assumptions
over and above A1 and A2, then one can easily construct systems which "fall into
the gap." That is, there are systems for which the necessary condition is not sufficient
and there are systems for which the sufficient condition is not necessary.

2. Definitions and notation. Let x06 R and u(.)M(fl), be given. Then, for
initial condition x(0)a__ x0, we denote..the state of the system (S) at time by
x(t, xo, u(.)). Given the initial condition xoR n, the system (S) is said to be lq-

controllable to X from Xo if there exists a finite time T >= 0 and an admissible control
u(.)M(lq) such that x(T, xo, u(.))X. The set of initial states x0 which can be
steered to X at time T is denoted by Xo(T); i.e.,

Xo(T) & {x0 Rn: x(T, Xo, u(. ))X for some u(. M(l))}.

Next, we say that (S) is globally O-controllable to X if (S) is O-controllable to X]rom
every XoR. The term global fl-null controllability is coined specially to denote
global l-l’controllability to {0}. Finally, we define the domain o]: O-null controllability
to be the set of initial states x0 which are O-controllable to {0}.

Namely, all one requires is controllability of the pair (A, B), that fl have nonempty interior, and
compactness of X.
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In [1], two functions are instrumental to describing global l-controllability
criteria. They are V" R [0, )-R [.J {+} and W’[0, ) --> R t_J {+} where

(2.1) V(zo, t) & Io maxima oo’B’ e-A"zo d’- xxinf x’ e-A’tZo
and

(2.2) W(t) a= min {V(zo, t)" IIz011- 1}.

Note that the terms e-’’Zo and e-a"Zo in (2.1) can be viewed as the response of the
adjoint system

(S’) (t) -A’z (t), e [0, )

with initial state z(0)= Zo.

3. The controllability gap. The take-off point for this paper is the following three
theorems which were proven in [1].

THEOREM 3.1. Consider the system (S) satisfying A1 and A2 and let Xo R" be
given. Then Xo So(T) if and only if
(3.1) x’ozo+ V(zo, T)>=O

for all nonzero vectors Zo R .
THEOREM 3.2. Consider the system (S) satisfying A1 and A2. Then the following

condition is necessary ]:or global O-controllability to X"

(3.2) sup V(z0, t)= +c
to

for all nonzero vectors Zo R ".
Note that since V(zo, t) is positively homogeneous in z0, one need only verify

(3.2) for Zoe R" such that Ilzoll- 1,

THEOREM 3.3. Consider the system (S)satisfying A1 and A2. Then the following
condition is sufficient for global -controllability to X"

(3.3) sup W(t)= +.
t_>0

It is the difference between the conditions given in Theorems 3.2 and 3.3 which
gives rise to the so-called controllability gap. In [1], it was shown that for the special
case X {0}, the gap between necessary condition (3.2) and sufficient condition (3.3)
disappears.2 In the sequel, we investigate the controllability gap without this restriction
on the target X.

4. The main result. Our main result is given in the theorem below.
THEOREM 4.1. Consider the system (S) satisfying A1 and A2. Furthermore,

assume that:
A3. X is compact.
A4. int f .
A5. rank [B iAB iA2B A "-IB] n.

Then the following condition is necessary and sufficient ]:or global l-controllability to X:

sup W(t)= +o.

In fact, for this null controllability situation a single necessary and sufficient condition can be given
even for time-varying systems; e.g., see [9].
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In order to prove this theorem, we shall exploit the three lemmas to follow.
LEMMA 4.1. Consider the system (S) satisfying A1 and A2. Furthermore, suppose

that

sup W(t) <-
t__>o

for some finite . Then there exists an initial state o R and an increasing sequence
of times k = such that

(i) k -)O0 as k - c(ii) o Xo(k) for all k.
Proof. If supt,0 W(t)<-_[3, then we first define the sequence tk =k for k

1, 2, 3," . Now, it is clear that tk --)00 as k -c and W(tk) for all k. By definition
of W(.) given in (2.2), we can infer that for each k, there exists a vector Zok R

-2/3z Hence,such that IIz0kll 1 and V(Zok, tk)<--[3. NOW, for each k define Xok Ok.

(4.1) xzo, + V(zo, t) <-

for all k. Since (Xok)k=l is an infinite sequence in the compact set {x’llxll 2fl}, there
must be a subsequence (ok)=1 which converges to some vector o with I1 o11-2t .
Let (ZTok)=l denote the corresponding subsequence of (Zok)_-i and let (’k)=l be
the.corresponding subsequence of (tk)k-_l.

Since (tk)k--1 is an increasing subsequence of the positive integers, it is clear
that tk c as k o. Also, in light of (4.1), it follows that

(4.2) xozo + V(io, 7)<--[3
for all k. Furthermore, since -0k ’’) -0 as k -, there exists a positive integer N such
that I1o--Ok11<--[3/2 for all k _->N. Hence, for such k _->N, it is clear using (4.2) that

XoZo + V(2o, i’) XokZok + V(2ok,

--XokZok -- V(0k, tk)+ fl
2

By invoking Theorem 3.1, we see that o Xo(tk) for all k _-> N. We conclude that o
is the required state and (’k}=l {’k" k >_-N} is the required infinite sequence of
times. [3

DEFINITION. An int CH() rest-point for the system (S) is defined to be a pair
(x*, u*) e R x R such that Ax* +Bu* 0 and u* e int CH(12), the interior of the
convex hull of II.

LEMMA 4.2. Consider the system (S) satisfying Assumptions A1-A4. Furthermore,
assume that (S) is globally II-controllable to X. Then the set of int CH(II) rest-points
is nonempty.

Proof. Proceeding by contradiction, suppose that there are no int CH(I)) rest-
points. Then, in accordance with [7, Lemma 2], there exists a nonzero vector Zo such
that A’zo 0 and to’B’z o =<0 for all to e CH([I). Therefore,

(4.3) max to’B’zo<=O.
CH()
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Noting that the expression o’B’zo is convex with respect to co, it follows from [8, Thm.
32.2] that

max o’B’zo max o’B’z 0"

This implies that

(4.4) max oo’B’zo=<O.

Since A’zo 0, it is evident that e-A’tzO Z0 for all >=0. Noting this fact, (2.1) becomes

V(zo, t) Io maxn w’B’zo dr xxinf X’Zo.

Since X is compact, the second term above is a finite constant. Furthermore, in view
of (4.4), the first term must be nonpositive. Hence,

sup V(zo, t)< +c.
t__>0

This is clearly a contradiction to Theorem 3.1. 1
LEMMA 4.3. Consider the system (S) satisfying A1-A5. If in addition O

int CH(fl) and (S) is globally f-controllable to X, then (S) is globally l-l-null control-
lable.

Proof. For this system, the classical result given in [2] states that the domain of
null controllability is an open set containing the origin. Hence there exists an e > 0
such that the ball B & {x: Ilxll < is contained in the domain of null controllability.
We now claim that any initial state Xo R" can be steered into B. Note that this
would be sufficient for global O,-null controllability.

To prove this claim, we first observe that the compactness of X implies that it
can be enclosed in an open ball of finite radius, say R, which is centered at the origin.
Given the positive e above, we now select el >0 such that el <-e and R/el > 1. Now,
let Xo R" be an arbitrary initial state. We must prove that x0 can be steered to B.
By the hypothesis of global O-controllability to X, there exists a control Ul(" M(Iq)
which steers the initial state o _a XoR/e to X in some finite time, say T. Hence, if

A AT R IO
T

A(T_.)Bu(4.5) Xl e Xo+ e l(r) dr,
E1

then x G No Therefore IIx 1]1 < R. Multiplying (4.5) by the factor e I/R makes it apparent
/ 1/R at timethat the control uo(t) (el/R)Ul(t) steers the initial state Xo to x2 ex

T. Moreover, note that x2B,. Recalling that el/R < 1, 0 CH([I) and ul(t) D, for
all >_- 0, it is evident that uo(’ e M(CH(fI)). Hence, we have a control in M(CH(fl))
which steers the initial state Xo to B in finite time. Since the attainable set is the same
for control restraint sets I) and CH(I) (see [2]), the preceding analysis implies that
there must exist another control uz(" ) M(D) which steers xo to B. in the same time
T. This completes the proof.

Proof of Theorem 4.1 (Sufficiency). If sup>__o W(t)= +, then Theorem 3.3
implies that the system (S) is globally O-controllable to X.

Necessity. Proceeding by contradiction, suppose that sup,__>o W(t) _-< fl < +o. Then
by Lemma 4.1, there exists an initial state oR" which cannot be steered to X at
times (t)=l where ’ ee as k - c. That is, o Xo([k) for all k.

Since the system (S) is globally lq-controllable to X, Lemma 4.2 implies that there
exists an int CH(I)) rest-point (x *, u *). Letting y g x x * and v & u u *, we generate
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a translated system described by

(Sy) ))(t) Ay(t)+ By(t)

with control restraint set V = {v R "" v + u* f} and target Y & {y R "’ y + x* X}.
Since X is compact and convex and f is compact, Y must also be compact and convex
and V must be compact. Furthermore, since u*int CH(f) we must have 0
int CH(V). Noticing that the system (Sy) has the same A and B matrices as the system
(S), it follows that (S) satisfies all the assumptions of Lemma 4.3. Therefore, (S) is
globally V-null controllable which in turn implies that the system (S) is globally
f-controllable to {x*}.

Consequently, there exists a control tT(.)M(l)) which steers the specifically
constructed initial state o to x* in some finite time, say 7". Since (S) is O-controllable
to X, there also exists a second control u*(. ) M(I)) which steers the initial state x*
to X in some finite time, say T*. Recalling that ’k o as k o, one can select some
sufficiently large k, say k N, such that tN > 5V + T*.

We now assert that 0 can be steered to X at time tN. Indeed, this transfer of
state is accomplished in three stages. First we apply the control iT(.) for [0, 7].
This will lead to x(f’)= x*. Since (x*, u*) is an int CH(I)) rest-point, the constant
control u(t) =- u* CH() applied for (SV,/’ T*) leads to x(/’n T*) x*. Recall-
ing that the attainable set is the same for constraint sets l’l and CH(f) (see [2]), there
exists a control tT(.) M(f) having the following property: If one applies the control
ti(. for t (, [- T*) this will lead to x(’u- T*)= x*. Finally, one applies the
control u(t)=u*(t-(N-T*))for t[-T*, ’]. The result is that x()X (time
invariance of (S) is used implicitly here). This contradicts the fact that

0 X0(t) for all k.

$. Examples. In this section we give three examples of linear time invariant
systems which indicate why one requires A3-A5 in Theorem 4.1. In the first two
examples, these assumptions are weakened and we generate systems which fall within
the controllability gap. That is, these systems are globally f-controllable to X,
necessary condition (3.2) holds and sufficient condition (3.3) fails. Hence, (3.3) is not
necessary if A3-A5 is violated. In the third example, we consider a system which
satisfies all of the assumptions of Theorem 4.1. Despite the fact that necessary condition
(3.2) is satisfied, this system is not globally O-controllable to X. Thus, when A1-A5
are satisfied, Theorem 4.1 provides a stronger necessary condition than (3.2).

Example 1 (A4 and A5 violated). Under these conditions, we show that global
l-controllability to X is possible and yet supt__>0 W(t)<+m. Consider the state
equations

l(t) --Xl(t)+x2(t), 2(t)=--Xl(t)--x2(t), 6[0, )

with target set X {(x x, x2): Ix 11 1, X2 0}. Note that since no control term appears
in the system equations, it does not matter what control restraint set is chosen.

For this system the state transition matrix is

da(t, O) e At -t[ COSt sin t]=e
--sint cost

Therefore, the response is given by

x:(t)J
e

-sin sint]. [Xol]
cos LX02J
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from initial state Xo [Xol Xo2]’. To establish global O.-controllability to X, notice that
for any given initial state Xo, it is possible to choose a sufficiently large time T so that
X01 sin T x02 cos T and Ixol + Ixo=l e T. Since xl(T) e -T (X01 COS T + Xo2 sin T), and
x.(T)=e-T(--xol sin T+xo2 cos T), it is clear (from choice of T) that [x(T)l <- 1 and
x2(T) 0. Therefore x(T)X. This shows that this system is globally f-controllable
toX.

For this "unforced" system, a straightforward calculation (using (2.1)) yields

V(zo, t)=- inf [xl, x2]e
cost sin z

Ix,l t-sin cos Zo
x2=0

e IZo cos + Zo sin t[,
where Zo [Zo Zo]’. Now using (2.2)

W(t) min e’lzo cos + Zo sin tl.
Ilzoll

To see that sup W(t)< +, we observe that at each fixed [0, ), the minimum
describing W(t) above is achieved by Zo =-sin and Zo2 =cos t. This implies that
W(t)=0 for all [0, ). Hence, for this system necessary condition (3.2) holds
(implied by Theorem 3.1) but sucient condition (3.3) fails.

Examp& 2 (A3 violated). This example illustrates the same phenomenon as in
Example 1 can occur even for systems which satisfy the controllability assumption
A5. The system is described by the equations

(t) x(t) + x:(t),

k(t) -x(t)+x2(t)+u(t), [0, )

with an unbounded target set X {(x, x2): x 0, x2 0} and a control restraint set
[-1, 1]. Note that for this system the controllability matrix [B "AB] [ ] has

full rank. Hence, A5 is satisfied.
For this system the state transition matrix is

(t,O)=ea’=e’[ COSt sint]-sint cost

To see that this system is globally -controllable to X, we consider the solution to
the state equation which is

x(t) -sin cos xo

with control u(t) 0 and initial condition xo [xo xo]’. Hence, given any initial state
xo, we can find a time T 0 such that xo sin T xo cos T and xo cos T +xo sin T 0.
For this T,

ocosT+e osinT
[x(T)J 0

which implies that x(T) X. This proves that this system is globally -controllable
to X.

Now to show that supo W(t)<+m, we first observe that any vector zoR
satisfying [lzoll 1 can be rewritten in the "parameterized" form Zo zo(O) =a i,rc0o
for some O [0, 2r]. Substitution into (2.1) followed by a straightforward calculation
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yields

V(zo(O), t)=Jo max to e-",n sin(O--)d-- x__>oinf e-txl cos(0-t)

Iot {-c if cos (O-’r) < 0
e-*lsin(O-’)[dr-

0 ifcos(0-z)=>0

Io’ {+oo if cos (0-r) <0<- e-* dz +
0 if cos(0-r)_->0.

Now using (2.2), for each fixed

W(t) min {V(zo(O), t): 0 [0, 27r]}<= [1-e-’] <- 1.

Therefore, sup,__>o W(t)<+ which violates condition (3.3).
Example 3 (condition (3.2) holds, A1-A5 hold, and condition (3.3) fails). The

system is described by the equations

YC(t)=--x(t)+x2(t), 2(t) =-x(t)-x2(t)+u(t), [0,

with control restraint set 12 [-1, 1] and "singleton" target set X -{[]}. It is obvious
that A1-A4 hold. Note also that the system has controllability matrix [B "AB ]
which has full rank. Hence, Assumption A5 holds as well. For this system

-A’t [ cOSt sintt]e =e
-sint cos

and B [0 1]’. Now, given any Zo [Zol Zo2]’ R n, substitution into (2.1) yields

V(zo, t)= | max oe*(zo_ cos z-Zol sin -) dz-5 e’(zol cos +Zoo_ sin t).
Jo

To investigate condition (3.2) and (3.3), we rewrite Zo as Zo & [cos 0 sin 0]’. Hence,
we are led to examine

V(zo(O), t) | max o e sin (0 -z) dr 5 e’ cos (0 -z)
Jo

Jo e*lsin (0-z)l dr- 5 e’ cos (0- t).

To complete the argument, we observe that
(i) The first term in V(Zo(O), t) above is positive.
(ii) For any given 0[0, 2zr] and any N->_0, there exists a =>0 such that

-5 e’ cos (0-t)_->N. Therefore supt__>O V(zo(O), t)= +oo for all 0 [0, 27r].
Equivalently sup,__>o V(Zo, t)= +oo for all zoR2 such that Ilzoll 1. Hence, condition
(3.2) is satisfied.

To show that condition (3.3) is violated, we shall prove that W(t) is bounded.
To accomplish this, we define 0, & mod 27r for each [0, c). Hence,

fV(zo(O), t)=
J0 e’lsin (t-z)l dr- 5 e -<_ e" dz- 5 e’ < 0.

This implies that W(t)<0 since W(t) is obtained by minimizing V(zo(O), t) with
respect to 0 [0, 2r]. By Theorem 3.1 and the preceding analysis, it follows that
0 : Xo(t) for all _-> 0. Therefore the system is not [l-controllable to X from the origin
which in turn precludes global [l-controllability to X.
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6. Further extension. We recall that the target set X was assumed to be compact
(Assumption A3) in Theorem 4.1. In fact, Assumption A3 may be eliminated in many
circumstances of interest. In particular, if every eigenvalue A of the matrix A satisfies
Re A _-< 0 and A is nonsingular, then one can prove Lemmas 4.2 and 4.3 without the
assumption that X is compact. Hence the same proof as given in 4 will suffice to
prove Theorem 4.1 for unbounded targets. Such an extension would be useful when
considering targets such as the positive orthant. Example 2 shows that some further
restrictions must be made on the system (S) if unbounded targets are to be allowed.
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Abstract. Recent theory of infinite dimensional Riccati equations is applied to the linear-quadratic
optimal control problem for hereditary differential systems, and it is shown that, for most such problems,
the operator solutions of the Riccati equations are of trace class (i.e., nuclear). With special attention to
trace-norm convergence, an abstract approximation theory is developed and applied to a particular
approximation scheme. Numerical examples are given.

Problems on both finite and infinite time intervals are studied. For both the hereditary system and the
approximating systems in the infinite time problem, characteristic equations are derived for the closed-loop
eigenvalues, and formulas for the corresponding eigenvectors are given.
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1. Introduction. For at least two decades now, engineers and mathematicians
have studied the linear-quadratic optimal control problem for hereditary differential
systems, and many papers have resulted. Among the most important contributions
have been controllability, observability and stabilizability results [13], [31], [38],
descriptions of the feedback structure of the optimal control laws [1], [10], [11], [12],
[26], [37], and approximation theory for computing the optimal control in feedback
form [10], [27], [37], [38] and in open-loop form [4], [5]. The principal concerns of
this paper are the mathematical properties of the optimal feedback control laws and
the resulting closed-loop systems and the convergence of numerical approximations
of the feedback control laws. We consider time-invariant control systems only (i.e.,
the uncontrolled systems are time-invariant), and study control on both finite and
infinite intervals.

The foundation of our analysis is the theory of infinite dimensional Riccati
equations developed in [19]. As with the linear-quadratic regulator for systems
represented by ordinary differential equations, the solution to a Riccati equation
defines the feedback structure of the optimal control law. Previous authors have
studied infinite dimensional Riccati equations in connection with hereditary control
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problems [6], [10], [11], [12], [13], but the results of [19] enable us to derive a number
of new results for hereditary control. Among the most significant are results concerning
the traces of the solutions of the Riccati equations, the eigenvalues and eigenvectors
of the optimal closed-loop system for control on the infinite interval and numerical
approximation of the solutions of the Riccati equations. Now let us outline the paper
and discuss the main results in more detail.

In 2, we discuss the hereditary differential equation and the equivalent evolution
equation on the space Z Rnx L2(-r,.0; R n) (sometimes called M2). As usual, we
represent the homogeneous solution in Z with a strongly continuous semigroup T(.
with generator . After defining , we give its Z-adjoint *. While previous papers
on control of hereditary systems have not used this adjoint operator explicitly, its
explicit use is essential to the analysis in this paper. Finally in 2, we discuss various
equivalent definitions ot stability and stabilizability for hereditary differential systems
and give the definitions to be used here.

In 3, we give the pertinent results from [19] for optimal control on finite time
intervals and the two Riccati integral equations, and then derive some basic implica-
tions for hereditary control problems.

We begin 4 by summarizing the pertinent results from [19] concerning optimal
control on an infinite time interval, primarily existence, uniqueness and stability results
for solutions to the Riccati algebraic equation, which is the steady-state version of
the Riccati integral equations. Then we derive a characteristic equation for the
eigenvalues of the optimal closed-loop system and several other results analogous to
well-known results for finite dimensional linear regulator problems, including formulas
for the eigenvectors of the optimal closed-loop system.

In 5, we review some standard properties of trace class operators on Hilbert
spaces and show that the solutions of the Riccati equations of 3 and 4 are trace
class operators. Also, we discuss the use of the trace of the solution of the Riccati
equation for a hereditary optimal control problem as a sort of average-performance
measure.

The most important contribution of this paper should be the approximation
theory. Section 6 presents an abstract approximation theory for schemes which
discretize the history space and leave the time variable continuous. Thus our analysis
does not cover the scheme Delfour presented in [9], where he discretized both the
history space and the time variable. In our analysis, the key approximation is the
approximation of the semigroup T(.) by a sequence of semigroups T(.) which
converge strongly to T(.). Assuming such an approximation, we define a sequence
of optimal control problems for the approximating systems represented by the T(. )’s,
and derive convergence results for the corresponding sequences of Riccati equations
and feedback control laws.

A primary objective of this paper is to call attention to the importance of having
strong convergence for the solutions of the approximating Riccati equations--as
opposed to weak convergence, which was obtained by Delfour [10] and Kunisch [24]
for hereditary systems and Lions [30] for parabolic systems. This importance stems
from the reasons for using a feedback control law in engineering design. By synthesizing
the optimal control law in feedback form, the designer ensures that the system will
respond optimally for any initial condition and, in the case of a time-invariant linear
regulator, the closed-loop system will be asymptotically stable. For an infinite
dimensional control system, a sequence of feedback control laws is based on a sequence
of finite dimensional approximations of the actual system, and these control laws
should converge in some sense to the optimal feedback control law as the dimension
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of the approximation increases. The sense in which these control laws converge
determines the answer to the following question: Is it possible to choose the model
dimension sufficiently large that, when the control law based on the finite dimensional
model is applied to the actual infinite dimensional system, the response of the resulting
closed-loop system will be close to optimal for any initial condition and the system
will be stable? While this is one of the most important questions to ask about an
approximation scheme for control of a distributed system, previous authors have
neglected it. As we will show in 6, the answer is yes if the solutions to the sequence
of finite dimensional Riccati equations converge strongly. The reason is, since the
control space is finite dimensional, strong convergence of the operator solutions o
the Riccati equations yields uniform norm convergence for the feedback control laws.
Similar results are given for hyperbolic systems in [18].

As we will see, the key to obtaining strong convergence for the solutions of the
approximating Riccati equations is to have the adjoint semigroups T*(.) converge
strongly. Because of the finite dimensionality of the performance measures here,
strong convergence for the adjoint semigroups actually results in trace-norm conver-
gence for the solutions of the finite dimensional Riccati equations. As discussed in

5, the trace-norm is the strongest of all the common operator norms.
In 7, we apply the theory of 6 to an approximation scheme that in one form

or another has been used by a number of authors for hereditary differential control
problems [4], [23], [36], [37], [38], [39]. In [4], Banks and Burns have chronicled the
evolution of this scheme and cast it in its most recent form as a Ritz method which
approximates the history function by a finite number of piecewise constant functions.
Banks and Burns then used the Trotter-Kato approximation theorem to show that
their sequence of approximating semigroups converge strongly to the semigroup
representing the homogeneous solution of the hereditary system, as needed in our

6. Because Banks and Burns considered only open-loop control on finite time
intervals, they did not need to and did not raise the question of whether the adjoint
semigroups converge strongly; however, as we will show, strong convergence of the
adjoint semigroups follows from Banks and Burns’ basic convergence results, once
we have defined the adjoint of the generator of the semigroup T(. ). Finally, in 7,
we give some results on the eigenvalues and eigenvectors of the approximating
closed-loop systems that should be useful for numerical solution of the approximating
Riccati equations in control on the infinite interval.

We present three numerical examples in 8.

2. The hereditary system, the adjoint system and stability. We consider the
differential equation

(2.1) A(t) =Lx, +Bou(t), >=to,

where

and

X (t) R n, xt L2(-r, O; R") for some r _-> 0

xt(O)=x(t+O), Bo(R",R"), u6L2(to, tl;R") foralltl<.

The linear operator L has the form

o

(2.2) Lb
, A,d’(-h,)+ f_ D(O)qb(O)dO,
i=0
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where Aie.(Rn, R) for 0<-i=<u<oo, O=ho<hl<...<hv=r, and D(.)e
L2(-r, 0;(Rn, R")). It is well known [13], [14], [19] that, for any X(to)R and
Xto L2(-r, 0; R"), (2.1) has a unique solution x(. which is absolutely continuous with
2(’)Lz(to, tl; R ) for 0<-h <oo, and which satisfies (2.1) for almost all t.

It is also well known [4], [14], [15] that (2.1) can be posed as an evolution equation
on the space Z R x L2(-r, 0; R"), which is a Hilbert space with the inner product

(2.3) ((x, ), (y, O))z (x, Y)R" +(&, 0)L2.

Throughout this paper, we identify Z with its dual. Written as an evolution equation
on Z, (2.1) becomes

(2.4) J. (t) z (t) +Bu (t), >- to,

where z(t)= (x(t), xt) and Bu(t)= (Bou(t), 0); the operator M is defined by D(s)=
{(x,): is absolutely continuous, ’eL2(-r,O;Rn), x =(0)} and s((0),)=
(L, ’). This is the infinitesimal generator of a strongly continuous semigroup
T(t)e(Z, Z), >=0, and the integral version of (2.d,) is

(2.5) z(t)= T(t-s)z(s)+ Ix T(t-rl)Bu(rl) drl, toNS <=t.

Some important properties of s and T(.) are (see [4], [12], [20]):
i) M has compact resolvent, and A is an eigenvalue of if and only if det A(A)

0, where A(A)= XI-L0(A) and Lo(A) is given by
0

(2.6) Lo(A)=ie-Xh’A I_eXD,+ (0) dO.
i=O

ii) For >-r, T(t)Z D() and T(t) is compact.
To obtain some of its most important results, this paper must deal more explicitly

than previous papers have with* and T*(t), the adjoints of and T(t) respectively.
We emphasize that the M* used here is the Z-adjoint of , instead of the adjoint
used in [12], where, through the imbedding D(M) V Z V’ (the topological dual
of V), the authors obtain an s* e(V, V’).

THEOREM 2.1. D(s*) consists of those (y, O)eZfor which ’ eL2(-r, 0; R") and
0 is absolutely continuous on I-r, 0] except at the points -hi,. ", -hv-1, where

(2.7) @((-hi)+) t((-hi)-) A y, l <- <= v -1,
and

(2.8) O(-r) Ary.
(If v 1, is absolutely continuous on f-r, 0].) For (y, )e D(M*),

(2.9) M*(y, )= (Aroy + 4,(0), Dry-0’).

Proof. The theorem follows upon substituting into the definition of a Hilbert
space adjoint operator, and integrating by parts in the appropriate places. (See also
[9], [41].)

sO* generates the strongly continuous semigroup T*(. ), which has properties
similar to those of T(.). In particular:

TI-IZORM 2.2. For >--r, T*(t)Z D(sg*), and T*(t) is compact.

The vector-valued integrals in this paper are Bochner integrals (see [21]).
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Proof. Let t->r. Since T(t)Z D(M), MT(t).o(Z,Z). For x D(M) and y Z,
(T(t)Mx, y)z (MT(t)x, y)z (Mx, T*(t)y)z (x, (MT(t))*y)z. Thus T*(t)y D(M*)
and M*T*(t)y (MT(t))*y (= T*(t)M*y if y D(M*)). Since T(t) is compact, so is
T*(t). ]

Now we consider the stability of the open-loop system, i.e., the stability of
solutions to (2.1) and (2.4) for u equal to zero. The following theorem says that all
notions of asymptotic stability for our homogeneous hereditary system are equivalent.

THEOREM 2.3. For (x (0), Xo) z (0) Z, letx (.) be the solution to (2.1) for u (.) O,
and let z(. be the corresponding solution to (2.4) and (2.5). Then the following
statements are equivalent"

i) For each (x (0), Xo) Z, x (t) 0 as c.
ii) There exist positive constants Mand c such that

IIx(t)ll.Me-’ll(x(O),xo)llz, to, (x(O),xo)Z.

iii) For each (x (0), Xo) Z, I IIx (t)ll dt <.
iv) For each z (0) Z, z (t) -- 0 as --v) There exist positive constants M’ and a’ such that

[Iz(t)ll <-M’ e-"llz(O)llz, t>-O, z(O)eZ.

vi) For each z (0) Z, o IIz (t)ll dt <
Proof. The theorem follows from the definitions of x, and z(t), and from the

spectral properties of M and T(t) (which is compact for >-r). For details see Hale
[20, Chapt. 7]. Although Hale constrains x, to be in C(-r, 0; R"), the spectral argu-
ments that establish the present theorem proceed precisely as Hale’s arguments.

DEFINITION 2.1. The homogeneous system (2.1), or equivalently (2.4) or (2.5),
is asymptotically stable if statements i)-vi) of Theorem 2.3 hold.

Note that the homogeneous hereditary system is asymptotically stable if and only
if the semigroup T(.) is uniformly exponentially stable; i.e., IIT(t)II<-M e -’’, >-_0,
with M’ and a’ the positive constants in statement v) of Theorem 2.3.

DEFINITION 2.2. The system (2.1) (or (2.4) or (2.5)) is stabilizable if there is an
operator K .(Z, R") such that M-BK generates a uniformly exponentially stable
semigroup.

Note that this definition of stabilizability requires the existence of a real m n
matrix K0 and a real square-integrable matrix function KI(’ such that

0

(2.10) K(x, O) =K0x + | KI(O)&(O) dO, (x, &)Z.

Stabilizability was defined similarly in [12] and [26] except that K(x, b) was allowed
to include terms like Kick(Oi), where Ki is an m x n matrix and -r -< 0 < 0, for 1 <= < o.
With such terms, K would not be bounded; however, we will see that modifying
Definition 2.2 to allow such terms in K would yield a definition of stabilizability that
would be equivalent to Definition 2.2. Also, we would arrive at an equivalent definition
of stabilizability by requiring K to be C on I-r, 0] because Cool-r, 0] is dense in
L2[r, 0] and, if-BK generates a uniformly exponentially stable semigroup, so does
M-B/ for IlK-t11 sufficiently small but nonzero. Definition 2.2 is the same as that
used in [31] for stabilizability.

3. The optimal control problem on a finite interval. Let Qo Q" coT(R", R"),
G=G*.T(Z,Z), and R=RT".T(R,R"), with Q>=0, G=>0 and R>0. The
optimal control problem for this section is: given -o< to <= tr < o and (x (to), Xto) Z,
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choose the control u EL2(to, t/,; R ") to minimize the cost functional

J(to, (X(to), X,o), u) (G(x(tr), x,,), (x(ff),

(3.1)
+ ((Oox(t),x(t)) +{Ru(t), u(t)),) dr,

o

where x (.) is the solution to (2.1) for the given initial conditions. With z (.) as in 2,
we have

J(to, (X(to),Xto), u)=J(to, Z(to), u)

(3.2)
(Gz(ff), z (ff))z + ((Oz(t), z (t))z +(Ru(t), U(t))R n) dt,

o

where Q(x, &) (Qox, 0) for (x, O) E Z.
As in [19], we denote L2(t, if; Z) by Nt and L2(t, if; R") by 0?/,, for -< tr, and define

Tt .?(Z, Nt), t *(Nt, :) and t e t’(Nt, Z) by

(3.3) (Ttz)(s)= T(s-t)z, z eZ,

(3.4) (tg)(s) T(s -rl)g(rl) drl, g

(3.5)
Then (3.2) becomes

(3.6)

or

J(to, Z(to), u) (G(T(ff to)Z(to) + ,;toBu), (T(ff to)Z(to) + ;,oBu))z
+ O Ttoz (to) + toBu), T,oz (to) + ,oBu )Zt,o+ (Ru, u )0U,o,

J(to, Z(to), u) (/oU, u )OU,o + 2(/*Z(to), u)ou,o+(GT(t to)Z(to), T(tr- to)Z(to))z
(3.7)

to

where

(3.8)

and

(3.9)

with fft*o and t*o given by

(3.10)

and

+ (OTtoz (to), Ttoz (to)),o,

/to (R + B*:Y-*oO,Y-toB +B*;*oG:toB (ollto, ollto)

*o (B*:Y*oOTto +B**oGT(ff to)) eo’(Z, to)

T*(rl t)g(rl

(3.11) (,*oZ)(t) T*(tf-t)z.
Since R is positive definite, so is/to, and the unique optimal control is given by

(3.12) u(t) =-(lolJ*o)(t)Z(to)----(l-l*totoZ(to))(t) a.e. in [to, tf].
Our hypotheses on the operators involved in (3.8) and (3.9) justify (3.12), where
/ ol/ t*o e oo(to, tr; Z, R").2

For Banach spacesH and U, oo(to, tr; H, U) is the Banach space (see [19, Appendix A]) of essentially
bounded, strongly measurable functions from (to, if) to &t’(H, U). An operator-valued function B(.):
(to, tr)(H, U) is called strongly measurable if B(. )X is strongly measurable (see [21]) for each x in H.
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We have given (3.3)-(3.12) to prepare for the approximation theory of 6.
Although (3.12) was central to the development of the feedback control law and the
Riccati integral equations in [19], we will skip the derivations here and summarize
the results that we need for the present optimal control problem.

From [19], we know that there exists a unique optimal (i.e., minimizing) control
u, which carl be given in the feedback form

(3.13) u(t)= -R-B*II(t)z(t), to <-_t <=t,

where H(.) satisfies an infinite dimensional Riccati integral equation. According to
[19, 3], the correct I-I(.) for (3.13) is the unique element of 9(t0, tf; Z, Z) which
satisfies the "first Riccati integral equation"

II(t)z T*(tf- t)GT(t- t)z

(3.14)
+ T*(rI-t)[Q-II(I)BR-1B*II(I)]T(q-t)z d7, to<=t<-tr, z Z,

and H(t) is strongly continuous in t. Furthermore, the minimum value of
J(to, Z(to), is

(3.15) min J(to, Z(to), v)=(H(to)Z(to),Z(to))z, Z(to)eZ.
vL2(to, tf;R n)

With the u of (3.13), (2.4) becomes

(3.16) :(t) (sg-BR-1B*H(t))z(t), O<=t <-_t,

which is not autonomous. For the "fundamental solution" of (3.16), we need the
following.

DEFINITION 3.1. Let -c< t0< t <c, and let Z be a Banach space.
T(., ): {(t, s): to<=S <=t <-t}(Z, Z) is an evolution operator if

i) T(t,r)T(r,s)= T(t,s), to<=s<-r<-t<=t;
ii) T(t, t) I;

iii) T(t, s) is strongly continuous in s on [to, t] and strongly continuous in on Is, tel.
For the evolution operators used in this paper, it is not difficult to show that there

exists a constant M1, depending on to and t, such that

(3.17) IIT(t, s)l[ <=M, to <- S <= <= tr.

Clearly, we have this bound when T(t, r)= T(t-r) is a C0-semigroup. The existence
of the bound for our subsequent evolution operator S(t, s) will follow from (3.20)
below. We should note that when T(t, s) is the evolution operator for a homogeneous
hereditary system with time-varying coefficients, usually we still have (3.17) (see [35]).

For the proof of the following theorem, see Curtain and Pritchard [7].
THEOREM 3.1. Let T(., .) be an evolution operator which is uniformly bounded

as in (3.17), and let C be in oo(to, tr; Z, Z). Then the operator integral equation

(3.18) S(t, s)z T(t, s)z + T(t, )C(rt)S(l, s)z do, z

has a unique solution S(.,.) in the class of strongly continuous (as in Definition 3.1)
bounded linear operators on Z. S(.,.) is an evolution operator, and it is called the
perturbed evolution operator corresponding to the perturbation of T(., by C. $(., is
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also the unique solution of

(3.19) S(t, s)z T(t, s)z +

i.e., T(. is the perturbed evolution operator corresponding to the perturbation ofS(.,
by -C. IfMx is the uniform bound of (3.17), we have

(3.20) IIs (t, s)ll M1 exp (Ml[lClloo(t s)).

Of course, a strongly continuous semigroup on Z is an evolution operator on Z.
Henceforth, S(.,.) will denote the perturbed evolution operator corresponding to
the perturbation of the semigroup T(.) of (2.5) by -BR-1B*II, where H is the
nonnegative, self-adjoint solution of (3.14); i.e.,

(3.21) S(t, s)z T(t-s)z

to<-S<-t<-tr, z Z.
The optimal response of our control system is then

(3.22) z(t)=S(t,s)z(s), to<=S<=t<=tr,

where, again, S(., is the solution of (3.21). Note that formal differentiation of (3.18)
and (3.19) with respect to yields (3.16).

We have two more important integral equations for H(. ):

(3.23) H(t)z T*(t- t)G$(t, t)z + T*(rl t)OS(,1, t)z dl, to <= <= t, z Z,

and the "second Riccati integral equation"

H(t)z S*(t, t)G$(t, t)z

(3.24)
+ S*(,1, t)[Q + II(rl)BR-IB*I-I(,1)]S(,1, t)z drl, to <=t <-_tf, z

We can use (3.21) to go from one to another of the integral equations (3.14), (3.23)
and (3.24). For details, see [19, 3].

The following theorem gives the information we need about the present optimal
control problem and the integral equations for II(. (see [19, 3]).

THEOREM 3.2. For s<--tr<oo and z(s)Z, the unique control uL2(s, tr;R)
which minimizes the costfunctional J(s, z(s), of (3.1) and (3.2) is the linearfeedback
control of (3.13), where H(.) is the unique element of oo(s, tr; Z, Z) which satisfies
the first Riccati integral (3.14). When solutions of the second Riccati integral (3.24)
are restricted to be self-adfoint elements of o(s, tr; Z, Z), H(.) and S(.,.) are the
unique solution of the system of equations (3.21) and (3.24).

We can write II(t) as a matrix of operators:

[n(t) n(t)](3.25) n(t) lniO(t) nl(t)j,
<- tr.

Since H(t) is a nonnegative self-adjoint element of (Z, Z), H(t) is a real non-
negative, symmetric n x n matrix, Hl(t) is a real square-integrable n x n matrix
function H(t, on I-r, 0], H(t) Hl(t)* and

0

(3.26) n’(t)4, | n’(t,

and Hl’(t) is a nonnegative self-adjoint operator on L2(-r, 0; R").
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We will see in 4 that Hx(t) is of the trace class and therefore an integral
operator, but we shall not pursue a characterization of its kernel or derive a set of
coupled ordinary and partial differential equations for H(t), Ht(t) and IIl(t), as
some previous authors have done (see [1], [10], [11], [26], [38]). Such equations,
while they enhance our understanding of the feedback control law, usually can be
solved only by numerical approximations which are equivalent to numerical approxi-
mations for the solution of the Riccati integral equations, with which this paper will
deal extensively. Also, Delfour and Mitter [13] derived the second Riccati integral
equation (3.24), and differentiated this equation in a weak, or distributional, sense to
obtain an infinite dimensional Riccati differential equation, which we will not pursue
here.

From (3.13) and (3.25) we see that the optimal control is given by
0

(3.27) u(t)= -R-B(H(t)x(t)+ | II(t, O)rxt(O) dO), <=tr.

We can deduce some important properties of II(t) and II(t, .) from (3.23),
Theorems 2.1 and 2.2, and the following lemma.

LEMMA 3.1. Let s generate a strongly continuous semigroup T(.) on a Hilbert
space Z, 0<=tl<OO, geL2(O, tl;H), and f(s)=f(O)+g(rl)drl for O<=s<=tl. Then
r(s)f(s) ds D(M) for 0 <= <= t.

Proof. By using Bochner integrals instead of Riemann integrals, we generalize a
portion of an argument given in [22] for the case where f is continuously differentiable.
We have

(3.28)
If T(s)f(s) ds Iot T(s)[f(O)+ I[ g(,r) dT"] ds

IotT(s)f(O) ds + fot[f.,.tT(s)g(r) ds] dr.

It is a standard result that T(s)z ds D(M) for z Z. Also (see [22, pp. 488]),

(3.29) s I, T(s)g(r) ds (T(t)- T(z))g(’).

(g(,r) is defined for almost all - (0, tl).) Since M is closed, (3.29) and [21, Thm.
3.7.12, p. 83] imply that [jt T(s)g(’r) ds] d’r D(M) and

f(3.30) s o ds dz (T(t)- r(-))g(-) d-.

Hence the lemma.
TORM 3.3. Let II(.) be the solution of the Riccati integral equations (3.14)

and (3.24). Then H(t)Z D(g*)fort<-_t-r; if G=0, H(t)Z D(*)fort<=t.
Proof. For initial time t, initial state z(t) and rl >=t, S(rl, t)z(t) is the solution

to (2.5) for the control of (3.13). (r/ replaces the in (2.5) and (3.13).) Thus,
QS(l,t)=(Qox(l),O), and the derivative of x(r/) is given by (2.1).
Hence Lemma (3.1) shows that the integral in (3.23) is in D(4*) for z Z
and t<-_tr. By Theorem 2.2, T*(tr-t)GS(tr, t)z, the other term on the right side of
(3.23), is in D(4") for z Z and =< r r. [3

Now, if H(t) maps all of Z into D(M*), then (H(t)x, Hl(t)x)D(4*) for all
x R". Therefore, from Theorems 2.1 and 3.3, we have
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THEOREM 3.4. For <-- tr- r, or, ifG 0, for <-_ tr, IIl(t, is absolutely continuous
except at the points -hi,. , -h_, where

(3.31) II(t, (-hi)+)-II(t, (-h)-)= ATII(t), 1 _--<i _--<,- 1.

Also,

(3.32) II(t, -r) ArIIoo(t).
Note that Theorem 3.4 agrees with results in [10] and [13].

4. Optimal control on the infinite interval. Now we consider the optimal control
problem for tr ea and G 0. Since the operators L, B, Q and R are constant, we
take the initial time to be zero. For an initial state z, a control u and the corresponding
z (t) given by (2.5) with s 0, the cost functional is

(4.1) ](z, u)= Jo ((Qz(t), z(t))z +(Ru(t), u(t))R") dr.

DEFINITION 4.1. A function u" (0, oo) --> R is an admissible control for the initial
state z, or simply an admissible control for z, if u is strongly measurable on (0, c) and
J(z, u) is finite.

For this section we will assume the following.
Hypothesis 4.1. The operators Qo and L are such that, if u is an admissible

control for z, then z(t)-->O as t-->eo; i.e., any admissible control drives the state to
zero asymptotically.

This is certainly the case if Qo is positive definite. Hypothesis 4.1 holds also if
(2.1) with output Qox is observable according to definitions in [3] and [13].

DEFINITION 4.2. Let s4 be as defined in 2. An operator IIe L’(Z, Z) is a solution
of the Riccati algebraic equation if II maps D(s4) into D(sg*), *II + Ilsg has a
bounded extension to all of Z, and II satisfies the Riccati algebraic equation

(4.2) s*II + IIs IIBR-B*II + Q O.

For the results summarized in Theorems 4.1 and 4.2, see [19, 4].

THEOREM 4.1. Let sg, B, Q and R be as previously defined. There exists a
nonnegative, self-ad]oint solution of the Riccati algebraic equation if and only if, for
each z Z, there is an admissible control for z. Under the hypothesis that any admissible
control drives the state to zero, there exists at most one nonnegative, self-ad]oint solution
of the Riccati algebraic equation. Suppose that such a solution II exists. Then ]’or z Z,
the unique control in L2(0, x3; g m) which minimizes J(z, can be given in the feedback
form
(4.3) u(t)=-R-1B*IIz(t), O<_t <oo,
and

(4.4) min J(z, v) (Hz, z )z, z Z.
admissible

The optimal trajectory is given by

(4.5) z(t)=S(t-s)z(s), O<-s <t <oo,
where S(. is the strongly continuous semigroup generated by -BR-IB*II, and S(.
is uniformly exponentially stable.

COROLLARY 4.1. The system (2.1) (see Definition 2.3) is stabilizab!e if and only
if, for each z Z, there is an admissibl control.



OPTIMAL CONTROL OF HEREDITARY DIFFERENTIAL SYSTEMS 105

THEOREM 4.2. ff II is a nonnegative, self-adfoint solution of the Riccati algebraic
equation, and S(.) is the strongly continuous semigroup generated by -BR-1B*II,
then II and S(. satisfy

(4.6) IIz =S*(t)HS(t)z +Io S*(*?)[Q+HBR-IB*II]S(I)zdz’ 0<-t<oo, z Z.

Conversely, suppose that II.L’(Z,Z), II=H*_->0, S(.) is the strongly continuous
semigroup generated by sg -BR-B*II, and II and S(. satisfy (4.6). Then II satisfies--
uniquelymthe Riccati algebraic equation.

COROLLARY 4.2. Let II .(Z, Z) be nonnegative and self-ad]oint and suppose
that S(. ), the semigroup generated by -BR-B*II, is uniformly exponentially stable.
Then II and S(. satisfy (4.6) if and only if II and S(. satisfy

(4.7) IIz Io S*(r/)[Q + IIBR-B*II]S(I)z d?, z Z,

if and only if II satisfies the Riccati algebraic equation.
Proof. The "only if" of the first "if and only if" follows when t--> oo in (4.6).

Conversely, replace z in (4.7) by S(t)z and apply S*(t) to both sides of the resulting
equation; changing the variable of integration then yields (4.6). The second "if and
only if" follows from Theorem 4.2.

The following theorem, along with our previous theorems, says that the nonnega-
tive, self-adjoint solution of the Riccati algebraic equation is the steady-state solution
of the Riccati integral equation of 3, and that it is stable with respect to nonnegative
initial (actually, final) conditions.

THEOREM 4.3. Let H(.) be the solution of the Riccati integral equations for the
problem of 3 with G >-_0, and r O, and suppose that there exists a nonnegative
self-adfoint solution II of the Riccati algebraic equation. Then

(4.8) lim II(s)z IIz, z Z.

IfG =0,

(4.9) H >_- II(s) ->_ H(t), -o < s <_- -<_ 0.

If G >- II and IIs( )ll Me-an for positive constants Mand a, then

(4.10) n<_n(s)<_n+Me’lloll, -oo<s__<0.

This theorem follows from [19, Thm. 4.10]. The uniform exponential convergence
of II(s) to ii is essential to our most important results for approximation of II (see
Theorem 6.9).

As with the II(. of 3, we can represent the H of this section by the matrix of
operators:

[rI ri](4.11) H= LHO 1_ill],

where H is a nonnegative, symmetric n x n matrix, H1 is a square-integrable matrix
function Hx( on I-r, 0], H1 H1* and

0

(4.2) rI | rI:(o)(o) ao, 0 eL(-r, 0;
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and I111 is a nonnegative, self-adjoint operator on L2(-r, 0; Rn). Again, we will not
pursue the characterization of and the relations among the operators H, H1 and
II1 to the extent to which Delfour, McCalla and Mitter have in [12], but we do have

THEOREM 4.4. If II is the nonnegative, self-ad]oint solution of the Riccati algebraic
equation, then HZ cD(*).

Proof. The proof is quite similar to the proof of Theorem 3.3. Instead of (3.23),
we use (4.6) with t_->r, and recall that, since the generator of S*(.) results from a
bounded perturbation of *, the domain of the generator of S*(.) is D(*). [

THEOREM 4.5. [[lO(.) is absolutely continuous on I-r, 0] except at the points
-h 1, , -h_x, where

(4.13) II((-h)+)-II((-h)-)=AII, l <-i <-,-1.

Also,

(4.14) IIl(-r) Al-I.
Proof. The theorem follows from Theorem 2.1 and Theorem 4.4.
An adjoint state similar to the adjoint state employed in finite dimensional optimal

control theory will facilitate the remaining work of this section. If I-I is the solution
of the Riccati algebraic equation and z(. is the optimal trajectory for the problem
of this section, define the adjoint state p (.) by

(4.15) p(t)= IIz(t), >-O.

The optimal control of (4.3) then becomes

(4.16) u (t) -R -1B*p (t).

If z(0)D(), z(t) and p(t) are continuously ditterentiable for t->0, and

(4.17) [g(t)=Yl.(t)=H(-BR-IB*l-l)z(t), t>=O.

Then with (4.2) and (4.15), (4.17) yields

(4.18)

We thus have

(4.19)

where

p(t) -*p(t)-Oz(t),

(2(t))=s (z(t)], t>O,
p(t) p(t)]

(4.20) ,.=( -C)_Q _, D(,) D() D(*)

and C BR 1B *.
Note that, as an operator on Z Z, is closed and densely defined. However,

in spite of (4.19), which holds if z(0) eD() or if >r, neither nor - generates
a Co-semigroup on Z x Z. For, since C and Q are bounded, if generated a
Co-semigroup, so would the operator given by

_, D() =D(A).

Hence -* would generate a Co-semigroup on Z, and therefore - would generate
a C0-semigroup on Z. But we know that, for r >0, - does not generate a Co-
semigroup on Z.
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We will now derive a number of results concerning the eigenvalues of which
will parallel the results for the finite dimensional linear regulator problem (see [2],
[25]). To this end, we will denote the complex version of Z by Zc; i.e., Zc {z v + iw"
v, w Z}. Z is a complex Hilbert space with

(4.22) (z 1, Z2)Z (Z 1, 52)Z.

We extend all linear operators on Z to Z in the usual way, and we will not distinguish
in notation between the real and complex domains of an operator, since the meaning
will be clear in every iqstance.

THEOREM 4.6.. has compact resolvent. 3 If h is an eigenvalue of , so is -h,
and the algebraic 4 and geometric multiplicities ofh are, respectively, equal to the algebraic
and geometric multiplicities of -h.

Proof. Since has compact resolvent, so does * and the of (4.21). Then,
since results from a bounded perturbation of , , has compact resolvent.

Let h be an eigenvalue of . For (zl, PI)D(s), it is easy to see that
(-h )(z x, Pl) (Zo, po) =)’ (* / h )(-pl, z ) (po, -Zo), which implies a one-to-one
correspondence between generalized eigenvectors corresponding to -h as an eigen-
value of and generalized eigenvectors corresponding to h as an eigenvector of *.
Thus the spectral characteristics of -h as an eigenvalue of * are identical to those
of h as an eigenvalue of . But (see [22, Remark 6.23, p. 184]), since the multiplicities
are finite, the spectral characteristics of - as an eigenvalue of are identical to
those of -h as an eigenvalue of *. Since is real, the theorem follows.

Now define a 2n 2n matrix function of h by

-Co ](4.23) (A) M-
-Oo -Lor(-A)

where Lo(h) is given by (2.6) and Co BoR-1B.
THEOREM 4.7. h is an eigenvalue of if and only if

(4.24) det ,(h 0.

Proof. h is an eigenvalue of if and only if there exist a nonzero ((x, &),
(y,$))eD(,)D(*) such that ((x, ), (y, ))=h((x, ), (y, )). This is
equivalent to saying that there exists a nontrivial solution to the set of equations

(4.25a) L Coy hx,

(4.25b)

(4.25c) -Qox Ay d/ (O)

(4.25d) -Dy +’=
subject to the conditions b (0) x and (2.7) and (2.8). From here, it is a straightforward
exercise to write down &(s) and t(s) and show that (4.25a)-(4.25d) have a nontrivial
solution subject to the required boundary and jump conditions if and only if there
exists a nonzero pair (x, y) of complex n-vectors such that

(4.26a) L0(A )x -Coy Ax

Recall (see [22]) that this means that the spectrum of consists entirely of isolated eigenvalues with
finite multiplicities, and, if A is not an eigenvalue of , (A -)-1 is compact.

4 As usual, the algebraic multiplicity of an eigenvalue is the dimension of the corresponding generalized
eigenspace.
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and

(4.26b) -OoX L(-h )y ,y.

We know (see [20], [29]) that the algebraic multiplicity of an eigenvalue , of M
is equal to the multiplicity of , as a root of det h(h)=0, and it appears that the
corresponding statement holds for , as an eigenvalue of M and a root of (4.24).
However, we will not pursue a proof here.

For the rest of this section, we will assume:
Hypothesis 4.2. The system (2.1) is stabilizable.
Also, keep in mind Hypothesis 4.1.
THEOREM 4.8. has no purely imaginary eigenvalues.
Proof. Suppose (z, p) ito(z, p) for some real to and (z, p)eD(s). Then

(4.27) Mz Cp itoz

and

(4.28) -Qz M*p itop.

After taking the Zc inner product of each term in (4.27) with/ and the Zc inner
product of z with the complex conjugate of each term in (4.28), we add the two
resulting equations to obtain

(4.29) -(Oz, e)z -(cp, o.
Since Q and C are nonnegative and self-adjoint, we must have Qz Cp O.

Suppose z S0. Since Mz itoz, Re z cannot be zero. Then z(t)=ei’’z
is a real, nontrivial solution of (2.4) for u(t)= 0, and Qz(t)= O, >=0. Thus, for the
initial condition z + 5, u 0 is an admissible control which does not drive the state
to zero asymptotically, contradicting our hypothesis on Q and L.

Now suppose z 0 and p # 0. Then (M*-IIBR-1B*)p M*p itop, so that
is an eigenvalue of both M*-IIBR-IB * and its adjoint M-BR-B*II. But this is
impossible because, by Hypothesis 4.2, Theorem 4.1 and Corollary 4.1, M-BR-aB*II
generates the uniformly exponentially stable semigroup S (.).

THEOREM 4.9. A complex number A with Re A <0 is an eigenvalue of -BR-1B*rl if and only if A is an eigenvalue of The algebraic and geometric
multiplicities of A as an eigenvalue of M-BR-aB*II are finite and are identical to the
respective multiplicities of A as an eigenvalue ofs

Proof. Suppose h is an eigenvalue of and Re A < 0. Then we have a nonzero
pair (z, p) such that (Re z, Re p) D_(M) and (Im z, Im p) D() and (z, p) A (z, p).
Define (z(t),p(t)) (z,p)+e (e,p))=Re(e’(z,p)) and u(t)=-R aB*p(t).
Then (z(t), p(t)) satisfies (4.19), and u is an admissible control for z(0) Re z. Suppose
that v Lz(O, c; R n) and u +v is an admissible control for z(0). The solution of (2.5)
for the initial condition z(0) and the control u +v is z(t)+y(t), where y(t) is the
solution of (2.5) for the initial condition 0 and the control v. Note that v is an admissible
control for the initial condition 0. We have

(4.30)

J(z(O), u +v)-J(z(O), u)= I0 ((Oy(t), y(t))z +(Rv(t), v(t))R.,) dt

+ 2 Io ((Qz(t), y(t))z +(Ru(t), v(t))R’) dt.
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Also, for < o,

(4.31)

? ?

Io (oz(t)’ y(t))zdt Io Io (B*T*(t-s)oz(t)’ v(s))R"ds dt

fo (B*ft T*(s-t)Oz(s)ds, v(t))R dt

From (4.18), we have

(4.32) p(t)= T*(’-t)p(’)+ I T*(s-t)Oz(s) ds,

so that (4.31) becomes

(4.33)

(Fubini).

7 ? 7

Io (OZ(t), y(t))zdt Io (B*p(t), v(t))R"dt-(p(), Io T(-t)Bv(t) dt)z
(-Ru(t), v(t))R,,dt--(p(t), y (t))z.

Since (p(t-),y(t-))z-->O as t-->oo, (4.30) and (4.33) show that J(z(O),u+v)-
J(z(O), v)>0 if v 0. Thus u(t) is the optimal corftrol for the initial condition z(0),
and we must have u(t)=-R-1B*Hz(t). Hence g(t)= (4-BR-IB*II)z(t) and z(t)=
S(t)z(O), >=0. With this last expression for z(.), (4.18) yields

(t) -(* 1-IBR -B*)p (t) + IIBu (t) Qz (t)
(4.34)

-(4" IIBR -B*)p (t) (IIBR-B *II + Q)z (t),

of which the integral version is

S*(F-t)p(?)+ S*(s -t)[Q + IIBR-XBII]S(s -t)z(t) ds, O<-t <- ? < oo.p(t)

(4.35)

As - oo, (4.35) and (4.7) yield

(4.36) p(t) IIz (t), ->_0.

In particular, setting 0 yields

(4.37) Re p H Re z.

Similarly, we could define (z(t), p(t))= Im (eX’(z, p)) and obtain

(4.38) Imp II Im z.

Hence

(4.39) p IIz.

Since (z, p) 0, we see from (4.39) that z 0. Also, from (4.39) and the fact that
(z, p) h (z, p), we have

(4.40) z -B*R-IBp (-BR-B*I-I)z hz;

i.e., h is an eigenvector of -BR-B*II.
Now suppose h is an eigenvector of -BR-B*II. Then we have a nonzero

z D() such that (-BR-BII)z hz. Letting p Hz, we obtain

(4.41) z -BR-IB*p hz.
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Since II(Z)= D(M*), p e D(M*), and (4.2) yields

(4.42) -Oz -sg*p -Oz -M*Hz II(M-BR-1B*II)z H(Az) Ap.

From (4.41) and (4.42), we have (z, p)= A (z, p).
At this point, we have shown that (z, p) 0 and (z, p)= A (z, p) if and only if

z 0, p Hz, and (-BR-1B*H)z Az. From this, it is clear that {(z, p)} is a set
of linearly independent eigenvectors of corresponding to if and only if {zi} is a
set of linearly independent eigenvectors of -BR-1B*II corresponding to . Hence
A has the same geometric multiplicity as an eigenvalue of as it has as an eigenvalue
of 4-BR-1B*H. Since -BR-1B*H has compact resolvent, both the algebraic
and geometric multiplicities of 3, as an eigenvalue of g-BR-1B*II are finite.

For the equivalence of the algebraic multiplicities of A as an eigenvalue of and
of -BR-1B*II, we must extend the foregoing arguments to generalized eigenvectors
of rank k-2, 3,....

Suppose (zk, pk)YO, k=1,2, and (-A)(z,pl)=0 and (,-A)(zE, p2)
(zx, Px). Define (z(t), p(t)) Re(eX[(1 +t)(zl, px)+ (z2, P2)]) and u(t)= -R-1B*p(t).
Again we have (2(t),fa(t))=(z(t),p(t)), and u(t) is an admissible control for
z(O)=Re(z+z2). We can proceed exactly as before to obtain (4.37)-(4.39)
for (z,p)=(zx+zz, px+p2), and, since we already know that (4.37)-(4.39)
hold for (z, p) =(z 1, px), these equations must also hold for (z, p) (z2, P2). Then, since

P2 [Iz2 and ( A)(z2, P2) (Z 1, Pl),

(4.43) (. -BR-1B*H A)z2 ,.z2-BR-1B*p2 Az2 z 1.

Since (4.40) holds for (z, p)= (Zl, pl), (4.43) says that Z2 is a generalized eigenvector
of rank 2 of 4-BR-1B*II, corresponding to the eigenvalue A.

On the other hand, if (4-BR-1B*I-I-A)Zl-0 and (-BR-1B*II-A)ZE=Z,
letting pl IIz and P2 I-[z2, we can easily use (4.2) to show (-A )(z2, P2) (Z 1, Pl).
From here, a straightforward induction establishes a one-to-one correspondence
between chains of generalized eigenvectors of -BR-1B*II and , respectively.

COROLLARY 4.3. Let A be an eigenvalue of-BR-1B*H with negative real part,
z be in D(), and k a positive integer. Then (A-(-BR-B*II))kz =0 if and only
if (h )k (Z, IIZ 0. Also, (h )k (Z, p) 0 ifand only if (h ( BR-1B *[-[))kz
0 and p IIz.

The next corollary follows from Theorem 4.7 and its proof, Theorem 4.9 and
Corollary 4.3.

COROLLARY 4.4. If h is an eigenvalue of and -BR-1B*II, then (z, p)=
((x, tb), (y, @)) is an eigenvector of corresponding to h if and only if x and y satisfy
(4.26a) and (4.26b),

(4.44) (0) eXx,
and b satisfies (2.7), (2.8) and (4.25d).

-r<_O<=O,

5. The traces of the operators H(t) and H. Before discussing the traces of the
solutions to the Riccati equations of the preceding sections, we should review some
of the standard results for the trace of an infinite dimensional operator. For the trace
results used here, see [3], [17], [22].

Let Z be a separable Hilbert space and T a compact linear operator on Z.
Denoting by txi the eigenvalues of (T’T)1/2, repeated according to multiplicity, we
have a sequence of nonnegative real/xi’s, each of finite multiplicity. The operator T
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is said to be of trace class (or nuclear) if

(5.1) IITII1 E <oo.
i=1

When the summation is finite, (5.1) defines the trace norm of T, and for any orthonormal
basis {zi} in Z we have

(5.2) IlZlll E ((T*T)I/=z,, Z,)z.
i=1

We denote the space of all trace class operators on Z by .I(Z, Z). With the norm

I1" II1, z) is a Banach space and a two-sided ideal in (Z, Z).
Any T x(Z, Z) has finite trace defined by

(5.3) tr T E (Tz,
i=1

{z} an arbitrary orthonormal basis in z, the value of tr T being independent of the
orthonormal basis chosen for (5.3).

Property 5.1. If T t(Z, Z), tr T is the absolutely convergent sum of the
diagonal elements of the matrix representation of T referred to any complete family
of mutually orthogonal elements of Z. If dim (Z)<, tr T is the diagonal sum of the
matrix representation of T referred to any complete linearly independent family.

If T(Z, Z) is self-adjoint, IITII1 is just the sum of the absolute values of the
repeated eigenvalues of T, and, if T is self-adjoint and nonnegative, IITII tr T.

The following rather elementary property of trace class operators will be especially
useful to us.

Property 5.2. If T (Z, Z) has finite rank k, then T (Z, Z) and IITII kllTII.
We should note that, for 1 p <, we have the Banach algebra p(Z, Z),

consisting of compact operators T for which the norm

i=1

is finite. For 1 Np N q N,q(Z, Z) contains (Z, Z) algebraically and topologically,
where (Z, Z) (Z, Z). In particular,

(5,5) IlZll IlZll IlZll
for TI(Z,Z). Also, 2(Z,Z) is the space of Hilbert-Schmidt operators, and
T I(Z, Z) if and only if T is the product of two Hilbert-Schmidt operators.

LZMMa 5.1. For r, T(t) is Hilbert-Schmidt.
Proof. For u =0 in (2.1), define " Z L(-r, 0;R") by ((x(O),xo))(O)=Lxr+o,

-r <0 <0. Since, for u =0, (x(t),xt)= T(t)(x(O),xo), it is not dicult to see that
L (Z, Lz(-r, 0; R")). From (2.1), we have

0

x(O)=x(r+O)=x(O)+_ ((x(O),xo))(n)dn, -r<0<0.

Thus T(r) can be written as the sum of operators of finite rank and the product
an integral operator on L(-r, 0; R n) with . Therefore, T(t) T(t r)T(r)is Hilbert-
Schmidt for r because operators of finite rank are Hilbert-Schmidt, integral
operators with L kernals on L(-r, 0; R) are Hilbert-Schmidt, and the product
a bounded operator with a Hilbert-Schmidt operator is Hilbert-Schmidt.
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THEOREM 5.1. Let H(.) be the solution of the Riccati integral equations (3.14)
and (3.24). Then FI(t)I(Z,Z) for t<-tr-r. If GI(Z,Z), 1-I(t)6x(Z,Z) for
<- tr. Furthermore, H(. satisfies

II(t) T*(tr- t)GT(tr- t)

(5.6)
+ T*(rl-t)[O II(rl)BR-1B*II(l)]T(l-t) drl, t<-tr,

where the integral is a Riemann integral convergent in I(Z, Z).
Proof. Since T(s) is Hilbert-Schmidt for s >-r, T*(s) and GT(s) are Hilbert-

Schmidt for s >_- r. Therefore T*(tr- t)GT(tf- t) is of trace class for tr- _-> r. Since
.(Z, Z) is a two-sided ideal in (Z, Z), if G e(Z, Z), so is T*(tr-t)GT(tr-t) for
tr-t >-O.

Now consider the integral on the right side of (5.6). For z =(x,)eZ,
T*(q-t)O/2z T*(?-t)(Oo/2X, 0), and, for u eR ", T*(I-t)H(l)Bu
T*(?-t)II(rl)(Bou, 0). Hence, since T*(.) and H(. are strongly continuous and x
and u have finite dimension, T*(r/-t)Q/2 is continuous in r/ and in the uniform
norm topology of (Z, Z) and T*(n t)II(r/)B is continuous in r/and in the uniform
norm topology of (R ", Z). And, since the norm of an operator is equal to the norm
of its adjoint, Q/2T(’t t) and B*I-I(r/) T(r/- t) are similarly continuous in the uniform
norm topologies of (Z, Z) and (Z, R"), respectively. Thus the integrand of the
integral in (5.6) is continuous in r/and in the uniform norm topology of (Z, Z).

For all and r/, the integrand of (5.6) has rank less than rn +n. Therefore,
Property 5.2 implies that the integrand is continuous in r/ and in the trace norm,
so that the integral in (5.6) converges in the Banach space I(Z, Z). Given H(. ), the
right sides of (3.14) and (5.6) obviously define the same operator function of t.

Note that G e(Z,Z) if G is defined by G(x,)=(Gox, 0) where Go is a
nonnegative, symmetric n n matrix.

THEOREM 5.2. The solution of the Riccati algebraic equation (4.2) is of trace class
and satisfies

(5.7) II Jo S*(n)[Q + HBR-B*H]S(n) dn,

where the integral is a Riemann integral absolutely convergent in .5(Z, Z).
Proof. Recall that our hypothesis that any admissible control for the infinite

interval drives the state to zero results in uniform exponential stability of the semigroup
S(.). As in the proof of Theorem. 5.1, we see that the integrand in (5.7) has finite
rank and is continuous in / in the trace norm. Also, since the integrand has rank
<- rn + n and since its (Z, Z)-norm approaches zero exponentially as rl o, by
Property 5.2, the trace norm of the integrand approaches zero exponentially as r/ o.
Therefore, the integral in (5.7) converges absolutely in .(Z, Z), and, by Corollary
4.2, the II of (5.7) is the solution of (4.2).

Since the trace norm is the strongest of the operator norms in (5.4) and is stronger
than the usual supremum norm, it seems natural to ask whether finite dimensional
approximations to the solutions of our infinite dimensional Riccati equations converge
in trace norm. We will address this question in the next section, but first we should
mention another use for tr II(. ). For simplicity, let us discuss control on the infinite
interval only.

For parameter optimization and sensitivity analysis in engineering design, it is
often desired to compute an average or expected value of a quadratic performance
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index of the form (4.1) based on a statistical distribution for the initial conditions [2,
Chapt. 13], [28]. In a finite dimensional version of our problem, this expected value
would be

(5.8) E(J) tr (KII),

where the real nonnegative, symmetric matrix K is the covariance of the initial
conditions and II is the solution of the appropriate Riccati equation. According to
Theorem 5.2, we can define a similar performance measure for our hereditary problem"

(5.9) E(J) tr (KII),

where II is the solution of the Riccati algebraic equation (4.2) andK is any nonnegative,
self-adjoint bounded linear operator on Z.

Since cx(Z, Z) is a two-sided ideal in (Z, Z), tr (KII), defined as in (5.3), is
finite. From (4.2) and (5.3) we see that/(J) is equal to the minimum value of the
performance index in (4.1) summed over an arbitrary complete orthonormal set of
initial conditions weighted according to the operator K, which may be taken as the
covariance operator of the Z-valued random variable z (0). (For Hilbert space-valued
random variables and definitions of expectation and covariance, see [3].)

6. Abstract approximation theory. The operators T(.), B, G, Q and R are as
in 3. We assume that there exist a sequence of strongly continuous semigroups TN (’)
on Z and positive constants M and/ such that

(6.1) IlTr(t)ll<-Me, >0,= N > 1,

and that

(6.2)5 TN(t) T(t) strongly as N , ->_ 0.

Because of (6.1), the convergence in (6.2) is necessarily uniform in for in bounded
intervals (see [22, Thm. 2.16, p. 504]); i.e., for each z Z, Tr(t)z -, T(t)z uniformly
for in bounded intervals. We denote the generator of Ts (.) by r. Also, we assume
the existence of a sequence of linear operators B from R to Z and sequences of
nonnegative, self-adjoint bounded linear operators GN and Q on Z such that

(6.3) Br B strongly,

(6.4) G G strongly,

(6.5) Q Q strongly.

Since dim (R ") < oo, (6.3) implies

(6.6) IIB B II- IIB* B*II-, 0.

While (6.2) implies only

(6.7) T*(t)- T*(t) weakly, t_>-0,

(6.2) and (6.3) imply

(6.8) B* *rTv(t) (Tr(t)BN)* B*T*(t) in norm, _-> 0,

because dim (R) < o. Also note that (6.3)-(6.5) imply that ][BN[[, IIGNII, and [IQs[[ are
uniformly bounded in N.

As usual, we say that a sequence of operators T converges strongly (weakly) to an operator T if
Trz converges strongly (weakly) to Tz for each z.
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Remark 6.1. Until now, this paper has dealt with optimal control problems for
hereditary differential systems only. However, for the approximation theory developed
in this section, we must deal with sequences of optimal control problems defined in
terms of the operators Tr(’), B, QN, GN, and the approximating systems are not
themselves hereditary differential systems. The analysis of [19], from which we have
taken the basic results for infinite dimensional regulator problems and Riccati
equations, covers the more general situation where T(. is an arbitrary C0-semigroup
on a real Hilbert space Z, B is an arbitrary linear operator from R to Z, and Q and
G are arbitrary nonnegative, self-adjoint operators on Z. The state z (.) is defined as
in (2.5), and the performance indices are given by the right side of (3.2) and by (4.1).
The equations and results of 3 up to and including Theorem 3.2 hold for the general
problem on a finite interval, and the equations and results of 4 up to and including
Theorem 4.3, excluding Corollary 4.1, hold for the general problem on the infinite
interval. We exclude Corollary 4.1 to avoid entanglement, unnecessary here, in the
difference between strong asymptotic stability and uniform exponential stability for
general Co semigroups. Also, the results of 5 depend only on rank Q and rank G
being finite.

In considering approximation on finite time intervals, we will refer to the optimal
control problem of 3 as the "original optimal control problem" or "original problem,"
and to the optimal control problem corresponding to TN(" ), Br and Qr as the "Nth
approximate problem." (z (to) and R are the same for all the control problems.) Since
the integrands of all the integrals encountered in this section are continuous, the
convergence we need will follow from repeated application of the following lemma,
whose proof is an easy exercise.

LEMMA 6.1. Let X and Y be Banach spaces and let [I be a compact subset of
R n. Suppose (.) -->c’(X, Y) and, for i>-l, si(.) 12-->.’(X, Y). Suppose also that
IIi()ll is bounded uniformly in and , and that for each x eX, ,()x converges
strongly (weakly) to g()x uniformly in . Let g(.):I’I-->X be continuous and suppose
there is a sequence of functions gi(. ): [l->X which converge uniformly to g(. ). Then
I(. )gi(" converges strongly (weakly) uniformly to 4(. )g(. ).

Referring to (3.8) and (3.9), we write/ and/* for the corresponding operators
in the Nth problem with to s and note that II   ll, and II s* ll are bounded
uniformly in s and N for s in bounded intervals (s-< tf). In particular II   ll--<llg- ll,
Dominated convergence, with (3.3)-(3.5), (3.8)-(3.11), and (6.2)-(6.8), implies

(6.9)

and

(6.10)

Rsv -> Rsv, vL2(s, tf;R ")

Bs --> z

the convergence in both (6.9) and (6.10) being in L2($, tf; R m) for s _-< tf. The identity

(6.11) / s-N iI 21 il s-N (t ilsN)ll 21
and (6.9) and (6.10) imply

(6 12) / ;-/}* /-/}*zrz --> in L2(s, tf" R ), z Z.

Denoting the optimal control for the original problem by u and the optimal
control for the Nth approximate optimal control problem by u, we see from (3.12)
and (6.12) that

(6.13) u u inL2(t0, tf; R).



OPTIMAL CONTROL OF HEREDITARY DIFFERENTIAL SYSTEMS 115

Denoting by Hs(" the solution of the Riccati integral equations for the Nth approxi-
mate problem and by SN (’,’) the perturbed evolution operator corresponding to the
perturbation of Ts(" by -BNR-1B*I-ls, we see from (2.5), (3.22) and (6.13) that

(6.14) Ss(t,s)z-S(t,s)z, z Z, to<-S<-t<-t,

where the convergence is uniform in and s. (S(.,.) is the evolution operator of
(3.21)-(3.24).) Then (3.23), (6.4), (6.5), (6.7) and (6.14)imply

(6.15) H(t) - II(t) weakly, to<-t<-t,

where the convergence is uniform in t. SinceBIIs (t) (IIs (t)B)* and dim (R m) < 00,
(3.13), (6.3) and (6.15) show

(6.16) I[u(t)-u(t)l[g,0

uniformly for to <- -<_ r. If we have strong convergence in (6.7), Hs(t) converges strongly
to H(t).

Remark 6.2. Since the initial time to is arbitrary, any time we said above that
convergence was uniform in for to<-t <= tf, we could just as well have said that
convergence was uniform in for in bounded intervals.

Thus we have the following about the solutions IIs(’) of the sequences of
approximating Riccati integral equations"

THEOREM 6.1. Ifthe boundedness and convergence hypotheses in (6.1)-(6.5) hold,
then, for <-t, Hs(t) converges weakly to II(t), the solution of the Riccati integral
equations for the original problem, and the convergence is uniform in for in bounded
intervals. If also T(t) converges strongly to T*(t) for t>-O, then 1-Is(t) converges
strongly to H(t), and the convergence is uniform in for in bounded intervals.

The significance of strong convergence for 1-Is(t) lies in the following theorem.
THEOREM 6.2. Suppose that l-Is(t) converges strongly to H(t) and that the conver-

gence is uniform in for in bounded intervals. Then Bvl-I(t) converges in norm to
B*H(t), i.e.,

(6.17) liBHs(t) B *H(t)ll 0

uniformly in bounded t-intervals; and, for e > O, there exists a nonincreasing function
N(.)" (-o; tr)R+ such that, for N >-N(s),

J(s, z (s), -R-1BHs(")s(" )) =<J (s, z (s), -R-1B*II(. )z(. ))+ e Ilz (s)112
(6.18)

=(II(s)z(s),z(s)>z + ellz(s)l[ z(s)eZ,

where J(s, z(s),-R-B*tIIs(.)N(.)) is the value of the performance index in (3.2)
corresponding to the initial time s, the initial state z(s), and the feedback control
U’s(" -R-BIIs( )s( ), and ].v(" is the corresponding solution of (2.4) and (2.5);
i.e., the Nth feedback control law is applied to the original hereditary system.

Proo]: Since 1-I,,(t) and H(t) are self-adjoint, IIB*rI,,(t)-B*H(t)II-
I[lI(t)B- II(t)B[[. Since IIs(t) and Bs converge strongly, so does IIs(t)Bs, and the
finite dimensionality of R then implies I]II(t)Br-II(t)B[[- 0.

For (6.18), let $(., .) be the perturbed evolution operator corresponding
to the perturbation of T(.) by -BR-BII(.), and recall the definition of S(.,.)
in 3.21). Then (3.17), (3.18) and (3.20) along with Gronwall’s lemma and the fact
that [IB*II(t)-B*II(t)l[O uniformly for s -<_t <-tr imply that Ilg(t, s)-S(t, s)[I goes
to zero uniformly for s <_-t-<_tr as [IBR-1BHs( .)-BR-IB*H(.)[loo(,t;z,z goes to
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zero. The existence of N(.) and (6.18) then follow from (3.15), (3.24) and

(6.19)

J(s, z(s),-R-1BIIN( )N(" ))

(g*(t, s)ag(t, s)z(s), z(s))z

+ (r/, t)[O + IIN(rl)BNR-1BIIN(rl)],N(rl, t)z(s) drl, z(s) Z"
When T*(t) converges strongly, we have even more:
THEOREM 6.3. Suppose that, for all N, QN Q and GN G is given by G (x, )

(Gox, 0). Then, if Tr(t) converges strongly to T*(t) for >-O, HN(t) converges in trace
norm to H(t) for <- tf and the convergence is uniform for in bounded intervals.

Proof. We will use (3.14), the first Riccati integral equation. Since

dim (R") <m, II(T*(tr-t)-T*(tr-t))G/ellO
uniformly in for in bounded intervals. Since

IIG= (TN(tf-- t)- T(tf- t))ll II(T (tr- t)- T*(tf t))G 1/211
and rank

G 1/2 n, IIT (to t)GTN(t:- t)- T*(t:- t)GT(t- t)lll 0

by Property 5.2. Similarly,

IlT(n t)OTN(I t)-- T*(I t)OT(rl t)lll +0.

Finally, by Theorem. 6.1, HN(r/) converges strongly to II(r/), so that

IIT* (n --t)IIN(n)BN- T*(n t)rI(n)nll--, 0.

Hence, by Property 5.2, since rank

n, -<_m, IIT, (n --t)IIN(rl)BNR-1B}IINOq)TN( --t)

T*(,/- t)rI(n)BR-’B*H(,1)T(rt t)ilt - o.
All convergence here is uniform for and r in bounded intervals, and the theorem
follows from (3.14). [3

COROLLARY 6.1. Under the hypothesis of Theorem 6.3, tr IIN(t)= Ilrl(t)llx con-
verges to tr II(t)= IIn(t)ll uniformly for tin bounded intervals.

Note that, until Theorem 6.3, we did not require QN and GN to have finite rank.
This generally will be the case in numerical approximations, so that each IIN(t) will
have finite trace.

With only weak convergence of IIN (t), we cannot guarantee that tr IIN (t) converges
to tr II(t); all we can say is the following, which follows from (5.3).

THEOREM 6.4. Let IIN be a sequence of nonnegative, self-adjoint bounded linear
operators on a Hilbert space Z, and suppose that IIN converges weakly to II (Z, Z).
(Necessarily, H H* _-> 0.) If H and each IIt have finite trace, then lim inf tr HN -->_ tr H.

Also, changing the hypothesis to strong convergence for IIN would not enable us
to say that lim tr IIN tr II.

Next we consider approximation on the infinite interval, letting to 0 and t m.
We will refer to the problem of 4 as the "original optimal control problem on the
infinite interval" or "original problem," and to the infinite-interval optimal control
problem corresponding to TN (’), BN and ON as the "Nth approximate optimal control
problem on the infinite interval" or "Nth approximate problem." The following two
theorems are essential to the development here.
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THEOREM 6.5. /f {Hi} is a uniformly bounded sequence ofbounded linear operators
on a separable Hilbert space Z, there exists a subsequence which converges weakly to
some II .(Z, Z). If each Hi is nonnegative and self-adfoint, so is II.

Proof. Let {zi} be a basis for Z. Since [[IIzlll is bounded in i, there is a sub-
sequence {IIlx)} such that {IIlX)zx} converges weakly. From {IIlx)} we can extract a
subsequence {HIE)} such that {I-II2)z2} converges weakly. Proceeding in this way, we
construct a sequence of subsequences {IIli)} such that Illi)Zk converges weakly (as- oo) for 1 <_-k _-<j. Next we show that the diagonal sequence {I’Ii (i)Hi } is a weakly
convergent subsequence of the original sequence. Clearly, for each i, the sequence
l’Iiz converges weakly to some yi. The set of finite linear combinations of zi’s is
dense in Z, and, for Y, l’Ii converges.weakly to I’I, where l’I is a uniquely
determined bounded linear operat.or from Z to Z. Therefore, l’Ii converges weakly
to H, where II is the extension of II to all of Z. It is easy to show that, if each II is
non-negative and self-adjoint, so is II. [3

Of course, the standard proof that a Hilbert space is weakly sequentially compact
[3], [16], [22] suggested the use of the diagonal subsequence to prove Theorem 6.5;
however, the present author has been unable to find this result in the previous literature.

THEOREM 6.6. Let {Cr} be a sequence of bounded linear operators on Z, and let
SN (’) be the semigroup generated by + Cr, whereris the generator ofthe semigroup
T(. in (6.2). IfC converges strongly to a bounded linear operator C, then, for >-_ O,
SN(t) converges strongly to S(t), the semigroup generated by + C, and the convergence
is uniform in for in bounded intervals.

Proof. We will use a standard series to construct the perturbed semigroups (see
[21], [22, pp. 497-98]). We have

S)(6.20) Sr(t) (t), >= 0
i=O

where S (t)= Tr(t) and

(6.21) s/)(t)z=| Tc(t-s)CrS)(s)zds, zsZ, t>-O, f>-O.
.Io

It can be shown (see [21], [22]) that
e ttJ

(6.22) IIs)(t)l[<-M+xllcll :i
Since, by the principle of uniform boundedness, IIc ll is bounded in N, we see from
(6.22) that the series in (6.20) converges absolutely in (Z, Z), and uniformly in N
and for in bounded intervals. Also,

(6.23) S(t)= Z S(i)(t), >-0,

where S()(t)= T(t) and {S(i)( )} is defined in the same way as {S (.)} was in (6.21).
The estimate for [[s(i)(.)ll, like (6.22), shows that the series in (6.23) converges
absolutely, and uniformly for in bounded intervals.

Since TN(. and Cv converge strongly to T(. and C, from (6.21) we see

(6.24) lim S (t)z S(i)(t)z, z Z, >= O, ] >= O,
N--oo

the convergence being uniform in for in bounded intervals. From (6.23) and (6.24),
we have

J

(6.25) lira lira 2 $r (t)z $(t)z.
J N--, O
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Because the series in (6.20) converges uniformly in N, we can reverse the order of
the limits in (6.25) to obtain

(6.26) r-,olim SN(t)z S(t)z, Z Z, t>0,=

which was to be proved. Of course, the convergence in (6.26) is uniform in for in
bounded intervals.

Hypothesis 6.1. From here on, we assume that, for each N, there exists a unique
nonnegative, self-adjoint solution IIN of the Riccati algebraic equation corresponding
to the Nth approximate problem.

Sr(’ is the semigroup generated by M--BNR-1B*NHN.
THEOREM 6.7. If IIrI ,ll is bounded in N, then there exists a nonnegative, self-adjoint

solution H of the Riccati algebraic equation (4.2), and IIr converges weakly to H.
Proof. By Theorem 6.5, there is a subsequence {IIm} which converges weakly to

some nonnegative, self-adjoint II (Z, Z). We must show that II is a solution of (4.2).
From Theorem 4.2, we have

S*j(t)IIS(t)z + [. S*(/)[O + [IjBR-1B*IIN]Sm(n)z dl,IImz
(6.27)

0 <= < oo, z e Z, N] >- 1.

Since dim (R ") < oo, B H converges strongly to B’H, so that BmR B IIm con-
verges strongly to BR-B*H. By Theorem 6.6 then, SN(t) converges strongly to S(t)
for _>-0, where S(. is the semigroup generated by M-BR-B*H. Since 1-ImSm(t)
converges weakly to 1-IS(t), Sv(t)IIrflvj(t)= (IINflN(t))*Sm(t) converges weakly to
S*(t)HS(t) Since B*mHj and SN(t) converge strongly,B HNSN(t) converges strongly
to B’l-IS (t) and *SjHrB (B*mIIqSrj(t))* converges weakly to S(t)IIB. Of course,
Sr(t) converges weakly to S*(t), and Qr converges strongly to Q. All convergence
here is uniform in for in bounded intervals. Thus, for _-> 0 and z e Z, the integral
on the right side of (6.27) converges weakly to S*(r/)[Q +BR-XB*II]S()z d, and
we see that II is a solution of the Riccati algebraic equation for the original problem.

To see that the original sequence {IIr} converges weakly to H, note that the
argument we have just given shows that any subsequence of {IIv} in turn contains a
subsequence which converges to a nonnegative, self-adjoint solution of the Riccati
algebraic equation for the original problem, and recall that Theorem 4.1 says that
such a solution is unique.

The following theorem is proved in the same way as Theorem 6.2.
THEOREM 6.8. Suppose that HN converges strongly to II. Then BIIN converges

in norm to B*II, and the semigroup r(" ), generated by M-BR-B*lvII, is uniformly
exponentially stable ]:or N sufficiently large. Also, for e > O, there exists N > 0 such
that, ]:or N >-N,

J(z, -R -B*NIINZ ("))
(6.28)

(rxz, z>z /  llzll
where J(z, -R-1BHNz (.)) is the value of the performance index in (4.1) corresponding
to the initial state z and the feedback control -R-XBvIINZ( ).

THEOREM 6.9. Assume that QN Q for all N and that T(t) converges strongly
to T*(t) for >-O. Furthermore, suppose there exist positive constants M and [3 such that

(6.29) liS(t)ll<=Me -’, =>0, N >= 1
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and

(6.30) II _-<M, N _-> 1.

Then there exists a nonnegative, self-adfoint solution II of the Riccati algebraic equation
for the original problem, l-I converges in trace norm to II, and

(6.31) Ils(t)ll<-Me -’, -->0,

where S( is the semigroup generated by -BR-1B*II.
Proof. We know from Theorem 6.7 that IIr converges weakly to the required

H, and this is sufficient for $r(t) to converge strongly to S(t) (see the proof of Theorem
6.7). Hence (6.29) implies (6.31). Also, for each z, since Sr(t)z S(t)z uniformly in
bounded t-intervals, (6.29) then implies that SN(t)z --> $(t)z uniformly for t->0.

Next we show that IIN converges strongly to II. We compute II and YIr according
to Theorem 4.3 (see Remark 6.1). We take G MI, where I is the identity, so that
G _-> II, N _-> 1, and G->_ H (since IIv converges weakly to H). For e > 0, by (6.29)
and (6.31), we can choose s according to (4.10) such that

(6.32) IIrI,, (s)- rI,ll < . N ->

and

(6.33) IIrI(s)-rIIl<.
Holding s fixed, for z Z, we can choose N according to Theorem 6.3 such that

(6.34)

IIrI,,z rIz I1-< IIrI,,z -rt,(s)zll/llrI,(s)z -rI(s)zll/llrI(s)z 1]z < 3. N _->.
Since IIBcR-IB and Tc(t) converge strongly, so does $(t), and, as with

S(t), (6.29) implies that the convergence is uniform in for =>0. From Theorem
5.2 (and Remark 6.1), we have

(6.35) II Io S(n)[Q.+HBR-BHN]S(?)

and the remaining argument is quite similar to the proof of Theorem 6.3. Because of
the finite dimensionality of R and R and the strong convergence we have already,

and

IIs*(.)rIs,, s*(, )rib II- liB*rI,,S,, (n)-BrIs(,)11- 0.
uniformly for rl -> 0. Then Property 5.2 implies that the integrand in (6.35) converges
in trace norm, uniformly in r, to the integrand in (5.7), and this convergence along
with (6.29) and (6.31) implies lira,,- rills-. 0. ]

Remark 6.3. In Theorems 6.3 and 6.9, we could letQ PvQPr andG
where Pr is a sequence of continuous projections on Z which converge strongly to
the identity. We would need only to replace Q/2 by PzvQ /2 or Q/2Pr in the
appropriate places in the proofs, and similarly for G /2. It has been convenient to
avoid discussing projections explicitly in this section, and the versions of the theorems
we have suffice for the approximation Scheme of the next section. However, to apply
the results of this section to a scheme where Z is decomposed with the eigenvectors
of 4 (see [5], [20], [27]), we would take Qr PQPr and G PPN where P is
the projection onto the span of a finite number of such eigenvectors.
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7. An approximation scheme.
7.1. Approximation o the semigroups T(. ) and T*(. ). The convergence

results for the sequences of semigroups in this section follow from the Trotter-Kato
semigroup approximation theorem ([22], [33], [40]). We will give a convenient version
of this theorem, which is equivalent to the version used in [4].

THEOREM 7.1. Let generate a Co-semigroup T(. on a Hilbert space Z and
suppose there is a sequence o[linear operators lreach o[which generates a Co-semigroup
Tr(" on Z. Suppose there exist constants M and 13 such that (6.1) holds and a dense
subset ofZ such that, [or Re X sufficiently large, ( X) is dense in Z. Then, if
(7.1) SgNZ Z for z ,
Tr(t)z T(t)z [or >-0 and z Z, and the convergence is uni[orm in for in bounded
intervals. Furthermore, (6.1) holds with TN( replaced by T( ).

From here on, we will restrict most of our analysis to the system
0

(7.2) (t)=aox(t)+Alx(t-r)+ | D(O)x(t +O) dO +Bou(t), >-to.

For any positive integer N, let X denote the characteristic function of
[-fr/N, -(f 1)r/N] for 2_-</" <=N and X denote the characteristic function
of [-r/N, 0]. Define the finite dimensional subspace ZN of Z by

(7.3) Zu (o, )Z" Y’. jXY; j R", 0<-j <_-
=1

Note that the orthogonal projection n of Z onto Zn is given by

(7.4) Pu(x, )= x, ffjX

where

(7.5) N_ f
(j-1)r/N

O r d--jr/N
O(S) ds,

Next we define a sequence of operators N :Z Zn. For (00, O)c Zn,

(7.6) +I r N N
u(Oo, O) aoOo+al01 z-;DO,

IV- j=l r
(O- O)x),

where

(7.7) DJV N I_ (i-1)r/r

D(s) ds, 1 <-] <-_N.
r ]r/N

For (x, 0)cZ, we take sr(x, O)= SNr(X, 0).
For the approximation scheme of this section, we take Tr,r(t)=e ’’. Note that

Zr and Z{v reduce u and TN(t). According to the next two lemmas, which Banks
and Burns proved in [4], this sequence of approximating semigroups satisfies the
hypotheses of Theorem 7.1.

LEMMA 7.1 ([4, Lemmas 3.2 and 3.3]). The set ={(0(0), O)eZ: 0 is con-
tinuously differentiable on [-r, 0]} is dense in Z, and SgNZ- SgZ .for z . Also, ]’or
Re A sufficiently large, (sg- A )@ is dense in Z.

LEMMA 7.2. ([4, Lemma 3.6]). There exist constants M and such that (6.1)
holds for the approximation scheme o]’ this section.
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N NWe follow [4] and define the vectors e o, e v,.. ", e iv by
N(7.8) eo (1, 0), e (0, X), 1 -<] <_-N,

so that each z Ziv can be written as
N

(7.9) z 2 iv
wei,

]=0

where each w is an n-vector. Thus each z Z corresponds to a unique n (N + 1) vector
of scalars. When the elements of Ziv are represented in this way, the restriction of
iv to Ziv has the matrix representation

(7.10) Aiv 0

where I is the n x n identity matrix.

r r iv rD-D D A+N
0 0

N N
I--I

For 1 <=/’ <-n (N + 1), define zv e Ziv such that the ]th component of the n (N + 1)
vector representing z}v is 1 and all other components are zero. In this section, all
matrix representations of linear operators on Ziv, including Aiv, are the matrix
representations of the operators referred to the basis vectors zv. Let Wiv be the
n (N + 1) n (N + 1) matrix whose elements are (z/iv, z V)z. Then

0 --rI
N

(7.11) W

0

r

0 0 0

It is an elementary exercise to show that the restriction of sr to Ziv has the matrix

A’iV Wiv-’AivWiv

representation

(7.12)

A’ I 0 0

Dr -N--I N--I 0

0 -NI NI

N NAT+DN 0

N
--I
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THEOREM 7.2. The set ={(y, O)D(*)" 6 is continuously differentiable on
I-r, 0]} is dense in Z andz-*z for z . For Re h sufficiently large, (4*-
is dense in Z.

Proof. From Theorem 2.1, it is easy to see that is dense in Z. Since r
NN" Z -Zr,N nrn and* r4*Nr. Then, since r I strongly, we
need only show that rnz -*z for z .

First consider the case D-0. Because of the boundary condition (2.8), the
statement that*n(y, ) *(y, 6) for all (y, ) in is equivalent to the statement
that 4n(O(0),O)=4Nr((0),O)-(O(0),) for all ((0),) in the of
Lemma 7.1. This can be seen by recalling (7.4)-(7.6), comparing (7.10) and (7.12),
and noting how nicely the term (N/r)A in A*n works out in light of (2.8) and how
the n x n identity matrix in the first row (n rows actually) of A*r yields the (0) in (2.9).

For D 0, the matrix function D defines a bounded operator /" ZZ
according to l(x, 4)=(rD(O)4(O)dO, 0). In the approximating operators n,
we have approximated/ by/N, and the corresponding term in * is (/r)*=
n/*. Sincen I strongly, (/n)*-/* strongly. Therefore, forD 0,vz 4"z
for z . Also, it is instructive to compare the term DTy in (2.9) with the first column
of A*n.

Finally, since * generates a C0-semigroup, for Re h sufficiently large, h is in
the resolvent set of * so that range (4"-h)- Z. Then, if D is continuous, (2.9)
shows that (*-h) -{(x, 4) Z" 4 is continuous}, which is dense in Z. For D only
L2, we can approximate D by a .o21ence of continuous De’s, each of which results
in an t, and [[*-4*[l(z.z) I]Dc-DILL2. Hence, for h in the resolvent set of
and [ID-D[I sufficiently small, h is in the resolvent set of * and (4c*-h) is
dense. Now it is easy to show that (*-h) is dense by letting IID-DilL20.

Since [IT(t)[[=llTr(t)[[, Theorem 7.2 with Theorem 7.1 and Lemma 7.2 yields
the following.

THEOREM 7.3. Fort >--_0 and z Z, T*n(t)z T*(t)z uniformly in tfortin bounded
intervals.

In [4], Banks and Burns have indicated the modifications of the foregoing formulas
and arguments needed to obtain a strongly convergent sequence of approximating
semigroups Tu(. for the general hereditary system (2.1). After such modifications,
our arguments can be modified to show that the adjoint semigroups T’u(’ also
converge strongly for the general problem. In particular, if (y, 4) is in the set of
Theorem 7.2, then must have the required jumps at the points -hi (see (2.7)).

7.2. Approximation tor optimal control on a finite interval. For our Nth optimal
control problem, we define

(7.13) B B B,

(7.14) O NNQN =O,

(7.15) Gn
If G has the form G(x, b)= (G0x, 0), then Gn G. For Bu and Qr, we have the
respective matrix representations B and QN"

(7.16) BN QN 0
o
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Also, we denote the matrix representation o G by tr, and, if G(x, qb) (Gox, 0),
then ( looks like QN with Qo replaced by Go.

As in 6, we denote the solution of the Riccati integral equation for the Nth
approximate problem by II(. ). From the Nth versions of (3.22) and (3.24), we see
that the minimum value of the cost functional for the Nth problem with initial time
s and initial state z(s) is (H(s)z(s), z(s))z. Then, from (7.14) and (7.15) and the fact
that ZN and Z reduce T(.), we see that for z (s) Zr the control u 0 is optimal,
since it yields zero cost. Hence the null space of IIr(s) containsZ for s _-< t.

Since SgN and s are bounded, we can differentiate the Nth version of either
(3.14) or (3.24) to obtain the Riccati differential equation

l(t) -I-IN(t)- l-I(t)t + l-IN(t)BrR-Bvl-IN(t)-ON, <-- tf,
(7.17)

II2v (tf) G.
We emphasize that (7.17) involves operators on the infinite dimensional space

Z. For numerical computation, we need a Riccati differential equation involving finite
dimensional matrices. To this end, we denote the matrix representation of IIr(t)lz,,
by pN (t), and note that the matrix representation ofB is Br. Then (7.17) yields

(t)=-A*rff,(t)-P(t)A +(t)BR-B.#N(t)-QN t<_t,
(7.18)

JbN (re) N.
Remark 7.1. The operator 1-IN(t) is sclf-adjoint; however, in general the matrix

/SN (t) is not symrnctric.
The matrix representation of H*(t) is WN-/N(t)WN, and, since H*N(t) HN (t),

(7.19) Wr-P (t)Wr =/(t).
From (7.19), we obtain

(7.20) (WP(t))r P(t)W wP(t).
For =< tr, we define

(7.21) pN (t) wNpu (t),
which (7.20) shows to be symmetric. Also PZV(t) is nonnegative because IIu(t) is
nonnegative. Upon multiplying (7.18) on the left by Wr and noting WUA*=
AU*W, Br*WU-X=BU and WQ =QU, we obtain the Riccati differential
equation to be solved for the symmetric n (N + 1) n (N + 1) matrix pr (t)"

u(t) -APN(t)-P (t)AN +pNBrR-aBrPN _QN, <--_ tr,
(7.22)

P(t,) G,
where G WNt is symmetric and nonnegative.

Next we will consider the procedure for computing the Nth feedback control law
for the hereditary system once (7.22) has been solved for the matrix P(t). The
operator HN(t) has the form (see (3.25))

[II(t) II(t)
(7.23) n,,(t)= tnf(t) n(t)J’ t-<

where II(t) is a real nonnegative, symmetric n x n matrix, Flff(t) is a real n n
matrix function n(t, on [-r, 0], n(t)= n(t)* and

0

(7.24) II(t)b | rib(t, o)4,(o) dO,
j_
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and II(t) is a nonnegative, self-adjoint bounded linear operator on L2(-r, 0; R").
Let us write

(7.25) P(t)

P(t) P(t) ffr(t)1fi(!(t) P (t)

LPg (t) Pg(t)J

where each/5 is an n x n matrix. Similarly, we write

(7.26) P(t)

eo(t) Px (t) P(t)1e(t) P(t)...
lP,o(t) Pg,,(t)J

Since/N (t) is the matrix representation of IIN(t) and pr(t)= Wr/5r (t), we have

(7.27) II(t) =/o (t)

Of course, H(t) is symmetric and nonnegative. Recalling (7.8), we see

N

(7.28) n9(t) Po(t)x, t<-t.
=1

Then, using i5n (t) WN-P (t) and taking transposes in (7.28), we obtain the kernel
for (7.24):

nN
(7.29) H(t)T E P(t)xr, <- tr.

1=1 r

The Nth feedback control law for the hereditary system is then

ur(t) -R-1BH(t)z (t)
(7.30)

-1 T N=-R Bo Poo(t)x(t)+ P(t)xr(O) x(t+O) dO, t<=t.

By Theorem 6.1, IiTff(t)=Po(t) converges to II(t) uniformly in bounded t-
intervals, and the elements of II(t) converge in La(-r, O) to the elements of IIl(t),
uniformly in bounded t-intervals. Also, Theorem 6.2 applies to the control law of
(7.30).

Now suppose G(x, ) (Gox, 0), so that

(7.31) N=G= Ii
Then, by Theorem 5.1, tr II(t)< o for <= tt, and, by Theorem 6.3 and Corollary 6.1,
IIr(t) converges in trace norm to II(t) and tr IIr(t) converges to tr 1-l(t). Since Z c

(IIu(t)), tr 1-Iu (t)= tr (II(t)lz,,), and, from property 5.1, we see

(7.32) tr II (t) tr/u (t) tr (Wu-P (t)),

where tr/u (t) is, as usual, the sum of the diagonal elements of the matrix/N (t)=
Wr-’pr (t).
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7.3. Approximation for optimal control on the infinite interval. Now we consider
the sequence of Riccati algebraic equations

(7.33) IIN +IINMN IINBNR-B*nIIN + ON 0

corresponding to the sequence of approximate optimal control problems. Recall (7.13)
and (7.14), and that, when a nonnegative, self-adjoint solution of (7.33) exists, SN("
denotes the semigroup generated by MN-BR-1B*IIN. We would like to say that, if
there exists a nonnegative, self-adjoint solution II of the Riccati algebraic equation
for the hereditary system, then, for N sufficiently large, there exists a nonnegative,
self-adjoint solution tin Of the Riccati algebraic equation or the Nth approximate
problem and there exist positive constants M and/ (independent of N) for which
(6.29) and (6.30) hold. To make this statement, we must assume the following
conjecture about the semigroup approximation scheme of this section.

Conjecture 7.1. If the semigroup T(. is uniformly exponentially stable, then
there exist positive constants M’ and/’ such that, for N sufficiently large,

(7.34) IIT(t)lz,,ll <M e -’’ >= O.
Remark 7.2. The present author has tried repeatedly but unsuccessfully to prove

this conjecture-even for the no-delay case where A A2 A 0, D 0, but
r > 0. While not all semigroup approximation schemes have this property, the present
scheme certainly seems to. Indeed, considering the present approximation scheme
from the point of view of approximating a delay differential equation by a chain of
ordinary differential equations, Repin [36] gave decay rates, uniform in N, for the
approximating systems. While Repin did not work with semigroups or in the state
space Z, his Theorem 3.1 seems to yield Conjecture 7.1. However, in several attempts,
the present author has not been able to decipher the English translation of Repin’s
paper sufficiently to say unequivocally that Conjecture 7.1 has been proved. Even so,
for the rest of this section we will assume that Conjecture 7.1 holds.

There exists a nonnegative, self-adjoint solution IIN of the Riccati algebraic
equation (7.33) for the Nth approximate problem if and only if there exists an
admissible control for each initial condition z Z. (See Definitions 4.1 and 4.2,
Theorem 4.1, Remark 6.1 and [19].) Such a solution could be defined arbitrarily on
Zr because ZN and Zv reduce MN, B*R-BN and ON and
BR-BNIz, QNIZ, 0. However, the appropriate solution for the Nth approximate
optimal control problem satisfies IINIzA 0, since u 0 is an admissible control for
z Zv and we want the minimum value of the performance index to be (IINz, Z)z.
If we replaced MN by MN-/3(I-N), then the only solution of (7.33) in .(Z, Zv)
would be 0, and the problem on ZN would be unchanged. From here on rlNlz, 0
will be implicit in all references to IIN.

The only significant questions of existence and uniqueness of solutions to (7.33)
pertain then to the optimal control problem on ZN. From finite dimensional control
theory, we know that a nonnegative, self-adjoint solution of (7.33) in (ZN, ZN) is
unique if the pair (QN1/2, AN) is observable. Also, if (QNI/2, AN) is observable, there
exists a nonnegative solution of (7.33) in .(ZN, ZN) if and only if (A%BN) is
stabilizable, and such a solution is positive definite.

Suppose now that there exists a nonnegative, self-adjoint solution of the Riccati
algebraic equation (4.2) for the hereditary control problem, or equivalently
(Theorem 4.1 and Corollary 4.1) the hereditary system (2.1) is stabilizable. As in the
previous sections, $(. is the semigroup generated by M-BR-B*FI, and, according
to Theorem 4.1, $(. is uniformly exponentially stable.
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Let us approximate S(.) in the same way we have approximated T(.).
In (7.6) and (7.7), A0 is replaced by Ao-BoR-IBH and D(. is replaced by
D(. )-BoR-1BIII( )7-. The result is an operator an, and, in view of (7.4), we have

(7.35) N M BR-IB*II.
Thus, we define g(t)=et. Since, according to Theorem 4.1, S(. is uniformly
exponentially stable, Conjecture 7.1 implies the existence of positive constants M and
/ such that, for N sufficiently large,

(7.36) [[N(t)[zNII<--Me -’, >--0.

THZOREM 7.4. ff the hereditary system is stabilizable, then, [orNsufficiently large,
there exists a nonnegative, self-ad[oint solution IIr o[ (7.33) and we have

ME

(7.37) (IInz, z>z _-<-(llOoll/llnoll=llrIIl=llRII)llzll, z Z,

where M and B are the constants in (7.36).
Proof. For the Nth optimal control problem with initial condition z, take the

feedback control aN(t)=-R-XB*IInz(t). The resulting state then is given by
n(t) Sn(t)z, and the value of the performance index is

(7.38) J(z, tn)= J0 ((Oen(t), en(t))z +(Rffn(t), an(t))n") dt,

which is not greater than the right side of (7.37). Since the minimum value of the
performance index is (1-Iz, z )z, (7.37) follows. U

RecallingTheorem 6.7 (and assuming Conjecture 7.1), we can now say that, if
there exists a nonnegative, self-adjoint solution II of the Riccati algebraic equation
for the hereditary system, then IIn exists for N sufficiently large and 1-In converges
weakly to H. To prove that 1-In converges strongly and in trace norm requires more
work. We will need the following lemmas.

LEMMA 7.3. For f L2(0, oo) and a > O, define g "[0, oo) - R by

(7.39) g(t) f e-(t-sf(s) ds.
Jo

Then g L2(0, 0o) and

(7.40) I0 gE(t) dt <_m f2(t) dt.

Proof. This is a special case of a more general result on convolutions (see [17,
p. 951]). U

The next lemma is a special case of a result proved by Datko [8] for linear
evolution operators on Banach spaces.

LEMMA 7.4. Suppose that T(. is a Co-semigroup on a Hilbert space Z, and that
there exist positive constants M, ME and a such that

(7.41) IIT(t)II<=M e lt,

and

(7.42)

t>_0

Io [IT(t)z 2 dt <= M2llz [[2
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for each z e Z. Then

(7.43) [[T(t)ll-<-M3 e -’2t > 0

where

(7.44) M3=4Ml(M2+l)(a1+l) and a2=(32M(M2+1)2(al+l)2)-1.
Datko did not give M3 and O2 explicitly in terms of M1, M2 and a 1, but a rephrasing

of his proof shows that (7.43) holds with the M3 and o2 of (7.44). While this M3 and
O2 are hardly the sharpest possible bounds, they serve our purpose here, which is to
give a decay rate for T(. in terms of M1, ctl and ME only. This is essential to
establishing a uniform decay rate for the semigroups SN(" ).

Consider the case of our hereditary differential equation in which Ao=-I,
A A2 A 0, and D 0. Since {(0, ): & e L2(’r, 0; R n)} is invariant under
each N, we can define a sequence of semigroups VN(" on LE(-r, 0; R n) by

(7.45) (0, VN(t)) TN(t)(O, ), >= O, N >-- 1.

The matrix representing the generator of VN(" is just AN with the first row and
column deleted. Clearly, the semigroups T(. and TN(" ), N _-> 1, are uniformly
exponentially stable, so that Conjecture 7.1 implies the existence of positive constants
M’ and/’ such that

(7.46) Ilv(t)ll<-M e -’’ t>O, N >1

THEOREM 7.5. If the hereditary system is stabilizable and Qo is positive definite,
then there exist positive constants Mand such that, for N sufficiently large,

(7.47) Ils(t)lzll<-_Me -’, >=o.

Proof. For z ZN, let ZN(t)=(w(t),N(t))=SN(t)z, t>--O, where
w(t)xi (see 7.8) and w(t)R OjN i.e., as in 6, z(t) is the optimal

trajectory in the Nth approximate control problem. We emphasize that z(t) Z Z,
(t)LE(-r, 0;R ") and w(t)g. In every instance below, [[. indicates the
appropriate norm. We then have

[Iw(t)ll dt (Oow(t), w(t))R, dt

(7.48) <= Ix ((O + IINBR-1B*IIN)ZN(t), ZN(t))z dt

_-< tz-(1-Iz, Z)z,
where/z is the minimum eigenvalue of Oo.

We can write CN(t) as

(7.49) CN(t) VN(t)N(O) + VN(t S) W(S)X1 ds,

If we write the integral in (7.49) as

(7.50) VN(t--s)- w(s)x1 ds Y (t)xj, t >-0,
r 1=1

we have (differentiate the integral in (7.50) and look at the generator of VN(" ))

NI_1.(7.51) (t) __N(t) +-- (t), >0, 1 </<N,
r r
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where r(. w (.) and

(7.52) 7(o)=o,
Hence,

(7.53) (t) fo e-r(’-s)/’N--r -1 (s) ds, t>-O, l<=/<-N,

and

(7.54) IIr(t)ll--< Io e-’(’-’/*N-IIr-r (s)ll ds,

From (7.48), (7.54) and Lemma (7.3), we have

(7.55) IIW(t)ll= dt <-I IIrI,,ll. Ilzll=,
Since

(7.56) r(t)x llW(t)ll=,
/=1

(7.57)
2

w(s)gl ds dt <=r IIrIll. Ilzll=.
Then, since II(0)llllzll, (7.46), (7.49) and (7.57) yield

Io l,ztl ,(7.58) I1, (t)ll dt -< 2 \(2/’) +r-
where M’ and fl’ are independent of N for N sufficiently large. From (7.37),
(7.48) and (7.58), we have, for N sufficiently large,

(7.59) Io IIz (t)il

where M2 does not depend on N. Also, because we have subtracted BR-XB*IIr from
the generator of TN(" to obtain the generator of SN(’ ), Lemma 7.2 and (7.37) imply
the existence of constants Mx and ax such that

(7.60) IlsN(t)ll<-M e 1‘ >0, N > 1

The theorem now follows from Lemma 7.4.
COROLLARY 7.1. If the hereditary system (7.2) is stabilizable and (20 is positive

definite, then, for N sufficiently large, there exists a bounded nonnegative, self-ad]oint
solution II of the Riccati algebraic equation for the Nth approximate optimal control
problem and IIN converges in trace norm to H, the bounded nonnegative, self-ad]oint
solution of the Riccati algebraic equation for the original hereditary optimal control
problem.

Proof. Replacing tr with tr -/3 (!-Pr) (see the paragraph following
Remark 7.2), we obtain Ils(t)lzdl<-e -’, so that (7.47) implies (6.29). Thus
Theorems 7.4 and 7.5 yield the hypotheses of Theorem 6.9. [3

Remark 7.3. From Theorem 4.1 and Remark 6.1, we see that positive definiteness
of Qo implies that I-In [z, is positive definite and is the unique nonnegative, self-adjoint

t>-O, I<-j<=N.

O<-j<-_N.

from (7.50) and (7.55), we have
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solution of (7.33) in (ZN, ZN). It seems most likely that Theorem 7.5 remains true
if the requirement that Oo be positive definite is replaced by Hypothesis 4.1; however,
the positive definiteness of O0 is essential to the proof here.

Of course, we have the steady-state versions of (7.17)-(7.32) (Go =0); i.e., the
same equations except that none of the operators depend on t. Especially important
for engineering applications are the implications of Theorem 6.8 for the sequence of
feedback control laws given by the time-invariant version of (7.30).

Remark 7.4. We need Conjecture 7.1 for Theorems 7.4 and 7.5 and Corollary
7.1. Without this conjecture, all is not lost. According to Theorem 6.7, we still can
say that HN converges weakly to II if IIrI,,ll is bounded in N. Since HN is self-adjoint
and nonnegative, IlrI,,ll is equal to the maximum eigenvalue of , the matrix rep-
resentation of 1-In. Also (see 5), we have IIIInll <-- tr 1-In Tr. Thus we have an easy
numerical test for weak convergence of IIN. However, for stabilizable hereditary
systems, the conjecture implies the much stronger convergence and stability statements
in Theorem 7.5, Corollary 7.1, and Theorem 6.8.

The following theorem is a generalization of [38, Proposition 3.1]. The further
generalization to include (2.1) should be obvious. As in the proof of Theorem 7.2,
we define D .L’(Z, Z) by

0

(7.61) /(x, O) {| D(O)O(O, dg, 0), (x, O)Z.
I

THEOREM 7.6. If the pair (A0, B0) is stabilizable and the range of Bo contains
the range of A1 and the range of1, then (7.2) is stabilizable and the pair (AN, BN) is
stabilizable ]:or N >= 1.

Proof. We may assume that B0 is one-to-one, so that BBo is positive definite.
By hypothesis, there exists an m n matrix Ko such that all the eigenvalues of
Ao-BoKo have negative real parts, so that the feedback control

0

(7.62) u(t)=-Kox(t)-(BBo)-lB[alx(t-r)+ f_ D(O)x(t + O)dO]
makes (7.2) asymptotically stable. Thus, for each (x(0), x0)eZ, the u(. in (7.62) is
an admissible control according to Definition 4.1, and, by Corollary 4.1, (7.2) is
stabilizable in the sense of Definition 2.2.

Similarly, we can define a stabilizing feedback control for the pair (A, BN) for
N >= 1. Recall that the terms D
range Bo.

For Theorem 7.6 itself, we do not need Conjecture 7.1. However, even for
systems which satisfy the hypothesis of Theorem 7.6, we still need Conjecture 7.1 to
make the statements in Theorems 7.4 and 7.5 and Corollary 7.1 because Theorem
7.6 does not yield the uniform bound in (7.47), which Theorem 6.9 requires.

7.4. Computational aspects of the finite dimensional Riccati algebraic
equations. From here on, we will assume that (7.2) and each of the approximating
systems is stabilizable, and that Oo is positive definite. As in the case where tf < o,
we denote the matrix representing HNIZ, by/N and define pN= wN/6N. It follows
from (7.33) that/N and pN are constant solutions of (7.18) and (7.22), respectively.
In particular

(7.63) ANpN +pNAN--PNBNR-BNpN +0N =0.

From Remark 7.1, we know that the n (N + 1) x n (N + 1) matrix pN is positive definite
and is the unique nonnegative, symmetric solution of the Riccati matrix equation (7.63).
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Ross and Flfigge-Lotz [38] derived (7.63) using an approximation scheme for the
hereditary system that is essentially the same as the scheme used here, but without
using infinite dimensional Riccati equations. While we have not bothered with a
formula for the kernels of the operators II (see (7.23)) because the operators II
do not appear in the control laws, the interested reader can find such formulas in [37]
and [38]. Ross and Fliigge-Lotz did not indicate the sense in which the solutions to
the finite dimensional Riccati equations and corresponding control laws can be expec-
ted to converge. Neither did they discuss computational aspects of the problem,
although [37] concludes that "the primary limitation of the approximate solution
method is therefore the computational burden of solving very high dimension steady-
state Riccati equations." In the remainder of this section, we give some results which
we hope will illuminate and diminish the computational burden.

Probably the most efficient method for solving (7.63) is the method given in [34]
by Potter (see also [2, p. 354], [25, p. 250]), which involves an eigenvector decomposi-
tion of the matrix

V _Cr ](7.64) An _ON _AN-

where Cr BrR-1BN. Comparer to the s of (4.20). When the discussion in the
last part of 4 is applied to finite dimensional control problems (i.e., the case r 0)
the next theorem results (see [2], [25]). Recall that we are assuming that (A Br) is
stabilizable and Q0 is positive definite.

THEOREM 7.7. The matrix . has no purely imaginary eigenvalues, and the
spectrum o]’. is symmetric about the imaginary axis, the symmetry including algebraic
and geometric multiplicities of eigenvalues. A complex number A is an eigenvalue of

"NAr -BNR-1BPr if and only if Re A < 0 and A is an eigenvalue ofA
COROLLARY 7.2. Since Azv -BR-IBNP Ar -BSR-XBrr is the matrix

representation of (sN-BNR-BrlIzv)lz, A. is an eigenvalue of the approximating
closed-loop system on Zr if and only if Re A < 0 and , is an eigenvalue ofN.

N NW will dnot a generalized eigenvector of Ar by (y), where x and y have
the form

x

LXr_l YN

where x y and yr are complex n-vectors for 0_-<j <-N. Since r is a 2n(N + 1)x
2n (N + 1) matrix, Theorem 7.7 implies that the total number of linearly independent
generalized eigenvectors corresponding to the eigenvalues of r with negative real
parts is exactly n(N + 1). The following theorem, which is implicit in the finite
dimensional version of Theorem 4.9 and its proof, particularly (4.39), gives the Potter
method for solving (7.63).

THEOREM 7.8. Let

yN, l <-i <-_n(N + l),

be an enumeration of linearly independent generalized eigenvectors corresponding to the
eigenvalues of r with negative real parts, and define the n (N + 1) x n (N + 1) matrices

(7.66) XN [xN’Ix N’2 X N’n(N+I)] and yN [yN,lyN,2 yN,n(N+I)].
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Then the unique nonnegative, symmetric solution of (7.63) is

(7.67) pN__ yNxlV-1"

Note that, even though XN and yN may be complex, PN is real.
COROLLARY 7.3 (see Corollary 4.3). Let h be an eigenvalue of AN-

BlVR-1BvPiv with negative real part, x a complex n(N + 1)-vector, and k a positive
integer. Then (h -(A -BR-BP))kx 0 g and only g

X
N

Next we will derive a characteristic equation for, similar to (4.24). For N > 1,
we define an n x n matrix function of a complex number I by

s(NN )’r ( N
(7.68) L(A)=A0+ E +Xr D+ N+Xr 1.

]=1

Now A is an eigenvalue of s if and only if there is a nonzero vector (r) such that

(7.69) A kys] A
xs
yN

which is equivalent to the following set of equations (recall (7.65)):

N N(7.70a) Aox + Di xi +Axx-Coy= Axe,j=l

(7.70b)
N u N u
--xi_---x =Axe, IiN,

(7.70c) Qox 7- N
-AoYo yV Aye,

r v- N r N v(7.70d) --Di yo+--y---y+I=Ayv, I<--j<-N-1,

(7.70e) D+A yo

where, as in (4.23), Co=BoR-B.
Suppose I e N/r then, from (7.70b), we have

(7.71) v (NN ’x, I</’<N"xi +Ar/

from (7.70d) and (7.70e), we have

r r N
(7.72) YY Ar D+

N -Ar
With (7.71), (7.70a) becomes

(7.73) Ll(A )x Coylff

and, with (7.72), (7.70c) becomes

(7.74) -Qox-L(-A)y Aye.

N-i+I T

a 1] y,
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We can write (7.73) and (7.74) as

(7.75) /(h) (y/=0,
where the 2n x 2n matrix N(h) is given by

[g(x) -Co ](7.76) N(A) AI-
[ -Qo -L(-A)

We have then the following theorem.
THEOREM 7.9. Suppose A +N/r. Then A is an eigenvalue o[,’N if and only if

(7.77) det ,N(A) 0.

If A satisfies (7.77), then the corresponding eigenvectors o[.Nare described by (7.71)-
(7.74).

Some comments are in order here. First, Theorem 7.9 holds regardless of whether
(A, BN) is stabilizable or Qo is positive definite. For the eigenvalues of AN that are
not equal to +N/r, we could use (7.70a) with Co 0, (7.70b), and (7.71) to obtain

(7.78) det AN (h) 0,

where

(7.79) AN (A) AI-Lv(A).
Banks and Burns derived (7.78) and (7.79) in [4].

It is quite instructive to compare Lo(A), AN (A) and N(A) to their counterparts
for the hereditary system ((2.6), (4.23)) in light of the well-known result that

e-Xr asN.(7.80)
A

In particular, as No, Lr(h)Lo(h) uniformly in compact subsets of the
complex plane. Although we will not pursue the details here, standard methods of
complex analysis can be used to show that, for each ho satisfying det ,(h0)= 0, there
is a sequence AN such that det ,N(AN) 0 and AN h0, and conversely, if det ,(ho) 0,
then there is a neighborhood of ho such that, for N sufficiently large, contains
no roots of det zN(h) 0. This comment parallels a corresponding comment by Banks
and Burns concerning AN (h).

Now consider the equation

(7.81) 7+I -h det ,(h) 0.

It follows from (7.68) and (7.76) that the left side of (7.81) is a polynomial of degree
2n (N + 1) in h. We expect that the left side of (7.81) is det (h -AN). It appears that
this result would follow from an argument quite similar to that used by Banks and
Burns to prove det (-AN)=(N/r+h)"N detA(A). Banks and Burns based their
derivation on manipulation of determinants instead of construction of eigenvectors,
which we use here because the eigenvectors are needed for the solution of the Riccati
equation. With Theorem 7.9 we certainly can say that any h # +N/r which satisfies
(7.81) is an eigenvalue of A, but there remain questions about multiplicities and
possible roots of (7.81) equal to :i:N/r.
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(7.82)

where

Anyone using the method of Theorem 7.8 to solve (7.63) should be aware of the
conditions under which -N/r is an eigenvalue ofN and the form of the corresponding
generalized eigenvectors. Recall that Theorem 7.7 says that the spectral characteristics
of N/r as an eigenvalue of ,N are identical to those of -N/r as an eigenvalue of N.
It is a straightforward exercise to use (7.70a-e), (7.72), (7.74) and their appropriate
generalizations for generalized eigenvectors ofN to prove the following.

THEOREM 7.10. Suppose (N/rI-Lo (N/r)) is nonsingular. Then -N/r is an eigen-
value ofN if and only if (Ax+ (r/N)D) is singular. For each nonzero n-vector w

XN,k
such that (A1 +(r/N)D)w O, there is a chain of N generalized eigenvectors
satisfying

r yN.k} O, 1 <

w, ] =N-k + l, N.k(7.83) x’k O, otherwise,
y =0, l <- k <-_N.

Furthermore, the only eigenvectors corresponding to -N/r are given by (7.83) with k 1.
Note that (r/N)DO as N-,o, and that det(N/rI-L(N/r))O for N

sufficiently large.
In general, it is possible for N to have generalized eigenvectors corresponding

to -N/r of rank greater than k; however, we can say the following about a class of
problems that often arise from physical systems.

THEOREM 7.11. Suppose that n is even, D O, and Ao, A and Bo have the forms

(7.84) Ao Aox Ao2 A xx A 12 Boa
where I (the identity), Aox, Ao2, A xx andA12 are n/2 x n/2 matrices and Box is n/2 n.

ff det (Axx-(N/r)Ax2) #O, then ,N has no generalized eigenvector corresponding to
-N/r of rank greater than N.

Proof. Suppose there is a generalized eigenvector of rank N + 1. Then we have

X
N,N+I_

"X N,N+1- XN,N
r \Y’

where (y,.,,) is given by (7.83) with k N and w a nonzero n-vector such that A w 0.
The set of n-vector equations represented by (7.85) then yield, in the same way that
(7.70a-e) yielded (7.71) and (7.73)

(7.86) +Ao x - w,

(7.87) _(+Ao)x.r+x _Axxrv.N+X + C0yr.N+X 0

where Co is given by

(7.88) Co BoxR_XBx
Now we write w (12) where wx and WE are n/2-vectors. Since the first n/2 rows

of the matrices A and Co are all zero, (7.86) and (7.87) yield

(7.89) N
WI-- W2 0.
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Since A w 0,

(7.90) A w +A12W2 0.

Thus, ifs has a generalized eigenvector corresponding to -N/r of rank greater than
N, we must have

(7.91) (Ax-NAx2) wx
for some nonzero w, contradicting det (A 11 (N/r)A 2)

Let us summarize the computational implications of our results pertaining to the
solution of the Riccati matrix equation (7.63) via Theorem 7.8. There are now two
possible routes for computing the required generalized eigenvectors of the matrixs
of (7.64). The first is to give . to a software package which computes eigenvalues
and eigenvectors of matrices. Because some such packages handle only diagonalizable
matrices, while others handle general matrices, Theorems 7.10 and 7.11 should guide
the software selection. The second approach to computing the eigenvectors is to solve
either (7.77) or (7.81) numerically for the eigenvalues of s, solve (7.73) and (7.74)
for the n-vectors x and y, and then construct the required generalized eigenvectors
according to (7.71), (7.72) and (7.83). We are assuming here that the eigenvalues not
equal to +N/r are simple, and that there are no generalized eigenvectors corresponding
to -N/r of rank greater than N. If either assumption does not hold, the additional
generalized eigenvectors can be obtained from equations similar to (7.70a-e), but the
formulas are considerably more complicated than (7.71), (7.72) and (7.83).

For most of us, the choice between these two approaches amounts to the choice
between using one canned program to compute the eigenvalues and eigenvectors of
,s or using another canned program to compute the roots to (7.77) or (7.81). We
tried both approaches on the examples in the next section. In Example 1, s has no
generalized eigenvectors (i.e.,s is diagonalizable), and the first method---computing
the eigenvalues and eigenvectors of/---worked quite well. In Examples 2 and 3,
s has generalized eigenvectors given by Theorem 7.10, and the programs available
at UCLA did not compute these eigenvectors reliably, although they did compute the
eigenvalues accurately. We tried several programs, including the Muller method [32],
for computing the roots of (7.’7) directly, but had little success. So, for Examples 2
and 3, we actually combined the two approaches, using a canned matrix program to
compute the eigenvalues of.s and then constructing the generalized eigenvectors
according to Theorem 7.10.

8. Examples. In this section, we present numerical results for three examples of
optimal control on the infinite interval. For each example, we solved the Riccati matrix
equation (7.63) for the matrix pS for several values of N. The Nth feedback control
is given by the time-invariant version of (7.30)"

0

where II and II(O) are given by the time-invariant versions of (7.27) and (7.29),
respectively. For the examples here, Corollary 7.1 (with Conjecture 7.1) implies
1-I II, H II in LE(-r, 0; R ), and tr IIs - tr H, where, as in (7.32),

(8.2) tr 1-IN tr

Also, recall Remark 7.4.
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The results here do not depend on the initial conditions (x(0), Xo) because we
are computing the feedback control law and the average minimum performance index
discussed at the end of 5. Here, we take K I in (5.9).

Example 8.1. We take n m r Ao A Bo Oo R 1, so that (2.1) is
the scalar differential equation.

(8.3) (t) x(t) + x(t 1) + u (t)

and the performance index of (4.1) is

(8.4) J((x(O),xo), u)= Io (x2(t)+u2(t)) dt.

For each N, H is a scalar, HT= HL2(-1, 0; R), and the Nth feedback
control law is

o

uu(t) -rIgx(t)- I_ rlg(O)x(t + o) do.

We have the numbers in Table 8.1.

TABLE 8.1

II7=2.8260, 1-I=2.8190, II=2.8148, 1-I=2.8130

0.0 0.6684 0.6547 0.6469 0.6435
-0.1 0.7726 0.7169 0.7179 0.7273
-0.2 0.8467 0.8239 0.8209 0.8258
-0.3 0.9961 0.9508 0.9434 0.9607
-0.4 1.0822 1.1020 1.0895 1.1023
-0.5 1.2811 1.2822 1.2633 1.2694
-0.6 1.5220 1.4963 1.4693 1.4965
-0.7 1.6606 1.7501 1.7125 1.7315
-0.8 1.9802 2.0499 1.9987 2.0480
-0.9 2.3648 2.4033 2.3347 2.3748
1.0 2.5852 2.6730 2.7284 2.7541

tr 1-I17 3.7742, tr I-I29 3.7978, tr II5o 3.8161, tr 1-I74-- 3.8265

It is instructive to compare II and H(-1) to see how closely we have approxi-
mated the boundary condition (4.14).

Example 8.2. We take n 2, m -r-R 1,

[00] [0 0] [;1
A Bo QoAo=

0 -1 0

If we write x(t)= (x(t), x2(t)), (2.1) is equivalent to

(8.6) 2"(t)+xx(t- 1)= u(t),

and the performance index is

J((x(O),xo); u)= f (x(t)+(t)+u2(t)) dt.(8.7)
J0
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The optimal control in feedback form is
o

oo oo | o-H, 21x l(t) l-i, 22x2(t) (II1, 2(0)x (t +O)+l-I,22(O)x2(t +O)) dO,(8.8) (t)u

0where II, and IIa, ij( are the if elements of the matrices II and IIX(0) respectively.
The Nth feedback control law is

o

/ 1-IIII "t’- 10 (t+O)+ N,.2t)x2(t+O)) dO.00
X (t) N22X2t (1-IN,12(0)X1(8.9) UN(t)=--HN,21

3_

Note that the initial conditions

(8.10) Xl(0)=x2(0)=0 and xx(0)=0, -1-<_0_-<0,

yield xl(t) XE(t) 0, ->0, regardless of the initial function x2(0), -1 _-< 0 -<_0. Hence
for the initial conditions in (8.10) and any initial history x2(’ ), the optimal control is
u(t) 0, >_-0. Therefore, we must have

(8. ) n, o.
Similarly, from the AN for this example and (7.28)-(7.30), it can be seen that

lO(8.12) IIr.22 0, n _-> 1.

Numerically, we have the results in Table 8.2.

IioO [21.9525 1.3594
.3594 1.9284.

TABLE 8.2

iio=r2.9823 1.3761] oo [31"0109 1.3917]
[1.3761 1.9370J’ I122= .3917 1.9451J’

10 10 10O 1-I lO.12(0) l122,12(0)[I14,12(0)

-0.0 -0.3309 -0.3168 -0.3038
-0.1 -0.3309 -0.3926 -0.4022
-0.2 -0.4371 -0.4736 -0.5094
-0.3 -0.5537 -0.6524 -0.6258
-0.4 -0.6813 -0.7505 -0.7517
-0.5 -0.8203 -0.8548 -0.8877
-0.6 -0.9713 -1.0825 -1.1119
-0.7 -1.1350 -1.2065 -1.2754
-0.8 -1.3119 -1.3375 -1.4510
-0.9 -1.5027 -1.6218 -1.6390
-1.0 -1.7081 -1.7754 -1.8399

tr IIxo 5.7606, tr 1I14 5.8300, tr 1-I22 5.8988

For checking (4.14), we give

10 [-1.0900 -1.7081] H -[Io(_1) -1.1845
IIo(-1)

0 0 0

l_ilO 1 [-1.2606 -1.80399]22k 1-- 0

Example 8.3. We take n 2, m r R 1,

[; 10] [ 0 ] Bo =[], Oo:[e0A= AI= -1
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Then (2.1) is equivalent to the second order scalar equation

(8.13) k’l(t)+Ycl(t- 1) +xl(t- 1)= u(t),

and the performance index is the same as (8.7). Also, the controls u(. and u(.
have the forms (8.8) and (8.9), respectively.

Reasoning similar to that which in the previous example led to (8.11) and (8.12)
now shows that

(8.14) 10 101-[, 12 1-[, 22

and

(8.15) II,12 II,22, N=>I.

The numbers then are as in Table 8.3.

TABLE 8.3

/i=[2.0665 1.2164] i_IOO=2.0853 1.2373] oo [2.1034 1.2574]
11.2164 1.76373’ 14 11.2373 1.78843’ I-I22= 11.2574 1.81231

ii lo [a lo lo1-I22,12(1919 10,12kt! I-114,12(19)

-0.0 -0.1610 -0.1373 -0.1152
-0.1 -0.1610 -0.2201 -0.2247
-0.2 -0.2738 -0.3087 -0.3449
-0.3 -0.3986 -0.5043 -0.4750
-0.4 -0.5351 -0.6110 -0.6147
-0.5 -0.6837 -0.7231 -0.7631
-0.6 -0.8408 -0.9631 -1.0013
-0.7 -1.1087 -1.0903 -1.1698
-0.8 -1.0857 -1.3579 -1.3455
-0.9 -1.3711 -1.4979 -1.5278
-1.0 -1.5640 -1.6415 -1.7160

trIIlo=5.5549, trII1,=5.6771, trII22=5.8000

ii(_I,=[]Ii.0021-I.56401 1o [-I.0779-1.64151 iio(_i)=[;Ii.1521 -I’7160l
.0021 -1.56401’

II1,(-1)=
1.0779 -1.64151’ .1521 -1.71601

9. Conclusions. The approximation theory of 6 gives conditions under which
a sequence of finite dimensional Riccati equations can be solved for sequences of
operators which converge in trace norm to the solutions of the infinite dimensional
Riccati equations which yield the optimal control laws for the hereditary control
problems of 3 and 4. We have shown that the approximation scheme of 7 satisfies
these conditions for problems on finite time intervals and, if Conjecture 7.1 holds,
on the infinite interval. This conjecture seems certain to be true, and it is unfortunate
that we have had to state it here as a conjecture rather than a theorem. Nevertheless,
probably the most significant results of this paper concern control on the infinite
interval.

From the mathematical point of view, the importance of trace-norm convergence
lies in the fact that the trace-norm is the strongest of the operator norms in (5.4) and
(5.5). For engineering design, trace-norm convergence of the approximate solutions
of the infinite dimensional Riccati equations has two important implications. First, it
ensures that we can compute approximately the trace of the solution of the appropriate
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infinite dimensional Riccati equation, so that we can use this trace as a performance
measure which accounts for an infinite number of initial conditions, as discussed in

5. Also, trace-norm convergence of the solutions of the finite dimensional Riccati
equations implies strong convergence, so that Theorems 6.2 and 6.8 ensure that we
can choose the approximation order sufficiently large that, when the approximate
optimal feedback control.law is applied to the hereditary system, the response of the
closed-loop system will be arbitrarily close to optimal and, for the infinite-time
problem, asymptotically stable.

Note that Theorems 6.2 and 6.8 require only strong convergence of the solutions
to the finite dimensional Riccati equations and, like the other results of 6 (see
Remark 6.1), do not depend on the infinite dimensional control system being a
hereditary system and could be applied to control systems governed by partial differen-
tial equations. The results on trace-norm convergence in Theorems 6.3 and 6.9 depend
only on the appropriate operators in the performance indices having finite rank and
all the approximating operators converging strongly. As we have said earlier, a primary
objective here is to point out the importance of having strong convergence of the
sequences of solutions to the finite dimensional Riccati equations so that Theorems
6.2 and 6.8 hold. For this convergence, as we have seen, strong convergence of the
approximating adjoint semigroups is essential.

Also among our most important results, are the characterizations, including
characteristic equations, of the closed-loop eigenvalues and eigenvectors for both the
hereditary system (Theorem 4.6-Corollary 4.4) and the approximating systems
(Theorems 7.9-7.11). As we have said, the characterizations of 7 should facilitate
numerical solution of the finite dimensional Riccati equations of that section. In a
subsequent paper, we will pursue approximate solution of the Riccati algebraic
equation for the hereditary system by decomposition of the state space Z with the
eigenvectors of the closed-loop system, which are given by Corollary 4.4.

Acknowledgments. The author is indebted to David Ng for the numerical work
on the examples in 8. Also, the referees made many valuable suggestions for the
revision.
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UNSTRUCTURED MEAN ITERATIVE PROCESSES IN
REFLEXIVE BANACH SPACES*

A. J. DAVID- AND G. G. L. MEYER$

Abstract. The unstructured mean iterative process is an algorithm schema that may be used to model
numerical methods for solving fixed point problems. This schema relates the sequences {Yi} and {zi} in a
linear space X and a scalar sequence {Ai} via the relation zi/l zi + Ai(yi-zi). The "unstructured" use of
yi rather than the explicit use of an algorithmic map involving the iterates z, zg_l,..., z0, allows the
properties of the schema to be separated from the properties of any particular class of applications. The
results presented concern the boundedness and convergence properties of {y} and {z} in reflexive Banach
spaces, as controlled by the parameter sequence {Ai}. These properties provide guidelines that are useful
in a systematic approach to the synthesis of the iterative algorithms for solving fixed point problems.

Key words, algorithm, mean iterative process, strong convergence, weak convergence, iterate, cluster
point, boundedness, point-to-set map

1. Introduction. The results obtained in this paper provide guidelines to
algorithm synthesis and convergence verification for a large class of fixed point
algorithms. This class of algorithms is modeled by the one-dimensional mean iterative
process defined on a linear space X.

ALGORITHM 1. Let z0 and {yi} be in X and {h} be in E.
Step O. Set 0.
Step 1. Let zi+ zi +h(yi-zi).
Step 2. Set + 1 and go to Step 1.

Algorithm 1 does not directly involve a fixed point map. Thus, a wide range of
applications may be studied through examination of the algorithm schema in a suitably
general space. To illustrate how specific algorithms may be recovered as special cases
of Algorithm 1, we discuss some well-known applications.

When y a(z) for all i, where a(.) is a nonlinear map from X into X, different
choices for the sequence {Ai} result in different known algorithms. If Ai 1 for all i,
then Algorithm 1 reduces to the Picard iteration [20]. If A 1/2 for all i, the algorithm
is the Krasnoselskii bisection method [8], [11]. For A 1/(i + 1) and the choice Zo yo,
the centroidal method of Mann is recovered [5], [17]. If for all i, Y is a random
variable with conditional mean E(Y ]Zi) a(Zi) and Ai 1/(i + 1), then for Yi and Zi
scalar random variables Algorithm 1 reduces to the stochastic approximation method
of Robbins and Monro [24]. For Y and Zi n-vector-valued random variables, this is
the multidimensional stochastic approximation algorithm 1]. The learning and pattern
recognition algorithms of Tsypkin, Braverman and Rozonoer are of the form of the
schema [2], [3], [26]. A class of nonlinear programming algorithms discussed by
Nurminskii [18] is also of this form. The convergence of stochastic versions of these
and similar algorithms is covered in [13], [14], [15], [19]. So far, the algorithms that
have been mentioned use a sequence of step lengths {A} that is given in advance. But
the sequence {A} may also be computed adaptively, as in the steepest descent algorithm
where y z- 7’(z) and A is the "best step" with respect to minimizing the value of
f(z+ 1). Other nonlinear programming algorithms of this form include Newton’s method
and conjugate gradient methods [16], [21].

* Received by the editors October 28, 1980, and in final revised form March 8, 1982.
f Bell Laboratories, Holmdel, New Jersey 07733. The work of this author was done while he was at

The Johns Hopkins University, Baltimore, Maryland 21218.
Electrical Engineering Department, The Johns Hopkins University, Baltimore, Maryland 21218.
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In 2, the algorithm schema is treated from the system theoretic point of view
as a means of relating an output sequence to an input sequence via the parameter
sequence {Ag}. First {zg} is viewed as the output and {yg} as the input, and then the
roles are reversed. In 3, the input-output analysis is used to obtain results on
algorithms that involves point-to-set maps. Conclusions and relations with some
previous results are presented in 4. For ease in reading, all proofs are given in the
Appendix.

In this paper the following notation is used.
T The closure of the set T.
c--6 (T) The convex closure of the set T.
qx The weak sequential cluster point set of the sequence {xi}.
E The real line.
(a, b) The ordered pair denoting an element of E2.
[a; b) The set of points x in E such that a <-x < b.
{a, b} The set containing the elements a and b.
B (x, 8) The open sphere with center x and radius 8.
B (T, ) The union of open sets LI rB (x, ().

hg The infinite summation Y.g--o
lim sup {xi} limi_. sups__>,

2. Input-output study. Our study of the unstructured mean iterative process
centers on the influence of the parameter sequence {Ai} on the relationships between
such basic properties of {yi} and {zi} as boundedness, strong and weak convergence,
and the location of their respective weak cluster point sets. The presentation is in two
parts. First, it is assumed that {yg} is bounded. As increasingly strong conditions are
placed on {Ag}, increasingly precise results are obtained linking the properties of
and {zi}. Later, it is assumed that {zi} is bounded, and the class of sequences {Ai} is
determined so that the properties of {yi} and {zi} are usefully related.

In this section, X denotes a reflexive Banach space over the reals, and the
sequences {yi} and {zi} in X and the sequence {Ai} in E are assumed to be related as
in Algorithm 1.

Examples 1 and 2 illustrate that if {Ai} is outside the interval [0; 2) infinitely many
times then the boundedness of the sequence {yi} does not assure that {zi} is bounded.

Example 1. Let X E. Suppose that Zo >= 0, {Ai} is in (-; 0), and Ai diverges.
Let Yi =-1 for all i. Then

zi+l > Zo- At >0,
1=0

for all i, and since Y. Ag diverges, the sequence {zi} is unbounded.
Example 2. Let X E. Suppose that {Ag} is in [2; c), z0 >-0, and

1
Yi (-- l)i+1

i+1

for all i. The process may be written in terms of alternate iterates as

Zi+2 (1 Ai+I)(1 Ai)zi + (1 Ai+l)AiYi + Ai+lYi+I.

For all even indices i,

2 2
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and therefore, for i-> 0, even,

z/_->Zo+2 1+++...+i+
The subsequence of even iterates is unbounded and so {z} is unbounded.

Now we show that even if {,} belongs to [0; 2) and {y} is bounded, {z} need not
be bounded.

Example 3. Let X=E. Let z0=l, and for i=0, 1,2,..., let , =2-1/(i+1)
and yi (-1) i. Then for all >- 1, Zi (-1)i-1i.

Example 3 illustrates that when {,i} in [0; 2) is allowed to become arbitrarily
close to 2, then the boundedness of the sequence {yi} may not assure the boundedness
of the sequence {zi}. Thus, a relationship between the boundedness of {yi} and
exists only if we rule out all sequences {hi} which leave the closed interval [0; ha,t],
hM < 2, infinitely many times.

The following basic result allows the boundedness of the sequences {yi} and {zi}
to be related. The role of the interval [0; 2) is seen to be crucial.

LEMMA 1. Let w, x, y, z in X, h in [0; 2), 8 > 0, and fl be such that x z + h y z ),
[[y w[[_-<, and =max (1; h/(2-h)).
TheFt

(i) [Ix w[[ <= 6 whenever ]lz wll <=, and
(ii) for every e >-_ 0, [Ix w]l <= ]lz wll- he, whenever [[z w[[ _-> (6 + e)/3.
The boundedness results we have been seeking are now immediate. Using the

mean iterative process to generate the sequence {zi}, the points zi+x, yi and zi can be
identified with the variables x, y and z, respectively, of Lemma 1. If w is the center
of a sphere containing the sequence {yg}, then a consequence of Lemma 1 is that
regardless of the choice of the initial point z0, the distance of subsequent iterates
from w will be bounded.

THEOREM 1. If (i) {yi} is bounded, and (ii) {hi} is in [0; ht] for some hlVt <2,
then {zi} is bounded.

This boundedness relationship between {yi} and {zi} may be strengthened when
further requirements are imposed on the sequence {hi}. Essentially, when hi diverges,
the smallest sphere containing all but finitely many members of the sequence {yi}
serves as a region of attraction [25] for the sequence {zi}.

LEMMA 2. If (i) {yi} is bounded, (ii) {hi} is in [0; hM], hat <2, and (iii)
diverges, then ]:or all w,

lim sup Ilzi- wll <-/3 lim sup [lY-
where =max (1; hM/(2--hM)).

In the following example we illustrate the result of Lemma 2 in the Banach
space 11.

Example 4. Let {hi} be in [0; 1.5], let z0 (0, 0, 0,... and let yi- eg for all i,
where e0 (0, 0, 0, ), and ei is the ith unit vector for all _-> 1, i.e., e (1, 0, ,0 ),
ez (0, 1, 0,. ), etc. Then ][yi[]x 1 for all i,/3 3, and from Lemma 2, using w e0
we obtain lim sup [[zill--< 3.

Lemma 2 may be used to relate the sequences {yi} and {zi} when {yi} converges
either strongly or weakly.

COROUtARY 1. I1 (i) {Yi} converges strongly to some point y,, (ii) {hi} is in the
[0; hM], hM < 2, and (iii) Y. hi diverges, then {zi} converges strongly to y,.

COROUUARY 2. I1 (i) {Yi} converges weakly to some point y,, (ii) {hi} is in [0; hM],
hM < 2, and (iii) hi diverges, then {zi} converges weakly to y..
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We know that bounded sets are weakly sequentially compact in reflexive Banach
spaces [6]. Thus Lemma 2 can be specialized to provide a relationship between the
weak sequential cluster point sets qy and qz of the sequences {yi} and {zi}, respectively.
We recall that a point x in a normed linear space is a weak sequential cluster point
of a sequence {xi} if and only if there exists an infinite subset K of the integers such
that {f(xi)}K converges to f(x) for every continuous linear functional f(. ). Also, if {xi}
is a bounded sequence in a reflexive Banach space and qx is its weak cluster point
set, then for any continuous linear functional f(. on X, and for any e > 0, there exists
an index k, depending on f(. and e, such that for all >_- k

f(xi) f(B(g-6 (qx), e)).

THEOREM 2. If (i) {Yi} is bounded, (ii) {hi} is in [0; AM] for some AM < 2, and (iii)
Y hi diverges, then the weak sequential cluster point sets qy and qz of the sequences {yi}
and {zi}, respectively are nonempty and bounded, and

q _S(w, 6t)

for every point w in X and scalar 8 such that

qic__B(w, 8),

where =max (1;
The following example in ,2 illustrates the relationship between cluster point

sets of sequences given in Theorem 2.
Example 5. Let Ai =1.5 for all i, let z0=(3,3), and let {yi} be defined by

yo (3, -1), yl (-1, -3), y2 (-3, 1), y3 (1, 3), y4 yo, ys yl, etc. The corres-
ponding sequence {zi} is given by Zl (3, -3), z2 (-3, -3), z3 (-3, 3), z4 (3, 3),
zs z 1, z6 z2, etc. If we let w be the origin of E2, i.e., w (0, 0), then qy is contained
in the closed ball /(w, 6) with 6 10s, and therefore, from Theorem 2, we conclude
that the cluster point set of {z} is contained in the closed ball centered at the origin
with radius 3(10)s. Note that qz is not contained in the convex closure of qy. As we
will see below, further restrictions on the sequence {Ai} are needed to insure that qz
is a subset of the convex closure of qy.

Theorem 2 depends heavily on the reflexivity of the space X since reflexivity
provides a convenient way of relating a bounded sequence with its weak sequential
cluster point set. In a nonreflexive space, it is possible to have a bounded sequence
which does not possess any weak cluster points, or to have a bounded sequence which
possesses one and only one weak cluster point, but which does not converge weakly
to it.

The relative sizes of the regions containing the weak sequential cluster point sets
qy and qz have been related provided that {Ai} is in [0; AM], AM < 2 and A diverges.
An improved bound for qz is obtained if we restrict {Ai} to the interval [0; 1]. A first
step towards clarifying the relationship between qy and qz under this restriction is to
assume that at least one point z, in qz is known.

LEMMA 3. If (i) {yi} is bounded, (ii) {Ai} is in [0; 1], and (iii) z, is in qz, then qz
is a subset of the convex closure of z, and qy.

The next lemma is a technical result that will be required subsequently.
LEMMA 4. Let C be a convex subset of X and let v and w be points in X not

contained in C. If v is an element of the convex closure of w and C, and w is an element
of the convex closure of v and C, then v is equal to w.

Lemmas 3 and 4 imply the following result.
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LEMMA 5. If (i) {yg} is bounded, (ii) {Ag} is in [0; 1], and (iii) {zg} is not weakly
convergent, then qz is a subset of -6 (qy).

The assumptions of Lemma 5 insure that {zg} is bounded but not weakly conver-
gent, and this implies that Y Ag diverges. If, on the other hand, {zg} converges to some
point z,, then in order to relate z, and qy it must be explicitly assumed that Y Ag
diverges. We begin with the case in which the sequence {yg} is contained in a closed
and convex set Sy.

LEMMA 6. If (i) {yg} is contained in a closed and convex set Sy, (ii) {Ag} is in
[0; o), (iii) Ag diverges, and (iv) {zi} converges weakly to z,, then

Ze Sy.

The desired result relating z, and the weak sequential cluster point set qr is now
obtained easily provided that the sequence {yg} is bounded.

COROLLARY 3. If (i) {yi} is bounded, (ii) {A/} is in [0; c), (iii) Ag diverges, and
(iv) {zi} converges weakly to z,, then

z, c-O (qr).

The next main result of this section is a consequence of Lemma 5 and Corol-
lary 3.

THEOREM 3. I] (i) {yg} is bounded, (ii) {Ag} is in [0; 1], and (iii) Y Ag diverges,
then the weak cluster point set qz of the sequence {zg} is contained in the convex closure
o) the weak cluster point set q o] the sequence

Note that if {yg} is bounded and Y yg diverges, then different bounds on qz are
obtained depending on whether {Ag} is in [0; 1] or [0; At], for some AM < 2.

The following example in E shows that qz may be a strict subset of the convex
closure of q. Equality of the two cluster point sets is not to be obtained in general.

Example 6. Let z0 0, let Ai =1/2 for all i, let Yi----1 for all odd, and let Yi--2
for all even. Then {yi} is bounded, q ={-1, 2}, zi =0 for even, zi 1 for odd,
and the set qz which consists of the two points 0 and 1 is a strict subset of the convex
closure of q.

We have discussed the consequences of having {Ag} in [0; A,t], for some At < 2,
such that Ag diverges. Now we examine the consequence of removing the requirement
that Ai diverges.

LEMMA 7. If (i) {yi} converges strongly to y,, and (ii) {Ai} is in [0; AM] for some
AM < 2, then the sequence {zg} converges strongly, but not necessarily to y,.

LEMMA 8. If (i) {yg} converges weakly to y,, and (ii) {Ai} is in [0; AM] ]’or some
AlVt < 2, then the sequence {zg} converges weakly, but not necessarily to y,.

So far it has been assumed that some of the properties of the sequence {yg} are
known; thus each result has as one of its assumptions that {yi} is either bounded or
convergent. Now we examine the consequences of the assumption that {zg} is bounded
or convergent. For algorithm synthesis, this is an important question" If {zg} converges
to some point z,, it is necessary to know how the sequence {Ai} influences the behavior
of {yi}. The next two results illustrate the consequences of choosing sequences
that are bounded away from 0.

THEOREM 4. If (i) {Zi} is bounded, and (ii) there is some Am > 0 such that {Ai} is
in JAm ;c), then {yi} is bounded.

When {zg} converges either strongly or weakly to some limit z,, and {hi} is in
[Am O), then Theorem 4 implies that {yi} is bounded; thus the hypotheses of Corollary
3 are satisfied and so we know that z, belongs the g-6 (qy). However, Corollary 3
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requires only that {hi} belong to [0; c). With the additional hypothesis that {hi} is
bounded away from 0, an even stronger relationship is implied.

COROLLARY 4. If (i) {Zi} converges strongly to z,, and (ii) there is some h, >0
such that {hi} is in [h,; c), the,. {yi} converges strongly to z,.

COROLLARY 5. If (i) {Zi} converges weakly to z,, and (ii) there is some h, >0
such that {hi} is in [h,; c), then {yi} converges weakly to z,.

Theorem 4 and Corollaries 4 and 5 are sufficient conditions in the sense that for
any bounded (or convergent) sequence {zi}, as long as {hi} is bounded away from 0,
then {yi} is bounded or convergent. The next example illustrates that these results are
also necessary in the following sense: We exhibit a convergent sequence {zi} and a
sequence {hi} in [0; 1] where Ai diverges such that {yi} is unbounded.

Example 7. Let z0 1, for even, let yi----- 1 and hi-- 1, and for odd, let yi

and Ai 0. Then zi 1 for all i, Y’. Ai diverges, and {yi} is unbounded.
This concludes our discussion of the influence of the parameter sequence {Ai} on

the relationships that exist between the sequences {yi} and {z} as related by the
unstructured mean iterative process. Next we turn to an application of the preceding
results.

3. Applications of the input-output theory. Many problems of interest in non-
linear programming and elsewhere can be reformulated as fixed point problems
involving a point-to-set map A(.) defined on all of X or defined only on a closed
and convex subset T of the space X. We now proceed to apply the results of the
preceding section to mean iterative processes that use a point-to-set map A(.) from
X into all the nonempty subsets of X as follows.

ALGORITHM 2. Let z0 be a point in X.
Step O. Set 0.
Step 1. Pick Yi in A(zi).
Step 2. Set Zi+l-- Zi-l-Ai(Yi--Z).
Step 3. Set + 1 and go to Step 1.

In this section we assume that X is a reflexive Banach space over the reals, and
that {y/} and {zi} are sequences in X and {hi} is a sequence in E related as in Algorithm
2. We now find those properties of {hi} that assure that if {zi} converges to z,, then
z, is in A(z,). First we recall that a point-to-set map A(. is strongly (weakly)
sequentially closed at a point x in X if whenever {xi} in X converges strongly (weakly)
to x, wi is in A(zi) for all i, and {wi} converges strongly (weakly) to some point w in
X, then w is in A (x).

When A(. is defined on all of X, the following results may be obtained using
Corollaries 4 and 5.

THEOREM 5. Let the map A(. be strongly sequentially closed on X. If (i) {hi} is
in [h,; c) for some h, >0, and (ii) {zi} converges strongly to some point z,, then z,
belongs to A (z,).

THEOREM 6. Let the map A(. be weakly sequentially closed on X. If (i) {hi} is
in [h, ;o) for some h, >0, and (ii) {zi} converges either weakly or strongly to some
point z,, then z, belongs to A (z,).

The preceding results are satisfactory if A(.) is closed in the appropriate sense
and if a value of h, can be estimated. But in many applications it is necessary to let
{hi} converge to 0--for example if {Yi} cannot converge (it may have a random
component) it is easy to see that {zi} does not converge when {hi} is bounded away
from 0. Hence, if A(.) possesses an additional useful property, more generality in
the choice of {A i} results.
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THEOREM 7. Let the map A (.) be weakly sequentially closed on X and assume
that the set A(x) is convex for every x in X. If (i) {yi} is bounded, (ii) {hi} is in [0; oo),
(iii) hi diverges, and (iv) {zi} converges either weakly or strongly to z,, then

z, eA(z,).

Often, problems in nonlinear programming are defined on a subset T of X. In
this case, Algorithm 2 is well-defined provided that (i) T is closed and convex, (ii)
A(.) maps T into all the nonempty subsets of T, (iii) {Ai} is in [0; 1], and (iv) z0 is
in T. Under these restrictions, Theorems 5, 6 and 7 remain valid.

The reader may note that when the point-to-set map A (.) is actually a weakly
continuous point-to-point map, then Theorem 7 is simplified. This is because A (x) is
convex for all x in X and the sequence {yi} is bounded whenever {zi} converges either
weakly or strongly.

COROLLARY 6. Let the map A (.) be weakly sequentially closed on X and assume
that the set A (x contains one and only one point for every x in X. If (i)
(ii) 1 diverges, and (iii) {zi} converges either weakly or strongly to z., then

z, eA(z,).

4. Conclusions. Central to the field of fixed point algorithms is Mann’s 1953
paper, Mean Value Methods in Iteration [17] in which the Mann averaging process is
introduced and some of its basic properties are discussed. Our results in reflexive
Banach space on the relationships between the weak sequential cluster point sets qy
and qz are generalizations, for the mean unstructured iterative process, of Mann’s
results on a compact, convex subset of Banach space. Other papers on mean iteration
view it as a special case of the Mann process, thereby limiting the sequence {Ai} to
[0; 1], [5], [23]. Our work shows that although some results are obtained when {Ai}
is in [0; 1], others are obtained when {hi} is in [0; AM], AM < 2, or when {hi} is in [0;

Whereas the concern of this paper is with the influence of the sequence {Ai} on
the relationships between the weak sequential cluster point sets qy and qz, most authors
concentrate on verifying the convergence of algorithms which, for some particular
class of maps B (.), use yi B(zi) for all i. For instance, using the properties of the
Mann process, existence of fixed points and convergence, in the appropriate sense,
to these fixed points, can be shown for nonexpansive mappings in Banach space and
even in nonnormable space [10], [22]. Likewise, mean iteration may be used to find
the fixed points of various classes of maps in Hilbert space possessing contractive
properties [4], [9] or maps whose ranges are contained in compact subsets of Banach
space [12], to obtain sequences whose weak cluster points coincide with the fixed
points of the maps under consideration. Another topic that has been investigated is
the selection of specific sequences {Ai} that improve the rate of convergence of the
mean iterative process to fixed points of particular classes of maps in Hilbert space [7].

In closing, we wish to remark on several aspects of our approach. An effort has
been made to avoid strong assumptions on the nature of the space in which the results
are given. For example, local compactness is not required; thus we forego the oppor-
tunity of obtaining results involving strong sequential cluster point sets. Hence our
effort centers on weak convergence and weak sequential cluster points. A common
hypothesis in this paper is that {yi} be a bounded sequence. Often this requirement
is not difficult to fulfill: The map generating {yi} may have a bounded range, and if
not, a bounded neighborhood of the solution set may be known in advance so that if
for some i, yi is not in this neighborhood, then yi can be projected onto it.
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The thrust of our results in this paper is also different from much other work in
fixed point and algorithm theory. We view the mean iterative process in the absence
of a surrogate map or potential function [2], [3]. But when for all i, yi is given by
B (zi) for some map B (.) with contractive or nonexpansive properties, then an implicit
potential function exists involving the distance of B(z) from the fixed point. Thus,
our main results can be used to guide the initial steps in synthesizing algorithms, e.g.,
showing that {zi} is a bounded sequence, and that if {z} is weakly convergent to some
point z,, then z, is a solution of the given problem.

Appendix: Proofs for 2 and 3.
Lemma 1. By construction

x (1-,)z +,y,
and therefore

x w (1 )(z w) + x (y w).

The triangle inequality and the assumption that y- wll-<- imply directly that

(1)

Now we show that results (i) and (ii) hold.
(i) Assume that IIz- wll--<, if is in [0; 1], then/3 1, and

Thus (1) becomes

and using (2) we obtain

IIx w[l (1 -h)llz wl[+

IIx-wll.
If a is in [1; 2), then/3 X/(2- X), and

8h
(3) lie -wll <

Thus, (1) becomes

and using (3) we obtain

which reduces to

llx w (a 1)11= w +a

8a(a -1)IIx w II--< + aa,
2-A

llx w a.
Therefore result (i) holds.

(ii) Now assume that IIz-wll_->(/) or some e >=0. If is in [0; 1], then
/ 1, and

(4) IIz wll- a.
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Thus, (1) becomes

IIx w <-- ( A)llz w / A,

and using the bound for 6 from (4), we obtain

IIx wll <-- IIz wl[-.
If X is in [1; 2), then/3 X/(2-X), and

(5)
\ /;t

But, by (1),

{Ix w <= (A 1){{z w +

and therefore, using (5) to bound 3, we obtain

Ilx -wll<-l{z wll-.
We conclude that result (ii) of the lemma holds.

Theorem 1. No proof needed.
Lemma 2. Let w be a point in X. Since {yi} is bounded there exists a scalar p

such that

p lim sup [}y,- wll.
Thus, given a scalar a > 0, there exists an index k such that

for all => k.
Suppose that there exists a scalar e > 0 and an index/" -> k such that

for all >-/’. Then, from Lemma 1,

(6) IIz/ w -<-[Izi w }l-,
for all/>-/", and since we assume that E Xi diverges, (6) implies that {}lz,-wll} is
unbounded from below, which is impossible. We conclude that given any e > 0, there
exists an index y >-k such that

From Lemma 1 we know that for all _>-k, either

Ilzi-wll<-(o /,) or

Thus, (7) implies that

for all i>-f. Therefore

lim sup [Iz,- wll <- (p + +)

for all a > 0 and for all e > 0, and the result is proved.
Corollary 1. No proof needed.
Corollary 2. By hypothesis, the sequence {y} converges weakly to the point y,,

and therefore the sequence {f(y/)} converges to f(y,) for every continuous linear
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functional f(.) on X. By the linearity of f(.), the sequences {f(zi)} and {f(yi)} are
related via the mean iterative process. Thus we may apply Lemma 2. By assumption,

hi diverges. Hence, the sequence {f(zi)} converges to f(y,) for every continuous
linear functional f(. on X and so {zi} converges weakly to y,.

Theorem 2. To each continuous linear functional f(. on X, with Ilf(’)ll 1, and
to each scalar el > 0, there corresponds an index k depending on f(.) and el such
that for all >= k 1,

]f(y)-f(w)l<=6 +1.

Using Lemma 2 we see that given e2 >0, there exists an index k2 (also depending on
f(. and e 1) such that for all >=
(8)

The sequence (z) in X is bounded and so has a bounded, nonempty weak cluster
point set q. It follows from (8) that for all z, in q,

]f(z,)-f(w)[<----86,
and thus

Lemma 3. Let f(. be a continuous linear functional on X and let e be a positive
scalar. The sequence {y} is bounded, {,} is in [0; 1], and therefore we know from
Theorem 1 that {z} is bounded. The definitions of qy and z, imply the existence of
a scalar k such that

f(yi) f(B(U6 (qy), e))

for all >-k, and

It follows immediately that

for all => k and that

f(z ) e f(B (z,, )).

f(yi)f(B(-C6 (qy, z,), e))

f(zk) e f(B (-6-6 (qy, z,), e )).

By assumption, the scalar A is in [0; 1] for all and we conclude that

f(zi) e f(B (-66 (qy, z,), e))

for all >-k. The sequence {zi} is bounded, and therefore every weak cluster point of
{zi} is in B (--6 (qy, z,), e) for all positive e; hence the result.

Lemma 4. Assume that v is not equal to w. Since v is in the convex closure of
w and C, we can write it as the convex combination of w and some point c in C’

(9) v =(1-al)w+alcl,

Likewise, for w and some c2 in C,

(10) w (1 ce2)v + ce2c2;

By assumption v is not equal to w, and v and w are not in C, so ca and c2 cannot
equal 0 or 1. Hence they belong to the interval (0; 1). Substituting (10) into (9) yields

v (1 c )(1 c2)v + (1 c )c2c2 + cc,
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and therefore

(1 -(1 al)(1 a2))v (1 -a 1)ff2c2 q- lCl.

But, 0 < a < 1 and 0 < a2 < 1 imply that the coefficient 1 (1 a 1)(1 a 2) is strictly
positive. Thus, v can be written as

(1 --o1)02 1
V C2 "[" Cl.1- (1-al)(1-a2) 1- (1-al)(1-a2)

Since the coefficients of C1 and 172 are positive and sum to unity, v is a convex
combination of elements of C. But since C is convex, this implies that v must be an
element of C. This contradicts the hypothesis that v is not in C; hence v equals w.

Lemma 5. The sequence {z} is bounded and therefore if {z} is not weakly
convergent, then it possesses at least two distinct weak sequential cluster points. From
Lemma 4, we know that at most one weak sequential cluster point of {z} may be
exterior to c--6 (qy), and therefore at least one weak sequential cluster point of {z} is
in co (qy). It follows from Lemma 3 that all the weak sequential cluster points of {zi}
must be in -6 (qy).

Lemma 6. If z. does not belong to Sy, then there exists a continuous linear
functional f(. on X and constants c and e > 0 such that

f(z,) <- c e < c <-f(& ).

The sequence {zi} converges weakly to z,, so therefore there exists an integer k such
that for all >_-k,

Now,

so for all => k,

8

f(zi)<--C---<C <:f(yi).

f(Zi + 1) f(Zi -b i (f Yi f(zi )),

8,

f(Zi+l) >- f(zi) + ii.
The assumption that Y. hi diverges then implies that {f(zi)} is unbounded from above.
We know that {f(zi)} is a convergent sequence and so must be bounded, and therefore
the assumption that z, does not belong to Sy leads to a contradiction; the lemma now
follows.

Corollary 3. Since X is reflexive and {yi} is bounded, the weak sequential cluster
point set qy exists and is nonempty. Thus, asymptotically, U6 (qy) can be used as Sy
in Lemma 6.

Theorem 3. No proof needed.
Lemma 7. If hi diverges, then Corollary 1 implies that {zi} converges strongly.

s--1
If hi is bounded from above then i=t hi converges to 0 as goes to infinity. Let s
and be two indices, with s > t. Then

Ilzs z,ll llzs zs-lll + llZs-l Z-2ll + +llz,+-z,ll,
and
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The sequences {yi} and {Zi} are bounded and there exists a scalar a such that

Ily,-z ll

for all 0, 1, 2,. .. It follows that

s-1

IIz -z,ll  
i=t

and the fact that Y=, A converges to 0 as increases implies that {z} is a Cauchy
sequence which converges strongly to some point z..

Lemma 8. I Y i diverges, then Corollary 2 implies that {z} converges weakly.
If Y i is bounded from above, then there exists an index k such that is in [0; 1]
for all -> k, and using Lemma 5 we see that {z} must be weakly convergent.

Theorem 4. We observe that

Since/i Am for all i,

(11)

But {zi} is bounded so that the right-hand side of (11) is bounded for all i. Thus the
distance between y and zi is bounded for all i, and so {y} is bounded.

Corollary 4. By the triangle inequality we may write

y, z ,II <- y, =,11 + IIz, z

and using (11), we obtain

(12)
1

Yi Z *ll < -l[Zi+1 Z,II + IIz,- ,11.

Since {z} converges strongly to z,, the right-hand side of (12) converges to 0, and
we conclude that {yg} converges strongly to z,.

Corollary 5. Let f(. be a continuous linear functional on X. Then

(13)
1

If( Yi Z :)[ < -y’-" ]f(zi+ zi)l q" ]f(zi z ,)1.

By assumption, the sequence {zi} converges weakly to z, and therefore the right-hand
side of (13) converges to 0. Thus {f(yi)} converges to f(z,) for all continuous linear
functionals f(. on X and so {yi} converges weakly to z,.

Theorem 5. If {zg} converges strongly to z,, then by Corollary 4, {yi} converges
strongly to z,. Since A (.) is strongly sequentially closed, z, is in A (z,).

Theorem 6. If {zi} converges weakly to z,, then by Corollary 5, {yi} converges
weakly to z,. Since A (.) is weakly sequentially closed, z, is in A (z,).

Theorem 7. It is sufficient to prove this result for the case where {z} converges
weakly to z,. We now show that for all e > 0, there exists an index k such that y is
in B (A (z,), e) for all _-> k. In other words, for all continuous linear functionals f(.
on X and for all e >0, there exists an index k such that f(y) is in f(B(A(z,), e)) for
all => k. Suppose this is not true: That for some linear continuous f(. and for all k
there is some e >0 such that f(y) is not in f(B(A(z,), e)) for some _>-k. But {y} is
a bounded sequence in reflexive Banach space and so possesses a weakly convergent
subsequence {y}c such that {f(yi)}n converges to f(y,), where f(y,) is not in f(A (z,)),
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i.e., y, is not in A(z,). But since {zi} converges weakly to z,, the subsequence {zi}K
has a weak limit z, and y, is not in A(z,). This contradicts the fact that A(.) is
weakly sequentially closed. Hence for all e > 0, there is some index k such that y is
in B (A(z,), e) for all _-> k. Moreover, B (A(z,), e) is a closed and convex set. The
result of the theorem is thus an immediate consequence of Lemma 6.

Corollary 6. No proof needed.
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AN EFFICIENT METHOD OF FEASIBLE DIRECTIONS*

GERARD G. L. MEYER"

Abstract. This paper presents a new method of feasible directions which uses an efficient antizig-zagging
scheme. At every iteration, the gradient of the cost function and the gradients of the active constraints
(usually one) are computed, and the previously computed gradients of the almost active constraints are
used to prevent zig-zagging.

Key words, nonlinear programming, feasible directions, antizig-zagging, active constraints, iterative

1. Introduction. The past ten years have seen the development of new methods
for solving the general nonlinear programming problem, namely, augmented
Lagrangian and multiplier methods and more recently extended Newton’s methods
[1], [2], [3], [6]-[11], [19]-[21]. These methods are efficient, but are not applicable
in all cases: the iterates generated by the new methods are usually not feasible, the
constraints must satisfy stringent continuity requirements, and the new methods require
the evaluation of the gradients of all the constraints at every iteration.

Methods of feasible directions, which have been overshadowed by these new
methods, may still be useful and competitive provided that: the constraint set has an
interior or a relative interior [18]; the iterates are required to be feasible; the constraints
do not satisfy strong continuity hypotheses; and the nature of the constraints is such
that the computation of their gradients is very time consuming. Clearly, the feasible
directions approach would also be more appealing if its efficiency could be increased.

This paper presents a new feasible directions algorithm which uses the evaluated
gradients more efficiently than existing methods. The main difference between the
new method and the more classical ones lies in the use of an efficient antizig-zagging
scheme. The "almost active" constraints are selected according to a procedure which
possesses several attractive properties: at each iteration, only the gradient of the cost
function and the gradients of the active constraints need be evaluated; the redundant
constraints are automatically ignored; and the sequence of iterates generated depends
on the shape of the constraint set and not its description.

2. Preliminaries. Consider the following nonlinear programming problem"
Problem 1. Given m + 1 maps f0(.), fl(.),..., f,n(.) from E into E, let T be

the subset of E defined by

(1) 7" {zlf (z)<-o,i 1, 2,..., m}.

Find a point z in T such that

(2) fO(z =</O(y)
for all y in T.

The solution set D(P) of Problem 1 may be empty; when it is not, the characteriz-
ation of the points in D(P) is usually not easy. To remove these difficulties, it will be
assumed that the maps involved in the description of Problem 1 satisfy a set of
simplifying assumptions.

* Received by the editors March 24, 1981, and in revised form January 25, 1982.
t Electrical Engineering Department, The Johns Hopkins University, Baltimore, Maryland 21218.
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Hypothesis 1.
(i) The maps o(. ), fl(. ),.. ", f,, (.) are continuously differentiable and convex.
(ii) The set T is nonempty and compact.
(iii) For every z in T, the set

(3) {7fi(z)lfi(z) O, j 1, 2,..., m}

is linearly independent.
When Hypothesis 1 is satisfied, the properties of Problem 1 are well known [5],

[18], [24] and the results are given without proof.
LEMMA 1. If Hypothesis 1 is satisfied, then:
(i) Problem I possesses at least one solution.

(ii) A point z in T is a solution to Problem 1 if and only if
(4) min {max {(Vf(z), h)[] in Y(z, oo)}lh in S}=0,

where S is a compact neighborhood of the origin in En, and J(z, c) is the set that
contains the indices of all the active constraints at z and the index of the cost function,
namely

(5) J(z, ) {/" in {1, 2,..., m}[fJ(z)=O}t_J{O}.

Essentially, Lemma 1 says that a point z in T is a solution to Problem 1 if and
only if the origin of E belongs to the convex hull of the set

(6) G (z) {Vf" (z)l] in 3" (z, co)}.

Let the point NG(z) be the projection of the origin of E onto the convex hull of
G(z). Then a point z in T is a solution to Problem 1 if and only if the origin of E
belongs to NG(z) [23].

The class of methods of feasible directions examined in this paper is based on a
specific approximation of the necessary conditions of optimality. Given a point z in
T, and a scalar c > 0, let J (z, c) be the index set defined by

(7) J(z, a)= ]in{l, 2,..., m}lf(z)+-->-O t3{0}.

Instead of trying to find a point z in T that satisfies (4), one can generate a sequence
{zi} of points in T that satisfies

1
(8) min {max {(Vf1(zi), h)[] in J(zi, ai)}[h in S} ->

for two given sequences of positive scalars, {ai} and {/3i}. For each index i, the parameter
ag controls the precision with which the conditions of optimality for Problem 1 are
approximated, and the parameter/3g assures the necessary degree of negativity of the
inner product between the gradient of the appropriate maps fi(.) and the direction
of descent. The various schemes used for choosing the sequences {a} and {/3} are
called antizig-zagging rules. Several such schemes have been presented by Zoutendijk
[25], Zukhovitskii, Polyak and Primak [26], Polak [18], and Meyer [14], [17].

One should note that the class of methods under consideration does not involve
all the constraints. At each iteration, a point z is found which satisfies (8), and thus
the only constraints involved through their gradients are the active and "almost"
active constraints.
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Methods of feasible directions exist that involve all the constraints" Huard’s
method of centers [4], [12], [13], and Topkis and Veinott’s method of feasible directions
[22] provide two such examples. In view of the introductory comments, it is clear that
these methods are not competitive with the latest ones proposed, and therefore the
thrust of this paper is directed at methods based on (4) and (8).

The theoretical justification for the use of iterative methods based on (8) in solving
Problem 1 was presented in [14], [16]:

THEOREM 1. If Hypotheses 1 is satisfied and Q is a closed subset of T which
contains no solution to Problem 1, then there exist scalars e >0 and >0, and a
neighborhood N(Q) of Q such that

(9) min {max {(Vf (z), h }lJ in J (z, a)}lh in S} < -e

for all z in N(Q) fq T, and for all > 4.
Theorem 1 implies that when Hypothesis 1 is satisfied, a point that satisfies (8)

can be computed in a finite number of iterations, thus justifying the use of iterative
approaches based on (8) for solving Problem 1.

3. A class of feasible directions methods. The existing feasible directions methods
require that at every iteration i, a feasible direction hi be computed. To insure that
the direction hi is feasible, and that zig-zagging does not occur, one must take into
account the gradients of both the active and almost active constraints at iteration i.
The direction hi must be a descent direction, and therefore one must insure that the
gradient of the cost function and hi make the proper angle. It follows that at every
iteration, one must compute the quantities Vf](zi) for all indices/" in the set J(zi, Oli),
where zi is the ith iterate and ai is the current value of the controlling parameter a.

If one wishes to use a direction h that is feasible and that makes an obtuse angle
with the gradient of the cost function, it is necessary to take into account the gradients
of the active constraints at iteration and the gradient of the cost function. Thus,
when zig-zagging does not occur, the gradients of the almost active constraints need
not be computed. The algorithm presented below computes only the gradients that
are absolutely necessary, and uses the previously computed gradients of the almost
active constraints to approximate the tangent cone of the constraint set at the current
point zi. Thus, the gradient of the cost function and the gradients of the active
constraints are used to obtain a direction of descent that is feasible, and the gradients
of the previously active constraints are used to prevent the zig-zagging effect. One
should note that usually only one constraint is active at any iteration. Thus, if such
an algorithm is shown to solve Problem 1, just two gradients need be computed at
each iteration" the gradient of the cost function and the gradient of the active constraint.

The approach just described requires a modification of the way in which the
almost active constraints are accounted for. At iteration i, one uses an index set
K(i,p(rg)), which consists of the cost function index, the indices of all the active
constraints, and the indices of all the constraints that have been active "not too long
ago" at points that are "not too far" from the current iterate. Thus, in order to
compute K(i, p(ri)), one must keep track of the "age" of the previously computed
gradients with respect.to the present index of iteration" to each constraint index f is
associated a parameter a which takes only nonnegative integer values and which is
computed so that

(10) f](Zi_a{)-’O.
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Since an algorithm with an unbounded memory is not desirable, the constraint gradients
that have not been evaluated prior to iteration are ignored, as are those that have
been evaluated at iterations prior to iteration i- (where is a properly chosen
nonnegative integer).

The proposed algorithm is parametrized by two maps p(. and q (.) from E into
E, a scalar p, a subset S of E, and a pre-specified sequence of integers t} that must
satisfy the assumption given below.

Hypothesis 2.
(i) The maps p(.) and q(.) are positively radially unbounded, i.e., to every

scalar y > 0 corresponds an integer k > 0 such that q (x) > y and q (x) > y for all x > k.
(ii) The scalar p is strictly positive.
(iii) The set S is a compact neighborhood of the origin in E".
(iv) 0 <_- ti <- t.
The algorithm consists of four steps, which have been subdivided into sub-steps

for easier presentation.
Step 1 initializes the variables used in the algorithm. An initial feasible point z

in T is computed, and the gradient of the cost function and the gradients of the active
constraints (usually one) are evaluated at the point z.

In Step 2, the feasible direction h is found, and the antizig-zagging parameter ri
is adjusted.

Step 3 contains a procedure for determining the step length so that the next
iterate is feasible and the cost function is decreased.

In Step 4, the value of the gradient of the cost function and the gradients of the
active constraints (usually one) are determined, and the ages of the various gradients
are updated.

The maps p(.) and q(.) are used in conjunction with an auxiliary parameter ri
adjusted by the algorithm itself; the roles played by p(ri) and q(ri) are similar to those
played by the parameters cz and/ discussed in the preliminaries. Thus, p (ri) controls
the way in which the conditions of optimality for Problem 1 are approximated and
q(ri) controls the precision with which the approximate optimality conditions are
satisfied. The scalar p is introduced only to insure that Step 3a is well defined, even
when hi 0. The set S is an arbitrary compact neighborhood of the origin in E", which
is usually chosen to be a polyhedron [18] or a sphere [23]. In the first case, the
computation of the feasible direction h in Step 2b reduces to solving a linear program-
ming problem, and in the second case, it reduces to solving a quadratic programming
problem.

ALGORITHM 1. The sequence {ti} in E is given.
Step l a. Compute a point z in T.
Step lb. Set b/l Vfi(zl) and set a/1 =0 for all/" in J(zl, c).
Step lc. Set b 0 and set a -+ 1 for all/" not in J(z 1, c).
Step ld. Set rl 1 and set 1.
Step 2a. Set K(i, p(r))={j[a =<t and Ilz, z-,ill<
Step 2b. Compute h in S such that for all h in S

max {(b, h,)lf in K(i, p(ri))} <-_ max {(b[, h)l/" in K(i, p(ri))}.

Step 2c. If max {(b ii, hi)lfinK(i,p(ri))}>-l/q(r), set ri-ri+l and go to Step 2a;
otherwise, go to Step 3a.
Step 3a. Compute A {A in [0" ]1[i(zi + Ah) < 0} for/" 1, 2 m, and let/x=max ,
min {A/, A/," ", A 7’}.



AN EFFICIENT METHOD OF FEASIBLE DIRECTIONS 157

Step 3b. Compute h 0 in [0;/xi] such that

f(zi + Z hi) <- f(zi + Xh,)

for all A in [0;/i], and set z i+1 z + A hi.
Step 4a. Set b+ =VfJ(zi+l) and set a i+1 0 for all/" in J(z i+, o3).

bi+l =bi +1, +1) for all/" not inJ(zi+x, o3).Step 4b. Set and set a/ min (a
Step 4c. Set ri/ ri, set + 1, and go to Step 2a.

The sequence {ti} plays a major role in the antizig-zagging scheme. It is demon-
strated below that if ti 0 for all i, and if the sequence {z} generated by Algorithm 1
does not converge, then every cluster point of {zi} is a solution to Problem 1; if ti 0
for all i, and the sequence {zi} converges to some z,, then z. may or may not be a
solution to Problem 1. On the other hand, if h is large enough (i.e., ti -> m- 1 for all
i, where m is the number of constraints), then every cluster point of every sequence
generated by Algorithm 1 is a solution to Problem 1. The sequence {ti} controls the
"memory" of the algorithm and is thus an important part of the antizig-zagging scheme.

4. Analysis ot the algorithm. Algorithm 1, as presented in the preceding section,
does not possess a stop rule. Nevertheless, the algorithm may generate finite sequences
since it may "jam" in Step 2. Thus, before examining the asymptotic properties of
the algorithm, one must analyze the properties of the finite sequences that may be
generated by the algorithm.

LEMMA 2. Suppose that Hypotheses 1 and 2 are satisfied and that {zi} is a sequence
generated by Algorithm 1. If Zk is a solution to Problem 1 for some index k, the sequence
{zi} is finite and Zk is the last point of the sequence. If Zk is not a solution to Problem 1,
Algorithm 1 generates the point Zk+ after a finite number ofadjustments of the parameter
r in Step 2.

Proof. (i) Suppose that Zk is a solution to Problem 1. Then

(11) min {max {(Vf (zg), h)[f in J(z, oo)}lh in S} O.

By construction,

(12) K(k, p(r)) _J(zk, o3)

for all integers r, and

(13) Vf(zk) bk

for all/" in J(z,, o3). Thus,

min {max {(b{, h)[/’ in K (k, p (r))}lh in S} 0,(14)

and

1
(15) max {(b, h)l] in K(k, p (r))} >

q(r)

for all integers r. It follows that Algorithm 1 continues to adjust the parameter r in
Step 2, and the point Z k/ is not generated. Thus, if Zk is a solution to Problem 1,
the point Zk is the last element of the sequence {z}.

(ii) Suppose that Zk is not a solution to Problem 1" then,

(16) min {max {(Vf(zk), h)l] in J(Zk, o3)lh in S}<0.
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Equation (16) and part (i) of Hypothesis 2 imply that a scalar 71 exists such that

1
(17) min {max {(7f (Zk), h )]j in J (Zk, oo)}lh in S} _-<

q(r)

for all scalars r->?l. The subsequence {z l, z2,’", zk} contains a finite number of
points, and therefore a scalar 72 -> 71 exists such that zi z whenever the index
belongs to the set

(18) i= 1, 2,..., klllz

and r >- ?2. The definition of the vectors b implies that whenever r -> ?2,

(19) bk Vf (zk)

or all/" in K(z, p (r)). It follows that

(20) min {max {(b, h >1] in K (z, p(r))}lh in S}-<
-1
q(r)

for all r 2, and therefore Algorithm 1 generates the appropriate value for the
parameter r after a finite number of adjustments in Step 2. Thus, if zk is not a solution
to Problem 1, the point z k/l is generated in a finite time.

One should note that Lemma 2 implies that the characteristic set of Algorithm 1
[15] is equal to the solution set of Problem 1 whenever Hypotheses 1 and 2 are satisfied.

The construction of the point z i+l from the point z in Step 4 of Algorithm 1 and
the continuity of the cost function f0(. directly imply the following result:

LEMMA 3. Suppose that Hypotheses 1 and 2 are satisfied, and let {zg} be an infinite
sequence generated by Algorithm 1. Then:

(i) f(z+l)<-f(zi) for all i; and
(ii) if a cluster point of {zi} is a solution to Problem 1, then all the cluster points of

{z} are solutions to Problem 1.
The asymptotic properties of Algorithm 1 are now analyzed. First, it is proved

that if the sequence {r} is unbounded from above, then every cluster point of every
sequence generated by Algorithm I is a solution to Problem 1. Then it is shown that
the sequence {rg} is unbounded from above, whether or not the infinite sequence {z}
generated by Algorithm i is asymptotically regular. One should recall that a sequence
{z} is asymptotically regular if and only if the corresponding scalar sequence {l[zi-
z i-1 [[} converges to 0.

LEMMA 4. If (i) Hypotheses 1 and 2 are satisfied; (ii) {zi} is an infinite sequence
generated by Algorithm 1; and (iii) the sequence {rg} is unbounded from above, then
every cluster point z. of {zg} is a solution to Problem 1.

Proof. The parameter r can only be increased in Step 2 of Algorithm 1. Thus,
the assumption that the sequence {r} is unbounded from above implies that

(21) max {<b{, h,>lj in K (i, p(ri))}>
-1

q(ri)

infinitely many times. The map q(. is positively radially unbounded, and therefore
an infinite subset L of the integers exists such that

(22) {max {<b ii, hi>[/inK(i, p(ri))}}L converges to 0.
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The set T is compact, K(i, p(ri)) is a subset of the finite set {0, 1,..., m} for all i,
and it follows that z ,, K,, and an infinite subset M of L exist such that

(23) {zi}t converges to z,,

and

(24) K(i,p(ri))=K, for all inM.

Let/" be an index in K," then for all in M

(25) b Vf(z -i),
1

(26)
p(ri)’

and

(27) 0 <- a <- ti <- t.

The map p(. is positively radially unbounded; {ri} is unbounded from above; the map
/i (.) is continuously differentiable; therefore,

(28) {b}t converges to VC’i(z,);
and hence,

(29) min {max {(V]i (z,), h )l/" in K, }1 h in S} 0.

To show that z, is a solution to Problem 1, it remains to be proven that K, is a
subset of J(z,,

Let be in K, then/" is in K(i, p(ri)) for all in M, i.e.,

1
p(ri)

and

(31) a

for all in M. The subsequence {zi}t converges to z,; the map p(.) is positively
radially unbounded; the sequence {ri} is unbounded from above; and therefore,

{z i-ai}t converges to z,.(32)

When ai=< t, then

(33) f](Zi--a!)’--O.

It follows that f/(z, 0 and hence,/" is in J(z,, o).
The point z, is a solution to Problem 1 (i.e., at least one cluster point of {zi} is

a solution to Problem 1), and using Lemma 3 one concludes that every cluster point
of {zi} is a solution to Problem 1.

LEMMA 5. If (i) Hypotheses 1 and 2 are satisfied, and (ii) {zi} is an infinite
sequence generated by Algorithm 1 that is not asymptotically regular, then the sequence
{ri} is unbounded from above.

Proof. The sequence {zi} is not asymptotically regular and thus an infinite subset
L of the integers and a scalar 6 > 0 exist such that

(34) IlZi/l -zi[l>:
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for all in L.
It follows that for all the indices in L

-1
(35) max {(b, hi)l/" in K(i, p (ri))} <-q(ri----,
(36) 0 is in K(i, p(ri)),

(37) bi vfO(zi),

and

(38) .i -- ,
where

(39)
diameter of $

Suppose that the sequence {r} is bounded from above" then a scalar r and an integer
k exist such that r r for all -> k.

It follows that

(40) (Vf(zi),

and

-1
q(r)

for all i>-k,i in L. Equations (40) and (41) imply that the sequence {f(zi)} is
unbounded from below, which is impossible because fo(. is continuous on the compact
set T. It follows that the sequence {ri} is unbounded from above whenever the infinite
sequence {z} is not asymptotically regular.

LEMMA 6. If (i) Hypotheses 1 and 2 are satisfied; (ii) m- 1 _-< ti <= for all i;
and (iii) {zi} is an infinite sequence generated by Algorithm 1 that is asymptotically
regular, then the sequence {ri} is unbounded from above.

Proof. The sequence {zi} is asymptotically regular and contained in the compact
set T, every set in the sequence {K(i, p(ri))} is a subset of {0, 1, 2,. ., m}, and every
element a is in {0, 1, 2,.. ’+ 1}. It follows that an infinite subset L of the integers,
a point z, in T, sets K,, K.+I, ,K,+,,, and elements a 0., a.,.. ,a,, a,+l,

0
a,+l, ’, a,+l, , a,+m, a,+m, ’, a,+,. exist such that:

(F1) The subsequences {zi}, {z+l},’’’, {zi+.}. converge to z..
(F2) K(i,p(ri))=g., g(i+l,p(r,+l))=K.+l,’",K(i+m,p(ri+,,,))=K.+,,,

for all in L.
(F3) a a, a+l a+l, a ii/m a i,+., for all/’ 0, 1,. m and for all

in L.
Assume that {ri} is bounded from above; then
(F4) A scalar r and an integer kl exist such that

(42) ri--r

for all i-> k 1.
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(F5) The sequence {z} is asymptotically regular and therefore an integer k2 > kl
exists such that

1
(43)

p(r )

for all i>-k2 and for all a in {0, 1,... + 1}. Hence, the index/" is in K(i,p(r))
whenever > k2 and a < 1

(F6) By construction,

(44) (b h) <
-1
q(r)

q(r)"

for all => k2, and if a subsequence of/xi is bounded away from 0, then the sequence
f(z) must be unbounded from below, which is impossible.

The index 0 is in J(zi, o) for all i, and therefore, the index 0 is in K,,
K,/1, ’, K,/,,. Facts F6 and F7 imply the existence of an index ] (1) in K,+ which
is not in K,. Thus,

(45) /’(1) 0,

and

(46) ti+l 0.

The existence of/’(1) simply means that in view of F6, there must be a constraint not
taken into account through K,, which comes into play to insure that F7 is satisfied.

By construction,

(47) _(1) < (1Ui+s i+1 +s-1

and therefore, from F5 we know that/" (1) will be in K,/2, K,+3, , K,/,.
Similarly, F6 and F7 imply the existence of an index j(2) in K,/2 which is not

in K,/1. Thus,

(48) ](2) 0,

(49) /(2) #/(1)

and
(2) O.(5o)

One concludes, again using F5, that j(2) will be in K,+3, g,+4, g,+m.
Pursuing this reasoning, one shows that the index set K,/,, contains the indices 0, j(1),
/’(2),..., f(m), which are all distinct, i.e.,

(51) K,+, ={0, 1,..., m}.

From F6 and the fact that {z} is asymptotically regular, it is clear that the inner
product of the direction h with the gradient of the cost function and the gradients of
every constraint is bounded from above by -1/q(r) infinitely many times. This in turn

hi> <---

for all/" in K(i, p(ri)) and for all ->k2.
(F7) The sequence {/x} converges to 0. The index 0 is in K (i, p (ri)) for all i, thus

F6 implies that
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implies that the sequence {f(zi} is unbounded from below. Thus, the assumption that
the sequence (ri} is bounded from above leads to a contradiction, and one concludes
that {r} must be unbounded from above.

Using Lemmas 2-6, one obtains the following theorem, which shows that
Algorithm 1 may be used to solve Problem 1.

THEOREM 2. Suppose that (i) Hypotheses 1 and 2 are satisfied; (ii) m 1 -<_ t <_-

for all i; and (iii) {z} is a sequence generated by Algorithm 1. Then"
(i) {ri} is unbounded from above;
(ii) if{zi} is finite, then the last point of {z} is a solution to Problem 1;
(iii) if {zi} is infinite, then {zi} possesses at least one cluster point, and every cluster

point of {z} is a solution to Problem 1.
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OPTIMAL ADAPTIVE CONTROL OF
LINEAR-QUADRATIC-GAUSSIAN SYSTEMS*

P. R. KUMAR+

Abstract. We consider the problem of adaptively controlling an unknown linear-Gaussian system with
a standard quadratic cost criterion, including a control cost. By means of a counterexample, it is shown
that a commonly mentioned adapative control scheme can lead to severe problems. To overcome this, a

new adaptive control law, based on biasing the usual least-squares parameter estimation criterion with a
term favoring parameters associated with lower optimal costs, is introduced. A salient feature of this
adaptive control scheme is its imperviousness to the closed-loop identification problem. Properties such as
closed-loop system identification, convergence of the adaptive control law to an optimal control law, overall
stability of the controlled system and optimality with respect to the long-term average cost of the adaptive
controller are proved.

Key words, adaptive control, stochastic systems, linear-quadratic Gaussian systems, linear systems,
optimal control

1. A preliminary counterexample. To see what can go wrong in a commonly
mentioned adaptive control scheme consider the following counterexample. We have
a system

Xt+l axt + bblt q- et+l,

where we know the value of (a, b) to be either (0,-1) or (1, 1), but we do not know
which of these is the correct value. Let {et} be a noise sequence of independent
identically distributed N(0, 1) random variables. Our goal is the minimization of the
cost criterion

lim
1 t-1

E X
2 2+2us

t--,oo s=0

for which we know that the optimal control law is

if (a, b) (0, -1),
if (a, b)= (1, 1).

(See any book on the algebraic Riccati equation and the LQG problem, e.g., [14,
p. 355].)

Since we do not know the value of (a, b) (except, of course that it is either (0, 1)
or (1, 1)), at each time instant we make a least-squares (or equivalently, in this case,
a maximum-likelihood) estimate based on the data (Xo, Uo, x, u, ..., x) up to time
t, and then we use the control law corresponding to that estimate to choose u. Thus,

t--1 t-1 (Xs+l__Xs__Us)2, then choose u, =0if E=o (Xs+l -}- b/s)2 Es=o- ) - (x+-x-u), then choose u -1/2x.and if E=o (xs+x + Us >Y=o

* Received by the editors September 25, 1981, and in revised form March 23, 1982. This research
was supported by the U.S. Army Research Office under contract DAAG-29-80-K0038.

t Department of Mathematics, University of Maryland Baltimore County, Baltimore, Maryland 21228.
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This adaptive control scheme is in many ways a very "natural" one. To see what
can go wrong, note the following chain of implications"

t-1 t--1

E (x++u)> E (x+-x-u)
s=0

z: U --Xt

(x,++u,) (x,+-x,-u,

ff (x+ + u)> Z (x+-x- u)
=0 =0

Ut+l -Xt+l

k-1 k-1

Z (x+ +u)> E (x+-x-u)
s=0 s=O

=> u -1/2x for all k _>- t.

for all k ->_

Thus, if at any time the parameters (a,b) are estimated to be (1, 1), then the
parameter estimates will thereafter remain unchanged and the adaptive control law
will "stick" at uk =--Xk for all k >= t. This is clearly undesirable if the true value of
(a, b)is (0,-1).

To see that this can indeed happen with positive probability, suppose that
(a, b)= (0,-1) is indeed the true system and we start initially with Xo 1 and u0 0.
Then

ux =-xcr>(xa+uo)2>(xx-xo-uo)ze>(ex 1)2:>ex>1/2.
Since ex > occurs with probability 0.31 (recall ex---N(O, 1)), the adaptive control law
will "stick" with probability at least 0.31 at the nonoptimal (cost 2 versus cost 1
for the optimal control law) control law u =-x.

The object of this paper is to prove rigorously and completely the optimality and
stability of a new adaptive control law which will never run into difficulties such as these.

2. Problem statement, main results and discussion. The true system being con-
trolled is described by

(1) x,+x A(O)x, +B (O)u, +
where x is the state vector, u, is the control vector and {w,} is a Gaussian stochastic
process with

(2) E[w] 0 and E[w,w’] 6,I for all s, t.

We however do not know the value of 0 and only have knowledge of a finite set 0
one of whose elements is 0. Our goal is to obtain an adaptive control scheme for
choosing {u,} such that the cost criterion

(3) lim
1 ’ xxO + u ’sRu,

t-, s=O

is a minimum. Here R R’> 0 and Q C’C. The only assumption we make is

(4) {A (O ), B (O ), C} is controllable and observable for each 0 (R).
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2.1. Main results. Our adaptive control scheme will be based On making an
estimate t O’t(Xo, Uo, X., u,... ,xt) of the unknown parameter. The criterion for
making the estimates differs from the usualleast-squares criterion (and is described
in 3). After the generation of an estimate 0, a control input

u,

is applied where K(0) is the (unique) optimal feedback gain matrix for the parameter
0. Our main results are"

(5)
(i) Closed-loop identification takes place (Theorem 7). For a.e. o) and every 0 19:

limsup
1 t-

,-, i- y" I(())=O)>O:A(O)+B(O)K(O)=A(O)+B(O)K(O)"
s=O

(ii) Nonoptimal control inputs are applied very, very rarely (Theorem 8).

lim
1 -x

,-,oo
E l(u K(O)x) 0 a.s.
s=O

(iii) The closed-loop system is stable (Theorem 12). For every p [1, ) there is
an M(p) < such that

1 t-1

lim sup Y [Ix[[ + IlUsllp <_-M(p) <o a.s.
too 7 =0

(iv) Optimal cost performance is achieved (Theorem 14).

lim
lt-
E x OXs + u’,Ru J(0) a.s.,

t-,oo s=o

where J(O) is the optimal cost achievable for the true system if one knew the value
of 0 0 at the start.

2.2. Discussion. As formulated here, the problem under consideration belongs
to the realm of adaptive control of linear stochastic systems with complete state
observations. In recent years considerable attention has been paid and much success
obtained [1]-[9] with regard to certain problems in this general area. Notable results
have been obtained for the so-called minimum-variance adaptive control problem
where the control weighting matrix R in (3) is 0. Thus, the goal of such adaptive
control problems is only to minimize the output variance.

Regarding the present case R >0, the available results are, to the author’s
knowledge, inconclusive. The results, e.g., [2], [6], are contingent on assumptions
regarding the stability of the closed-loop system whose validity is unknown.
Specifically, for example, it is not known whether available adaptive control laws
which are appropriate for the case R >0 will even yield a closed-loop system for
which {(l/t)=0 xOxs u’u} is bounded. A notable exception is some work of
Mandl, see [9, 7.7], and [19], [20], but the limitation here is that the matrix B(O)
is known and only A (0) is unknown.

In comparing our problem formulation and results obtained with those for the
much studied ease R 0, [1]-[8], we see that our problem formulation is limited in
at least two respects: (i) {wt} is not temporally correlated; (ii) O is finite. On the other
hand the results obtained here are stronger. For example, our results (5.i), (5.ii) dealing
with closed-loop identification and convergence of the adaptive control are not
mentioned in [7]. Moreover, our stability result (5.iii) is also stronger than the corre-
sponding result in [7] and even our optimality result (5.iv) appears a little more relevant.
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The net conclusion that may be drawn is that for the limited problem examined there
.is now a fairly complete theory for the case R > 0.

A notable feature of our treatment is the difference between our adaptive control
law and those previously studied for linear systems. The specific feature which distin-
guishes it is the manner in which the parameter estimates are made. The usual
least-squares criterion is modified by the addition of a term depending on the optimal
cost associated with a parameter in such a way as to be biased in favor of parameter
estimates with lower costs. This adaptive control law was first introduced in the context
of adaptive control of Markov Chains in [10], [11] and general Markovian systems
in [12] and was proved there to be optimal for such systems. In fact, it was designed
precisely to circumvent the closed-loop identification problem central to the counter-
example of 1 which also occurs in the context of Markov chains; see [13].

Regarding the practicality of the present assumption of a finite set 19 of possible
parameters, many factors need to be considered. Its utility in a given situation depends
on whether one is willing to quantize the possible set of parameter values to obtain
a finite set, the amount of computational capability available, whether the quantized
set includes a model which closely approximates the true system at hand (which, in
fact, may not even be linear) and can ultimately be decided only on the basis of the
practical problem being.tackled. In any case, future attempts should be made to obtain
complete theoretical results, as here, for the case where (R) is a compact set.

3. Description of adaptive control scheme. Under the condition (4) it is well
known [14] that there exists a unique .solution P(O) to the algebraic Riccati equation

(6) P(O)=A’(O)[P(O)-P(O)B(O)(B’(O)P(O)B(O)+R)-B’(O)P(O)]A(O)+O
within the class of symmetric nonnegative definite matrices and also P(O)>0. Let

(7) K(O):=-[B’(O)P(O)B(O)+R]-IB’(O)P(O)A(O).
It is also known that ut K(O)x, is optimal for the problem of minimizing the cost
criterion-(3) for the system with parameter 0, and the resulting optimal cost (3) (both
almost surely and in expectation, see [9]) is

(8) J(O) := tr P(O).

For future reference we also note the following facts all of which are obtainable either
readily, or by a slight extension, from [14]:
(9)

(i) P(O) may also be written as

P(O [A (0) +B(O)K (O)]’P(O)[A (0) +B (O)K (0)] + K’(O)RK (0) + O.

(ii) A(O)+B(O)K(O) is stable, i.e., all its eigenvalues are in the open unit disk
in the complex plane.

(iii) Within the class of matriee Kf,or which A(O)+B(O)K is stable, K(O) is the
unique optimal feedback gain matrix.

The "identification" problem now consists of choosing an estimate 0t based on
the observed past history (Xo, uo, xl, ul, ’", xt) and the adaptive control problem
consists of choosing an input ut to be applied to the system (1) based on the same history.

We begin by choosing an arbitrary function o(t) such that

(10) o(t)>O, lim o(t)= +oo lim (o(t) =0.
t--,oo t-,oo \ In ]
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We define t by

(II)

rgmin o(t) lnJ(0)+ Y. (x+:-A(O)xs-B(O)us)’(xs+:-A(O)xs-B(O)u)

:=j 0o =o

if is an even number,
(t_: if is an odd number.

(If more than one value of 0 maximizes the expression in (11), then we shall assume
some specified priority ordering of elements of 0 which enables us to choose between
competing maximizers.) After making an estimate ff, the control input is chosen as

(12) u,:=K()x,.

An important observation to make is that were it not for the presence of the
term o(t) In J(0) in (11), ff would merely be a least-squares estimate of the unknown
parameter and we have already seen that such an estimate can cause severe problems.
As it stands, will be mildly biased ("mild" because of the choice of o(t) in (10)) in
favor of those 0’s for which J(O) is small. In a sense to be precisely exhibited later,
this biasing term becomes asymptotically negligible as t-, +, and so asymptotically
the estimates {} will retain some of the valuable and desirable properties of least-
squares estimates.

One possible generalization of (11) consists in replacing the term o(t)In J(0) by
o(t) In f(J(O)) where f is an arbitrary positive, strictly monotone increasing function.
The ensuing analysis and all the results will continue to hold for such a generalization.
Another relaxation consists of assuming "stabilizability" in (4), but we shall not pursue
that here.

For the remainder of this paper, we shall let (lq, r, ) be the underlying probability
space on which the random variables x, ut, w, Ot, etc. are defined. Elements of f will
be denoted by "o". We define := o’(xo, Uo, x, u, , x) r(xo, w, w2, ’, w) to
be the r-algebra generated by the history up to time t.

4. An important effect of cost biasing on the parameter estimates. In this section
we show that one important effect of the biasing term o(t) In J(O) in (11) is to eliminate
elements of {0"1(0)>1(0)} from occurring as limit (cluster) points of {fit}. For
convenience, define for each O the random variables,

(13)
t-1

Vt(O): , (xs+-A(O)x-B(O)u)’(x+a-A(O)x-B(O)us),
s=O

(14) D,(O) := o(t) In J(O) + V(O).

LEMMA 1. If O* is a limit point of {0t(to)}=x, then J(O*)<=J(O).
Proof. It is easily calculated that

E[exp-{gt+l(O)- gt+l(O)}lff;t] exp-1/2{Vt(O)- Vt(O)},

This is a sample path result which we require to hold almost surely. Thus the qualifier "There exists
a set N

_
fl, (N) 0 such that if o N and", needs to precede the statement of the lemma. However,

for brevity, in this and all future statements dealing with sample path results such a qualifier will not be
explicitly mentioned.
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and so for each 0O, {exp -1/2{ Vt (0 V, (O)}, ’t} is a positive martingale which
converges almost surely. Fixing to, we have, therefore, that

0 < lim exp to)} < for every 0 t9.
,.oo - {v’(’ ’l- v’(

From (14) it follows that if J(O*)>J(0) then

1
(15) lira exp -{D,(0*, to)-D,(O, to)} 0.

By (11) however, t(to)=argminoeD,(O, to) for even and so, in particular,
D,(#(w), to)<=D,(O, to) for even t. If 0* is a limit of {(to)}, then since 19 is finite,
t(to) O*(to) for infinitely many even t’s. Thus, for 0* to be a limit point of {(to)},
we will need Dr(O*, to) <=D,(O, to) infinitely often, which however contradicts (15).

5. Asymptotic properties of parameter estimates. In this section we show that
the addition of the bias term o(t) In J(0) to (11) does not adversely affect what would
otherwise be a least-squares estimator with useful consistency properties. Many
preliminary results are needed before we can establish Theorem 7, the main result
of this section. Define for each 0 19 the random variables

O,(0) := [A(O)-A(O)]x, +[B(O)-B(O)]u,,

(16) /x,(0):= 1 + E 4’s(0)bs(0), /zo(0):= 1,
s=l

t--1
--11,(0) :" E s (O)s(O)Ws+l, i0(0) :--’- O.

s=0

1 t-1
LEMMA 2. Let 0 19 be arbitrary. Then lim,_./z (0) Y’.s=o 4’(0)w+1 0 almost

surely on the set {to 1": limt_.o/xt(0, to) +o}.
Proof. This lemma is similar to that of Ljung [15]. The proof s given here only

for the sake of completeness. Fix 0 (R). Clearly E[h,+x(0)lt] At(0) and so {At(0),
is a martingale. Since

E[X (0)] E E[A-(0)-A 2- (0)l-]

=E E[(As(0)-
s=l

(martingale property)

E (o)’_ (O)s-(O)
s=l

,-x : ]=E b(0)bo(0)+ Y tz (0)[/x(0)-/s-l(0)]
s=l

-<_E (0)o(0)+ g, (0)g,(0)[(0) g_(0)]
s=l

[=E a(0)ao(0)+ E [sS(0)- (0)]
s=1

<-E[6’o(O)6o(O)+ ],

it follows that {At(0), ,} is an L2-bounded martingale and so converges almost surely.
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Hence, -oo<Y.,=o (0),(0)w,+1<oo almost surely. Kronecker’s lemma [16] now
gives the desired result.

LEMMA 3. If {tk} is a subsequence of the even integers with tk (o)= 0", then

lim (ln-t) ’10’(0", w)O(0", o) 0.
t-)oo

Proof. From (11), D,k (0", w <D, (0 o) and so

(17) (ln-t)[D, (0" o)-D,(O o)]-<_0

A simple calculation using (14), (13) and (16) shows that

limsuP(ln-t)[D,(0* o) D,k (O
k-*oo

(18)

for all k.

Note that the first term on the RHS of (18) has limit 0 from (10). If
lira supk_ (I/In t)t-(O*, w) >0, then lim_oo tx-x(0*, o) +oo, and it follows
from Lemma 2 that the second term on the RHS of (18) would have strictly positive
limit superior. Thus the RHS would be >0 which contradicts (17).

Define for each 0 E O the matrices

F(O) := A(0) A(0) +B(O)K (0) B (O)K (0),

F(O):=F’(O)F(O)

and the random variables

$,(0):=1+ E l(=O, sisodd),
s--1

:o(0) := 1,

yt(0) := (x’F(O)xt ^ 1)1(0 0, is odd)

where "^" denotes the minimum operation.
LEMMA 4. If lim,-,oo :,(0, o)= +, then

lim -a (0, w) y(0, o)-E[y(0)[_](o) 0.
t-oo s=l

Proof. For each E 0 define the random variable

&(o) := X -;’ (O)[y,(O)-E[’r,(O)IY:-,]], o(0) := o.
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Note that if.d 0 for s odd then 0;-1 0 by (11). Hence, l(ffs O,s is odd)= 1(0_1 0,
s is odd) thereby making ,(0) measurable with respect to .-,-1. Hence, {&(O), t} is
a martingale. Also by calculations resembling those for E[A 2 (0)] in Lemma 2,

E[8 (0)] E i E[- (O)[’Y(O)-E[s(O)I;-]]I;-I]
s=l

E s-2 (0)1(6,_, 0, s is odd)E[{(x’F(O)x ^ 1)

-E[x’sF(O)x ^ 1]_1]}1_]

<-_E sc-:(O)l(_=O, s isodd)=E :-2(O)[:s(O)-sc_(O)]
s=l s=l

Again, as in Lemma 2, the martirtgale convergence theorem applies and Kronecker’s
lemma gives the desired result. 71

LEMMA 5. Let w be a vector of independent mean zero, variance one normal
random variables. IfF # O, then there exists e >0 such that

E[(w + a )’F’F(w + a )] -> e for every vector a.

Proof. Let F (fii) and denote by (Fa)i the ith element of Fa. Since F # 0 there
is some row, say the/th, for which Y,;x (f0)2>0. Now

E[(w +a)’F’F(w +a) ^ 1] Prob ((Fw +Fa)’(Fw +Fa)>= 1)

=> Prob ([(Fw)t + (Fa)]z __> 1)

)Prob fljW > 1 fljaj
j=l

+ Prob fliWi <= 1 ftia

_->2 Ix ’( 27r
i=x
f exp-(iz,\j=l f2

-1

since the variance of E/=I fljWj is E/=I f/" Taking e to be the last integral, the proof
is concluded.

]_.EMMA 6. IrE(O) 0 and limt_. set(0, w) +oo, then

liminf-l(o, w) i Y(O,w) >=e>O.
t s=l

Proof. By Lemma 5,

E[w(0)I_I] E[(x’’(O)F(O)xs ^ 1)1( 0, s is odd)l-l]
l(0*,_x 0, s is odd)E[(A(O)X_l +B(O)u-x + ws)’

F’(O)F(O)(A(O)x_I +B(O)u_ + w) ^ 1[_]
I>-e (Os =O,s isodd)
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Hence

and the result follows from Lemma 4.
THEOREM 7. If

vr’ (e, ,o) (0, ,o) 1( 0, s is odd).
s=l s=l

e;-1 (0, o 1[:,(0, o1-1],

t-1

(19) lira sup (in t)-I E l(ff(o) 0") > 0,
t-oO S=0

then

(20) A (0") +B (O*)K (0") A (?o) +B(O)K (0").

Proof. By assumption, therefore, there is a subsequence {tk} such that

iim (In tk)-f, (O*, o) > 0.

We may without loss of generality also suppose that Ok (w)= 0* for every k. Noting
that G(o)=O*=>(O*,o)=F(O*)x(o), we have

lim inf (ln tk)- ’ (0", w)(0", w)
k =0

lim inf (ln tk)-1 l(ff()= 0", S is odd) ’(0", )&s(0*,
k =0

(21) lim inf (In tk)- t l(ff()= 0", S is odd) x’()F’(O*)F(O*)xs()
k =0

lim inf (ln tk)- %(0*, )
k s=l

k k s=l

The first term in the RHS of (21) is positive by assumption. If F(O*)0, then the
second term is also positive from Lemma 6. This would contradict Lemma 3.

This result shows that if a limit point 0* occurs with sufficient frequency, then it
is indistinguishable from 0 under the feedback gain K (0"). Note that if a 0 does not

satisfy the condition of Theorem 7, then either (i) it occurs only finitely often or (ii)
its occurrences are very, very rare. In some sense therefore the Closed-loop consistency
properties of such limit points are unimportant and may be neglected.. Thus Theorem
7 provides valuable information regarding the limit points which occur with sufficient
frequency for uS to take note of their occurrence, and in particular, the closed-loop
gain is identified for such limit points.

6. Convergence oI adaptive control law. Since the true system corresponds to
0, a control input u, K(O)x, would be optimal. Here we show that for the present
adaptive control law (11), (12) which is computed without knowledge of 0,

t--1

(22) lim (lnt)- l(u K(O)x)=O a.s.
t S=0
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Note that this is weaker than claiming (which we do not)

u, K(O)x, --) O.

However for practical purposes (22) is sufficient since the time instants at which the
control input u, is not optimal are very, very rare. Later, in 8, it will be shown that
(22) leads to convergence of the actual cost incurred to the true optimal cost achievable
if one knew 0 at the start.

For K such that A(O)+B(O)K is stable (i.e., all eigenvalues strictly inside the
unit disc) denote by P(K, O) the unique (within the class of symmetric nonnegative
definite matrices) positive definite solution of

(23) P(K, O) O +K’RK + [A (0) +B (O)K]’P(K, O)[A (0) +B (O)K]

and set J(K, O):= tr P(K, 0). Note that J(K, O) represents the cost of using a feedback
control law u Kx on the system 0. Note that

(24) J(O)=J(K(O), O)<-J(K, O) wheneverA(0)+B(0)K isstable,

because K(O) is the (unique within the class of stabilizing feedback gains) optimal
feedback gain for system 0.

THEOREM 8.
t--1

lim (ln t)-1 E l(K(s) # K(O))= 0 a.s.,
toO S-----0

and (22) also holds.
Proof. Fix to and let 0* satisfy (19). Then J(K(O*), O)=trP(K(O*), 0) is well

defined since the LHS of (20) and therefore the RHS of (20) is stable. By (20) and
uniqueness of solutions to (23) J(K(0"), 0) J(K (0"), 0"). By (24) it therefore follows
that

(25) J(O)<-_J(K(O*), O)=J(K(O*), O*)=J(O*).

But (19) also implies that 0* is a limit point of {fit(w)}, and by Lemma 2, it follows
that equality holds throughout (25). Thus, it follows that K(0") is the optimal feedback
gain for 0. But by the uniqueness property (9.iii),

(26) K(0") K(0).
Since (19)= (26) it follows that,

t-1

lim sup (ln t)-1 5-’. I(K (ff (to)) # K(0))
t--oo s=O

t-1

lim sup (ln t)-1
too {0": K(O*)K(O)} s=0

t--1

=< Y’. lim sup (In t)- Y. l(Os(tO) 0") O.
{0": K(O*)K(O)} too s=0

Equation (22) now follows trivially.

7 $b|l|y rels. In this section we demonstrate the stability of the overall
system by showing that for every integer p there is an M with

--1

(27) lim sup -1 E IIx ll -<-M < 0o a.s.
s=0

This will be used later in 8 to prove optimality of the cost incurred.
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Note that Theorem 8 does not rule out the occurrence of an infinite set ofttimes
{tk} at which K(ff,k) K(0). At such times tk the control input utk K(t)xt can very
well be destabilizing in the sense that A(O)+B(O)K(t) may be unstable. The
purpose of this section is to show that the rarity of occurrence of such a set of times
as given by Theorem 8 guarantees (27).

We first study the behavior of the scalar difference equation

(28)

and examine conditions on (yt} and {e,} which ensure that lim sup,_.o -x yt-xo= y<o.
Later in Theorem 12 we shall relate yt to [Ix,(to)ll and thus succeed in showing (27).
The following conditions are imposed on (28)’

(29)
(i) 0=<yo<O.

(ii) 0 < a < 1 =< b <o are arbitrary and for every either

% a or % b.

(rid m defined by mt := 2=o 1(,/ b) satisfies (ln t)-lm O.

(iv) {e} is a nonnegative sequence satisfying

limsupt-1 Y’. e=6<o.

(v) There is an increasing {4,} with e, <= 4’ for every and

lira sup (ln t)- In O < 1.

LEMMA 9.

Proof. First consider the case yo 0. Let to := 0 and recursively set ti/l := inf {t >
ti’yt b}. Then

(t-__l y]) t-1 t-1

Yt Yt, + Y ej+l H Yt, 0 < ti < < tg+l,
]=ti 1=/+1

where throughout, by convention, vacuous products are set to 1 and vacuous sums
to 0. Since yt a for t < <

t--1

Yt bat-ti-lYti + e+la -i-1, 0 < ti < < ti+l
ti

and so

ti+l--1 [ ti+l--1 ] ti+l--1 t--1

E Yt-"Yt, l+b E at-t’-l+ E e+la
t=ti t=ti+ t=ti+l

t--j--1

y,,+ Y ei+t a< 1+ l-a i=,, t=i+l

(1+b-a) (1___.) t,/,-:
<-- Yti + Y’. ei+l.1 a i=t,
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Hence,

ti+l--1 tk+l--1
Z y,=Z Z
t=0 k=0 t=ttt

(l+b-a) (l__)t,/1-2Yt < Yt +1-a k=O ]=0
ei+l

l+b a Y. l(yi b)yi+
1-a ei+1-a j=o j=o

and so

(30) Yt l(’yk b)yk + ei+l.
t=o 1-a =o -a

Now we bound Yk as follows:

t--1 t--1 t--1 t--1

1=o t=/+l i=0 l=j+

t-1

(31)
=0

=o 1-a

Substituting (31) in (30)

(32)

(l+b-a) . ()"( 1 )( 1 )"-Yt -< l(yk b)bk + Y,
,=o 1-a k=O l+/-a 1-a =o

_(l+b-a)( 1), ()’- (1)2e,+< . Z l(y=b)+
1 a =o1-a 1 a k=o

:(e+b-a (,1 1 +10.(- 1 a ,--o1-a -a
m. +( _1 e,+.

If the initial condition yo > 0, then by linearity of (28) its contribution to t=o Yt is

(33) yo Yk a"-"’)b"’yo Yo i at=o k =0 t=0

The present result now follows by adding (32) and (33).
LEMMA 10. If (29.i)-(29.V) hold,

lim sup n - y <
n t=0 a

Pro@

lim._.sup n-am,O,( exp lim,_.sup n On + In

:exp {lim sup [{ (,,114’2)+ (ln m,, hi}--. \Inn ]
+ (1-n)In (ab--) -1} In

Similarly lim sup,_,oo n
and Lemma 9. [3

=0.

yo(b/a)""(1/(1-a))=O, and the results follows from (28.iv)
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LEMMA 11. There exists an increasing sequence {,}, lim sup,_. (In O,/ln t)< 1
with ({o" IIw,(o)llp > , i.o.})= 0 for every p e [1, ).

Proof. Note first that the particular norm used is irrelevant (since all norms on
the ith component of wt is normal, by Chebyshev’s" are equivalent). Since w t,

inequality,

C
Prob ([w,[ [a ) [a 2 for some c > 0.

Hence for any > 0, taking the L norm on
1/pProb (llw,II ,) Prob (llw,II

=Prob Iwl/" 2 Prob(lwl, ,,
i=

i=1

The present result now follows by taking 3/4 and using the Borel-Cantelli
lemma.

THEOREM 12. For every p [1, ), there exists an M(p) >0 such that

1’lim sup IIxll M(p) a.s.
t S=0

Proof. Note that for every e > 0, a, b,

2ab 2(ea)(e-b) (ea)2 + e-2b 2

and so

(a + b)2 (1 + e2)a2 + (1 + e-2)b 2.

Repeating this process n times, we get

(a+b)2"(l+e a +(l+e b

Thus, since x+ [A(O)+B(O)K()]x + w+x, we have

2)2n--1(34) IIx,+xll= (1+ llA(o)+(O)K(,)ll=llx,ll=+(1
Note that (34) is true regardless of what norm we assume on the statespace, as long
as the norm on matrices is the corresponding induced operator norm. Let us now
choose these norms carefully. Since A(0) +B(O)K (0) is stable by (9.ii), its spectral
radius is less than 1. By [17, 1.3.6] there exists a norm on the state space such that
under the corresponding induced operator norm IIA (0) +B(O)K(0)] < 1. Hence, for
some e > 0, we will have

a := (1 + z)="-llA (0) + (O)K (0)ll= 1.

2)2n-1Now define b := l+max{(l+e IlA(O)+(O)K(O)IIZ"’O}. Fixing w, we see
from (34) that

I1,+()11" v, llx,
where y:= I(K((w))=K(O))a + I(K(O(w))K(O))b and e+ :=(1+e-2)2"-
IIw,+()ll=, Clearly, therefore, the solution of (28) is an upper-bound for
satisfies (29.ii) by definition and satisfies (29.iii) rom Theorem 8. (29.iv) is satisfied
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because of the applicability of the ergodic theorem to {llw,/ll12"}. (29.v) holds due to
Lemma 11 and also note that 8 in (29.iv) does not depend on to. Hence, by Lemma
10 we can deduce that

lim -1 Ilxsll= =<M<c a.s.
t--o s=0

The corresponding result for everyp 1, ) follow since IIxll =< 1 / IIxll= gor I -<_ p _<_ 2,
Note also that the present result once established for a particular norm becomes true
for every norm because of the equivalence of norms on finite dimensional spaces. !-]

$. Optimality ot incurred cost. The last result which we wish to establish is that
the cost of using the given adaptive control law is optimal and cannot be improved
even if the value of the unknown parameter is known at the start.

LEMMA 13.

(35)

(i) Y’. t-=llx,II= < o a.s.,
t=l

(ii) lim t-llx,II= 0 a.s.
t--

Proof. Let zt := ts= IIxll=, o:--0. Then

E t-llx,II" E (zt-z,_)/2}
t=l t=l

<__ -2 t-2(Zt--Zt_l)
t=l t=

(Schwarz inequality)

<_ -2 Zt(t-2_(t+l)-2
t=l

--2_--<

where the convergence follows from Theorem 12. With p 2, (35.i) is proved. With
p 4, we obtain Y.,L t-=llx,II < o almost surely from which we have/-=llx,ll’-, 0 almost
surely.

THEOREM 14.

t-1

lim - Z x’sOxs +u’sRus =J(0)
t--o S=0

aoSo

Proof. The proof that we provide is similar to [9, Thm 7.17] and [19], [20] of
P. Mandl. Writing K(t)=K(O)+[K(t)-K(8)] and using (7) and (9.i) gives the
matrix identity

0 +K’(dt)RK(dt)+[A(O)+B(O)K(dt)]’P(O)[A(O)+B(O)K(d,)]
[K (if,)-K (0)]’[R + B’(O)P(O)B (0)ILK (if,)-K(0)] + P(O).

Define now the random variable

Yt+l := x tOxt + u ’tRut -l(O) + x t+P(O)xt+ x ’tP(O)xt
(36)

x[K(dr)-K (0)]’JR +B’(O)P(O)][K (dr) K (0)]xt.
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Using the above matrix identity and substituting x,+l [A (0) +B(O)K (dt)]x, + w,+l

and u, K(O,)x gives

(37) y,+x=W+P(O)w,+-J(O)+2w+P(O)[A(O)+B(O)K(O,)]x,.
Equations (37) and (8) now yield

(38) E[y,+l] 0.

Additionally from (37) we also obtain

Ely2 It] a + x’[A(O),+1 +B(O)K(,)]P(O)b
+4x[A(0) +B(O)K(d)]’P(O)P(O)[A (0) +B(O)K(d)]x,,

where

Defining also

a :=E[{w+lP(O)w,+x-J(O)}2],
b :=4E[wt+(w+lP(O)w,+a-J(O))].

c :=max {II[A(O)+B(O)K(O)]P(O)II: 0 0},
we have

Ely 2
,+x I,] <- a + cllbllllx,II + 4c=lix,IIz <- (a + c Ilbll)+ (4c z + cllbll)llx,II.

From Lemma 13 it then follows that ,=1 t-E[Y ,+1 It]c a.s. This together with
(38) yields from a version of the stability theorem [9, Thm 2.18],

(39) limt-1 ys=0 a.s.
t--oO s=l

We also have by the Schwarz inequality, Theorem 18 and Theorem 12 that

t-1

lim sup. -1 , x’s[K()-K(O)]’[R +B’(O)P(O)B(O)][K()-K(O)]x
s=O

t-1

<lim sup IIU +B’(O)P(O)B (O)IIt-1 E IIK() K(O)llllxll
t-oO s----O

(40) =< lim sup IIR +B’(O)P(O)B (o)11
t-.- E IIK(O)-K(O)]]4 t- IIx ll

s=0 s=0

=0 a.s.

From (39), (36). Lemma 13 and (40) we get

0=limt-1 Y y
t--3

t--1

=lim - E (x’sOx+u’Ru)-J(O)+t-a(x’tP(O)x,-x’oP(O)xo)
t--oO s=O

,_1 ]-t- E x’[K(s)-K(O)]’[R +B’(O)P(O)B(O)][K()-K()]Xs
s=O

t-1

x ’Rus) J(O).-limt-1 Y’. (xsQ + u
t--O s----O
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9. Concluding remarks. The situation we have studied in this paper is limited in
its formulation. However, we have presented a new adaptive control law which is
impervious to the closed-loop identification problem, which issue does not appear to
have been fully resolved in the literature. Our results and analysis are fairly complete,
and we prove important properties such as asymptotic closed-loop identification,
convergence of the adaptive control law, closed-loop stability and overall system
optimality with respect to the cost criterion involving a control cost.

Extensions of the problem considered here to overcome the limited formulation
are desirable. Future attempts should certainly be directed at (i) allowing temporal
noise correlation and (ii) allowing for the parameter set (R) to be compact.

Acknowledgments. The results of 7 are from 18] and were obtained in collabor-
ation with Tom Seidman, to whom the author is grateful.
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ON THE EXTENSION OF CONSTRAINED OPTIMIZATION
ALGORITHMS FROM DIFFERENTIABLE TO

NONDIFFERENTIABLE PROBLEMS*

E. POLAK’, D. Q. MAYNE AND Y. WARDI

Abstract. This paper presents three general schemes for extending differentiable optimization
algorithms to nondifferentiable problems. It is shown that the Armijo gradient method, phase-I-phase-II
methods of feasible directions and exact penalty function methods have conceptual analogs for problems
with locally Lipschitz functions and implementable analogs for problems with semismooth functions. The
exact penalty method has required the development of a new optimality condition.

Key words. Optimization algorithms, nondifferentiable optimization, locally Lipschitz functions, con-
strained optimization, phase I-phase II methods.

Introduction. Over the last several years, we have witnessed systematic efforts
first to extend the concepts of the calculus to locally Lipschitz functions (see e.g. [C1],
[L1], [L2]) and then to extend optimality conditions for differentiable optimization,,
problems to optimization problems with locally Lipschitz functions (see e.g. [C2], [C3],
[Pll], [P15], [P13]). As a result, we now have an analogue of the extended
F. John multiplier rule for nondifferentiable mathematical programming problems
[C2], analogues of Lagrangians [C1] and an analogue of the maximum principle for
nondifferentiable optimal control problems [C3].

The development of nondifferentiable optimization algorithms, for the nonconvex
case, has been far less systematic. Two distinct approaches have emerged" that of the
Kiev school, which constructs algorithms without a monotonic descent property IS1],
[$2], [P12], and the one favored in the West, which always insists on monotonic
descent of the cost or of a surrogate cost [B2], [G1], [P2], [P4], [PT]. In this paper
we are concerned with algorithms of the second type. Although the literature on
nondifferentiable optimization algorithms of the second type is still extremely small,
two principles seem to have emerged. The first principle (see, e.g. [B2], [G1], [L2],
[D2], [PT]) is that in extending a differentiable optimization algorithm to the
nondifferentiable case, it is necessary to replace gradients, not with corresponding
generalized gradients, but with bundles of generalized gradients in order to make up
for the lack of continuity of the generalized gradients. The bundle-size parameter (e)
then has to be driven to zero as an optimal point is approached. The second principle
was developed in [M1], [L2], [L5], [W1], [W2], [P2], [PT]. The gist of it is that when
functions are semismooth, it is possible to get a good approximation to the nearest
point from the origin to their generalized gradient bundles in a finite number of
operations. The importance of this fact is that it defines an important class of
nondifferentiable optimization problems for which one can obtain implementable
algorithms, i.e., algorithms in which all the computations that are required to be
performed in each iteration can be carried out in a finite number of simple operations.
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In this paper we develop three general schemes for the extension of differentiable
optimization algorithms to nondifferentiable problems, The first one is for uncon-
strained optimization, while the remaining ones are for constrained optimization
algorithms. To illustrate the applicability of these schemes, we use them to construct
several conceptual algorithms for optimization problems with locally Lipschitz func-
tions. These include an extension of the Armijo gradient method (previously presented
in [P7]), extensions of two phase-I-phase-II methods of feasible directions of the type
discussed in [P3] and extensions of exact penalty methods [C5], [P14]. The extension
of exact penalty methods has required the development of a sharper optimality
condition for constrained problems than the ones found in [C2]. Finally, for the
semismooth case, we show that the conceptual algorithms give rise to implementable
algorithms in a totally systematic manner. We hope that the results presented in this
paper will contribute to the understanding and development of nondifferentiable
optimization algorithms.

1. Preliminary results. Our analysis of algorithms for nonsmooth optimization
will be based on a very small number of nonsmooth analysis results. For the sake of
convenience, we begin by summarizing these; for details and proofs, the reader is
referred to [C1], [C2], ILl].

DEFINITION 1.1 [C1]. Let f" R"- R1 be locally Lipschitz continuous. The gen-
eralized gradient of f at x is defined to be the set

(1.1) 8f(x) A co { lim Vf(x+v)}
viO

where Vf(x) denotes the gradient of f(.) at x, co denotes the convex hull of a set,
and the vi are such that Vf(x + vi) exists1, and limv,_o Vf(x + re) exists.

DEFINI:ION 1.2 [C1]. Let f" N" --> N be locally Lipschitz continuous. The gen-
eralized directional derivative of f at x in the direction h is defined to be

(1.2) df(x; h) a__ lim
y--,O
;xO

f(x +y +Ah)-f(x +y)

The generalized directional derivative always exists and is well defined by (1.2)
(see If1]).

FACT 1.1 [C1]. Let f" " be locally Lipschitz continuous. Then
a) Of(x) exists and is compact at all x
b) Of(x) is bounded on bounded sets.
c) Of(.) is upper semicontinuous in the sense that {xi --> , yi

{ e 0f()}.
d) df(x v) exists for all x, v e
)

(1.3) df(x V max (s, v).
Of(x

f) Whenever the directional derivative dr(x; v) exists,

(1.4) df(x v <- df(x v ),

and furthermore, when f is C at x, equality holds;

Since f(" is locally Lipschitz, Vf(" exists almost everywhere.
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g) If x and h are such that df(x + sh h) <-_ -p < 0 for all s e [0, 1], then

(1.5) f(x+sh)-f(x)<-_-aps Vse[0,1], Vae(0,1).
FACT 1.2 (mean value theorem) [L1]. Let f:R"->R be locally Lipschitz con-

tinuous. Then, given x, y e ,
(1.6) :(y)-f(x) (, y -x)

for some e Of(x + s (y x)) and s e [0, 1].
FACT 1.3 [C2]. Let f:_.>x, g:,_., iem_a_{1,2,...,m}; h:,_.,

f e a__ {1, 2, , l} be locally Lipschitz continuous and let be a solution of the problem

min {f(x)lg(x) <-0, m, h(x)- 0, ] i}.(1.7)

Then

(1.8) 0 co {af(:)U{ag’(2)li eI(2)}U{tah()lj el}},

where I() a__ {i e mlg () 0} and e {+ 1, -1}.
The above result is not quite strong enough to be used in the context of exact

penalty function methods, and hence we have had to propose the new optimality
condition stated below.

THEOREM 1.1. Let f, gi, era; h i, j el, from R into R be locally Lipschitz
continuous. Let be a solution to (1.7) and let F " --> be defined by

.(1.9) F(x)A max {f(x)-f(); g’(x)+, era; Ih(x)l, " e},where gi(x)+ a__ max {gi(x), 0}. Suppose that {xlF(x)=O} has measure zero. Then

(1.10) 0 e co {Of(;) U {Og’ ()+ (q g’ (;)[ie 1()} U {tihi(;)lj e }}
where I () {i e mlg () 0} and ti e {+ 1, 1}.

Proof. Although F. Clarke has proved the above result for a somewhat more
general case [C4], we shall only give a proof for the slightly restrictive case where
is also a local solution to min {f(x )lgi (x <- O, era; tihJ(x)<=O,/’el}. (We note that
(1.8) is also an optimality condition for this case.) Now, max {gi(x)/, era; Ih(x)l,
/’el}>0 for all x which are infeasible and f(x)-f()>-O for all x which are feasible.
Hence, F(x)>=O for all x. Hence =argminxa-F(x), so that 0eOF(). Now, by
assumption, {x IF(x) 0} has measure zero, and hence (1.10) follows directly from the
fact that OF() involves the limit of gradients Vg(x) evaluated only at points x where
g (x)>0. q

2. Unconstrained Oltimization. Let f" R" R1 be locally Lipschitz continuous.
Consider the problem

(2.1) min f(x ).
x.

We shall consider algorithms for solving (2.1) of the form

(2.2a) xi+ Xi + hihi,

(2.2b) hi arg max If(x, + flkhi)-f(xi) <--
kelhl

where a,/ e (0, 1), + {1, 2, 3, }, and 6 < 0. We recognize these algorithms as a
generalization of the class of descent algorithms, utilizing the Armijo step size rule
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fAll, that were discussed by Polak, Sargent and Sebastian in [P9] for the differentiable
case. Although most, if not all, ditterentiable unconstrained optimization algorithms,
of the form considered by Polak, Sargent and Sebastian, can be analyzed in terms of
the convergence theorem [P8, Thm. (1.3.10)], their structure permits the introduction
of more readily verifiable assumptions than those found in [P8, Thm. (1.3.10)].
Consequently in [P9] we find (in slightly different form) the following result, which
is intended to be used for algorithms of the form (2.2a, b) when 8i df(xi;hi).

THEOREM 2.1. Suppose that f"" is C and that there exist two continuous

functions N, N2" [+, which vanish only at points x for which Vf(x) O, such that
for hi in (2.2a)

(2.3) df(xi hi) (Vf(x), hi) <-- -N(xi),
(2.4) Ilhll <- Nz(x,)

hold.
Then, given an 2 such that f(2) O, there exist a > 0 and a k N+ such that

for all xi B(2, tS)--a {x   lllx

(2.5) f(xi + Ahi)-f(xi) <- loldf(xi hi) <- -ActNl(2) VA e [0, fl].
2

Relation (2_.5) leads to two conclusions: for all Xi B (2, 5)
(i) /i k, and
(ii) f(xi+l)-f(xi) <=-/N1(2)/2,

i.e., the algorithm map defined by (2.2a, b), with 6i a__ df(xi; hi), is locally uniformly
monotonic (see [T1]). As an immediate consequence, we see from [P8, Thm. (1.3.9)]
that any accumulation point of {xi} satisfies Vf()= 0.

Assumption 2.1. From now on, we shall assume that the function f:"--> is
locally Lipschitz continuous.

Any attempt to extend Theorem 2.1 to the case of f(.) locally Lipschitz only, by
replacing df with df in (2.3), is doomed to failure, as can be seen from the counter
example in [W2]. This is due to the fact that although an hi satisfying df(xi hi) <-

-Nl(Xi) and (2.4) is obviously a descent direction, it is not possible to ensure that the
step size hi is bounded from below in a ball about an 2 such that 0 0f(2). To insure
that a nonsmooth optimization algorithm is locally uniformly monotonic, it becomes
necessary to "look ahead" for the "corners" of f(.) by "smearing" Of(x), as follows.

DEFINITION 2.1. For any e > 0, we define the e-smeared generalized gradient by

(2.6) Of(x) a-co { t30f(x’)}.
x’B(x,e)

FACT 2.1. For any e > 0, Of(x) is compact, bounded on bounded sets; furthermore
Of(.) is upper semicontinuous (u.s.c.) (see [PT]).

DEFINITION 2.2. For any e > 0, we define the e-smeared generalized directional
derivative of f(’) at x in the direction h by

(2.7) df(x; h) &- max (:, h).

With the introduction of df(.; .), and ignoring for the moment the problem of
choosing e > 0 as well as that of computing Of(x) and d(x h), we are ready to extend
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Theorem 2.1 to the nonsmooth case. We shall refer to algorithms which assume that
Of(x) and d(x;h) can be computed exactly, as conceptual.

In anticipation of the application of the new theorem to conceptual optimization
algorithms for nonsmooth problems, we find it necessary to relax the continuity of
N1, N2 in Theorem 2.1 to a requirement which is somewhat weaker than semicon-
tinuity, as we shall now see.

THEOREM 2.2 (conceptual algorithms). Let e > 0 be given. Suppose that there exist
two functions N, N2 -> + such that:

(i) if Nl(x)N(x)=O, then OeOf(x)
(ii) for every x " such that 0

_
Of(x), there exist a p (x) > 0 and b(x) > O, 1, 2,

such that for all x’ B (x, p (x)),

(2.8a) Nl(X’) >= b (x ),

(2.8b) N2(x’)<=b2(x).

Now consider the process (2.2a, b) and suppose that for 0, 1, 2,...,

(2.8c) 0d e’f(xi, hi) <: -N(xi),

(2.8d) Ilhil[ N2(xi).

Then, given any g such that 0_ Of(g), there exists a r+ such that for all xi
B(g, p(g)) for all h [0,/3 ]
(2.9) f(x, + Xh,)-f(x,) <= Xadf(x,; h,) <- -Xab(2).

Proof. Let g s" be such that O:Of(g). Let k7+ be such that
Then, for all xisB(g,p(g)) and for all A s [0,/3], (xi+Ahi)sB(xi, e), and hence for
all such x and A,

df(xi + Ahi hi) max (, hi) <= max (:, h,)
,gf(x+Xh) ,9f(x)

(2.10)
df(xi hi) -Nl(Xi) -bl(2).

The desired result now follows from Fact 1. l(g).
COROLLARY 2.1 (conceptual algorithms). Let e > 0 be given and suppose that the

assumptions in Theorem 2.2 hoM. Then any accumulation point of a sequence {xi}io
constructed by an algorithm of the form (2.2a, b) with df(xi; hi)6i -N(xi) satisfies
ood(;).

Proof. Suppose that x, with K {0, 1, 2,...} infinite, and that 0f(;).
Then,y Theorem 2.2, there exists an io and a M+ such that for all i0 and K,
AB and

(2.) f(x,+)-f(x,)a,df(x,; h,)x,,,-().
Now, (xi)} is monotonically decreasing and xi ;; hence, since f(.) is continuous,
f(xi)f(;). But this contradicts (2.11) and hence we are done.

The simplest algorithm in the class considered in Theorem 2.2 can be viewed as
an "e-smeared" steepest descent method. It sets

(2.12a) h,=h(x,)&-Nr(Od(x,))&-argmin{llhlllh 0d(x,)}

and

(2.12b) 6i -Ilh,]l=.
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Hence

(2.13) df(x,; h,) -IIh,II.
Setting Nl(xi)= IIh,IIa, we see that NI(. is lower semicontinuous (1.s.c.) because 0(.
is u.s.c. (see proof in [P7]). Next, if we define N2(x) by

(2.14) N2(x) max {llhll h o(x)I,

we see that IIh,ll<-N(x,) and that N2(’) is u.s.c, because oJ’(.) is u.s.c. (see proof in
[P7]). Hence we can set b(x) Nl(X)/2 and b2(x) 2N2(x) to show that this algorithm
satisfies the assumptions of Theorem 2.2.

Obviously, we would prefer to have algorithms which generate accumulation
points such that 0 e 0f() rather than 0 e 0[(), with e > 0. Hence, it is necessary
to propose at least one e-reduction scheme. The most natural thing to do is to reduce
e as xi approaches a stationary point. This fact is not postulated in the theorem below,
but unless it holds it is not possible to find a function N(’).

THEOREM 2.3 (conceptual algorithms). Suppose that there exist three functions
N1, N2, N3 --> + such that:

(i) if N(x)N2(x)N3(x)=O, then OeOf(x),
(ii) for every x e R"such that O Of(x ), there exist a p (x > O and bi(x > O, 1, 2, 3,

such that for all x’ B (x, p (x))

(2.15a)

(2.15b)

(2.15c)

N(x’)<-b(x),

N2(x’) <-- b2(x ),

N3(x’)>=b3(x).

Now consider the process (2.2a, b) and suppose that for 0, 1, 2,. ,
(2.15d) odN3{x,)f(xi, hi) <- -NI(xi),

(2.15e) IIh, II-<- N=(x,).
Then, given any such that OOf(Y), there exists a eN+ such that for all x
B(2, O()), for all a e [0,/37],

o(2.16) f(xi +ahi)-f(xi)<=AotdN3(x,)f(xi; hi)<--Aotb().

Furthermore, any accumulation point ofa sequence {xi}i0 constructed by an algorithm
of the form (2.2a, b) with i dON3 (xi)f(xi; hi) satisfies 0 f().

We omit a proof of this theorem since it is obtained by a trivial modification of
the proofs of Theorem 2.2 and Corollary 2.1.

We shall now exhibit a natural candidate for N3(x) in extending the "e-smeared"
steepest descent method to one with an adjustable e.

Thus, let v e (0, 1), e0>0, a >0 be given. Let
k(2.17) % x {ele =eov ,k e N+}U{O}.

Next, for any e =>0, let as in (2.12),

(2.1 8) h (x) & -Nr (Of(x)) a= -arg min {llh 1121 Of(x )}.

Then we define " -> by

(2.19) e (x) &max {e g[ Ilh(x)ll2>-&}.
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PROPOSITION 2.1. a) For every 2 E R" such that 00f(2), them exists a p3(2)
such that

(2.20) e (xi) >= ve (2) > 0 lxi B (2, 03(2)).

b) If xj --> as --> oo with 0 Of(), then e (xi) -’> e

Proof. a) Let 2 be such that 0 0f(2). Then, since 0f(.) is u.s.c., there exists an
el >0 such that IIh()ll=_>-llho()ll=>0. Hence, since e’ <e" implies that IIh,()ll=_->
IIh,,()ll, it follows that

(2.21) e (2)>-max {e ’le-<man {el, 2- Ilho(2)112}} > 0.

Next, since by the maximum theorem in [B1], IIh)(.)ll is 1.s.c., and IIh)()ll=_->
6e (2), there exists a 03(2) > 0 such that

(2.22) Ilh)(x,)llz _-> IIh(x)ll= _->e () for all xi B (2, 03(2)),

and hence (2.20) follows directly.
b) Suppose that 0 0f(). Then Ilho()llz- 0 and for any e > 0 IIh ()11=- 0. Hence

e ()= 0. Next, suppose that xi--> as/"--> oo and that lim e (xi)-> g > 0. Since we must
have B(xi,:) for all f sufficiently large, we must have that OOf(xi), for all/"
sufficiently large and hence IIh,)(x)ll=- 0 < e(x;) for all/"K sufficiently large.-But
this contradicts the definition of e (xj), and hence we are done. 71

The final version of the progressively smeared steepest descent method is
sufficiently important to be stated formally"

ALGORITHM 2.1 (conceptual).
Parameters" , , u (0, 1), e o > O, 6 > O.
Data" Xo
Step 1" Set 0.
Step 2" Compute hi a__ hx,)(xi).
Step 3" Compute

(2.23) Ai arg max {/3 k [f(xi + khi)--f(Xi) < aBkd (xi hi)}.(xi)

Step 4: Set Xi+l Xi -- Aihi, set + 1 and go to step 2.

TI-IEOREM 2.4. Suppose that {Xi}i=O is a sequence constructed by Algorithm 2.1.
Then any accumulation point o[ {xi} (i[ it exists) satisfies O Of().

Proof. We only need to show that the assumptions of Theorem 2.3 are satisfied.
Clearly, we must set N3(x) e (x), and by Proposition 2.1, it has the required properties.
Next, we set N(x)-IIh)(x)ll. Then the required properties of Nx(.) follow from
those of e(’) (with px(x)=p3(x)) and, by inspection,

odx)f(x h<,)(x)) N(x).

Finally, we set N2(x) =a arg max {lihlll h 0of(X)}. Since N2(" is u.s.c, by the maximum
theorem in [B 1], we are done. [3

Next we turn to implementable algorithms. These are characterized by the fact
that they approximate the sets Of(x) by means of finite operations while retaining a
great resemblance to the conceptual algorithms from which they are derived. It does
not appear to be possible to construct a truly useful general convergence theorem of
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the form of Theorem 2.3 for such algorithms. Instead, it seems simplest to use a minor
modification of [P8, Thm. (1.3.10)], as follows.

THEOREM 2.5. Consider algorithms of the form (2.2a, b). If ]:or every 2 R" such
that 0 : Of(2) there exist a +, a g> 0 and a > 0 such that for all x B (2, ),

(2.24) f(x, + [3h <f(x, < ;g,
then any accumulation point of a sequence {xi}io constructed by such an algorithm
satisfies 0 Of().

Proof. Suppose xi .+K and 0 Of(). Then there exists an i0 such that for all
K, -> i0, hi ->/3 and hence

(2.25) f(xi+)-f(xi)<--a; Vi>=io,

But g(Xi)} is monotonically decreasing and f(.) is continuous; hence f(xi)-+f() as
--> oo. But, clearly, this contradicts (2.25), and we are done.

At the present time, we only know how to construct implementable algorithms
for optimization problems in which the function f(. is semismooth (see [M1]).

DEFINITION 2.3 [M1]. A locally Lipschitz continuous function f(.) is said to be
semismooth if it is directionally differentiable and if for any x, h R", and for any
sequences {ak}R+, {zk}, {Vk}CR", such that Ak’+0, (1/a)v-+0 and ZkS
Of(X + akh + Vk), the sequence {(Zk, h )} converges to df(x h).

From our point of view, the most important property of semismooth functions,
which does not appear in the definition, is the following one:

PROPOSITION 2.2. Suppose that f R"- 1 is semismooth, then, given any x, h,
{ak}, {vk} as in Definition 2.3,

(2.26) lim df(x + Ah + vk h) df(x h ).

We assume, until the end of this section, that f(.) is semismooth. We are now
ready to construct an implementation for Algorithm 2.1, which satisfies the assump-
tions of Theorem 2.5. The implementation is based on the following observations
derived from results of Lemarechal [L2] and Wolfe [W1], [W2]. Suppose that xi
e > 0 are given and that 0 e c9ef(xi). Let Y, c9ef(xi) be the convex hull of a finite number
of points in Gf(xi) and let

(2.27) r/s -Nr (Y,).

Now, let k, N/ be such that

(2.28) fie < <lln ll
Then, either

(2.29) f(Xi at- ksTqs) f(x,) <-- - ze <11, 11= -c/ < IlNr (OJ(xi))ll2

holds or not. If (2.29) does hold, then hi rls turns out to be an adequate approximation
to h(xi), as far as convergence is concerned. If (2.29) does not hold (see Fig. 1), then
there must be a point/2 e [0,/3 ks] such that

(2.30) f(xi / I1 ,11=
and

(2.31) dr(x, / I,  11z.
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FIG. 1

Now suppose that /xj[0, ks],f 1, 2,’’’, are such that /xi /2 and that yj

Of(xi +/xF/s), for j 1, 2,. .. Then, because f(.) is semismooth,

(2.32) (yi, 3s).-)df(xi--s) as/’-,

and, consequently, given an (a, 1), there exists a o such that

(2.33) (yi, rt,)>_--cl[rt, a Vj>-jo.

Referring to Fig. 2, we see that if we set Ys+l =co (Ys O{yi}), rls+l=-Nr (Y+I) is
smaller than rts in norm. We can now replace rt by rl+x and return to the test in
(2.28), and so forth. This cycle of operations cannot continue indefinitely, because,
as shown in [P7], if s oo, then rts-0, which contradicts the obvious fact that
Ilnsll >= Ilh(xi)]l > o. Hence the test (2.29) will be passed in a finite number of operations.
Note also that /3 ks is locally (w.r.t. x) bounded both from below and from above.

f(xi)

yj ’r/S/l

FIG. 2
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Hence the convergence of the algorithm below is very easily deduced from the
preceding results. Note that the algorithm below uses a bisection procedure for finding
/2 and for constructing

ALGORITHM 2.2.
Parameters: e o > O, , , u c= (0, 1), &

_
(t, 1).

Data Xo I.
Step 0: Set 0.
Step 1: Set e =eo, s =0.
Step 2: Compute Y Of(x), a convex hull of a finite number of points in Of(xi).
Step 3’ Compute n =-Nr (Y) and kN+ such that
Step 4: If IInll < e, set e ue and go to step 2.
Step 5: If

(2.34a) f(xi + lkVls)--f(xi)<=  sll,  ll=,
(i) set hi r/s and compute the smallest ki N+ such that

(2.34b) f(x, + [3k’hi) f(x,) <--’llh, ll=;
(ii) set Xi+l xi + k’hi

(iii) set + 1;
(iv) go to step 1.

Step 6’ Set ] 0.
Step 7: Set lo O, ro =/ksllnsll=,/o ro/2.
Step 8: Compute a yj+l Of(xi + rrl).
Step 9: If

(2.35) >_- IIn ll=,
set

(2.36) Ys+ co ({y+} t.J Ys),

set s s + 1 and go to step 3.
Step 10: If

(2.37) f(xi "" [d,j’gls f(Xi -,11, =,
set r+l =/xj, l+1 l,/x+ (r+ +/j+1)/2.
Else set r+x r, I+1 =/x,/Xj+l (r+ +/+1)/2.
Step 11" Set ] =/" + 1 and go to step 8.

The success of Algorithm 2.2 depends on the following fact, due to Wolfe [Wl],
[W2] (see also [P7]).

PROPOSITION 2.3. Let S’ be a compact, convex subset of a compact convex set S
and let 6 (0, 1). Let h’ Nr(S’) and let g S be such that

(2.38a) (g, h’) <_- allh ’11.
Then h" Nr (co {g, S’}) satisfies
(2.38b) IIh"ll= <_-max {6, 1-(1 -a)llh’ll=/4f=}llh’ll
where C >= max {llgll g s}.

THEOREM 2.6. a) If Algorithm 2.2 generates a finite sequence {xi}_-o, lamming
at xr, i.e., with construction stopping and the algorithm cycling in the loop defined by
steps 2-4, or steps 3-9 or steps 8-11, then 0 cf(x).



EXTENSION OF CONSTRAINED OPTIMIZATION ALGORITHMS 189

b) IfAlgorithm 2.2 generates an infinite sequence {xi}=0, then every accumulation
point of {xi}io satisfies 0 Of().

Proof. a) Suppose that the sequence {x} is finite with the algorithm jamming up
at xr, cycling indefinitely in one of the loops defined by steps 2 to 4 or steps 3 to 9
or steps 8 to 11. Suppose that 0 Of(xN).

(i) Consider the loop defined by steps 2 to 4. Since 0 Of(xr), e (x)> 0 (see
(2.19)) and hence for all e<=e(xr), YsOf(x), [[Nr(Ys)[l>-[INr(Of(xr))l[ >
IlNr (O(xN)f(xr))l[ >- e (xr) >- e, and hence no infinite cycling can occur in this loop.

(ii) Consider the loop defined by steps 8 to 11. This loop is always finite because
f(.) is semismooth and (2.34a) is not satisfied.

(iii) Consider the loop defined by steps 3-9. Since 0 Of(xs), e >-e (x) while in
this loop. Hence by Proposition 2.3,

(2.39) IIm/ll max {c7, 1 -(1 c7)llmll=/4f=}llmll=

where C max {11 111 Since Ilmll for all s, it is clear from (2.39)
that the sequence {r/s} must be finite, i.e., the loop defined by steps 3-9 is exited after
a finite number of operations. Consequently, the algorithm jams up at x only if
0 of(x).

b) Now suppose that the sequence {x} is infinite. Suppose that x _c, with
K {0, 1, 2,...} infinite and that 0 Of(). Then, by Proposition 2.1, there exists an
io such that for all K, _-> io, e (x) >_- ue () > 0. Consequently, for all K, >_- io
(2.34a) is satisfied with IIn ll_-> and Hence, by (2.34b),
for all K, >- io,

(2.40) ))2.

Now f(xi) :f() by continuity and {f(x)} is monotonic decreasing, hence, we must
have f(xi)f(), which contradicts (2,40). This completes our proof.

3. Constrained optimization: Conceptual algorithms. We begin by examining the
easiest case, viz., problems of the form

(3.1) min {f(x )[g (x) <= 0,/" m},

where f, gJ:R" gl are locally Lipschitz continuous. For the purpose of conceptual
algorithms, it is convenient to define the function

(3.2) O(x) A max gi(x)

and to treat problem (3.1) in the simpler form

(3.3) min g(x)[0(x) <= 0}.

In implementable algorithms, since we may not be able to obtain a formula for the
set 06(x), we may have to use the possibly bigger set

(3.4a) M(x)--a co { Ujt(x) Og(x)}
with

(3.4b) L (x) A {/" e mJg (x) >- 0 (x) e }.
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It is quite easy to construct an appropriate counterpart to Theorem 2.3, for algorithms
which generate sequences {xi} by a construction of the phase-I-phase-II feasible
directions type [P3], using parameters a,/3 (0, 1), viz.:

(3.5a) Xi+l Xi t- Aihi, 0, 1, 2, ",

argmax {[3kl(Xih-khi)--(X)<Ot[3k <0; k E+} if //](Xi)>0
Ai--

arg max {k[f(x -b [3khi) f(xi) <--OZkti <0; (Xi + khi) <= O; k sN+}
(3.5b) if I(Xi) O.

Since e-smearing was needed for the unconstrained case, it is a foregone conclusion
that it is also needed for the constrained case and we shall not go into any further
justifications of "e-smearing." Also, for the phase-I part of the algorithms to work,
we need the following:

Assumption 3.1. For all x R such that g, (x) _-> 0, 0 0g, (x).

This assumption ensures that a feasible point can be computed by means of an
unconstrained optimization algorithm in a finite number of iterations.

THEOREM 3.1 (conceptual algorithms). Suppose that Assumption 3.1 holds and
that there exist three functions
(3.6) N1, N2, N3:R ---> +
such that:

(i) /f NI(X.)N2(x)N3(x)=O, then either p(x)=0 and Osco(Of(x)t.JO(x)), or

b (x) < 0 and 0 Of(x),
(ii) for every x " such that N(x)N2(x)N3(x) > 0, there exist a p (x) > 0 and

bi(x) >0, i= 1,2,3, such thatfor allx’ B(x,p(x)),

(3.7a) N(x’)>=b(x),

(3.7b) N2(x’) <= b(x ),

(3.7c) N3(x’)>=b3(x).

Now consider the process (3.5a, b) and suppose that for all i,

(3.7d) do
N3(xi) (Xi, hi) <=ti <=-Nl(xi) if (xi) >=-N3(xi),

(3.7e) doN3x,)f(xi,hi)<=i <=-N(xi) if .y(xi)O,
(3.7f)

If {xi}=o is an in[inite sequence constructed by this process, then any accumulation point
Of {Xi}iC=o satisySes either () < 0 and 0 s 0f() or b(.) 0 and 0 s co {0f() [_J 0()}.

Proof. We note that we can distinguish between two cases: a) b(xi)>0 for all i,
and b) there exists an io such that (xi) <= 0 for all => io.

a) Suppose that 4,(xi) > 0 for all i, that xi __>c , with K {0, 1, 2, 3, ..}, and that
NI()Nz()N3()>O. Then, the process (3.5a, b) reduces to the one considered in
Theorem 2.3, and hence we conclude that (xi) -. But this contradicts the fact
that, by continuity of , ()->_ 0, and hence this case is impossible.

b l) Suppose that (xi)<-_0 for all i>=io and that xi-->, with b()<0, and
N()N()N3() >0. Then, because of our assumptions, there exist i,/s +, i _->io,
such that 4’(xi + hi) < 0 for all >= i, s K. Similarly, as in the proof of Theorem 2.3,
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there exist i2, /+, with i2>-il and /_->k7, such that Ai->_B
t;

for all i>=i2, iK.
Hence, for all K, > i2,

(3.8) f(xi+)-f(xi) <--ot’6i <- -/3 tb3(.) < 0.

But f(x) ",a for >-i0 and hence (3.8) implies that f(x) ", -oo, which contradicts our
assumption that x-. Hence this case is not possible.

b2) Suppose that $(x)-<0 for all i>-io and that x-:, with ()=0 and
N(;)N2()N3(;) > 0. Then our assumptions lead us to the conclusion that there exists
an il -> i0 and a/ N+ such that

(3.9a) f(xi + B;h)-f(x) < aB’dm,f(x; h) <=B,,
(3.9b)

and consequently, >=/3 . Therefore, (3.8) holds for all > il, K and the contradic-
tion follows exactly as for case b1). We have thus shown that if x-, then
NI()N2()N3(;) 0 must hold and hence the desired conclusion follows from assump-
tion i) on N, N, N3.

We are now ready to apply this theorem to two phase-I-phase-II methods in the
class of the ones presented in [P3] for ditterentiable optimization. We begin with the
simpler one. We shall need the following definitions. Let

(3.10) g,(x)+ &max {0, 0(x)}.

Let e o > 0 and u e (0, 1) be given and let

={e[e coy k U {0}.

Next, let /> 0 be given and let F:R" Rx be defined by

(3.12) F(x) & exp (-TO(x)+).

Finally, for any e -> 0, 6 > 0, we define

O+4,(x) a_ Og,(x) if 4,(x)>--e,
(3.13a)

b if O(x) < -e,

(3.13b) h (x) =a -Nr (co {Of(x), O+$(x)}),

(3.13c) h * (x) a__ -Nr (OO(x)),

(3.13d) 0(x a__g_ -max {llr(x )h (x)llz, II( 1 F(x )h (x)II=L
A(3.13e) h (x) F(x)h (x) + (1 F(x))h (x),

(3.13f) e (x) &max {e e lO(x)<-6e}.

We recognize h * (x) as a "steepest descent" direction for (. at an infeasible point,
while h (x) is a "usable" feasible direction when x is feasible. The vector h X(x) moves
from h * (’) to h (.) as x moves from the infeasible into the feasible region. This type
of construction is the essence of the algorithms presented in [P3] and ensures that
the possible increase in cost is kept in check as the feasible region is approached.

ALGORITHM 3.1 (conceptual).
Parameters: a,/3, v (0, 1), co, 6, y >0.
Data Xo
Step 0: Set 0.
Step 1" Compute hi h (xi). Stop if hi 0e(xi)
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(3.15a)
(3.15b)
(3.15c)

and we set

(3.15d)

Step 2: If O (xi) > 0, compute the largest stepsize fl k,, ki N/ such that

(3.14a) O(x +/ k’h) 0(x) ----<-’ IIh,II=.
If O(xi)<-0, compute the largest step size/3 k’, ki e N/, such that

(3.14b) f(x, +/ k’h)--f(x,) <---,llh,II=
and

(3.14c) O(x + ilk’hi)0
Step 3: Set x+l =xi-bk’hi, set =i + 1 and go to step 1.

To bring this algorithm into correspondence with Theorem 3.1, we define

Nl(X)-ol(x(x),
NE(X) arg max {lib [h e co {Oof(X), 0o+ (x)}},
N3(x) a-4-el(x),

= -IIh,II= for 0, 1, 2,....

LEMMA 3.1. For every e >--0 and any x

(3.16) IIh (x )ll= --> 0 a(x ).

Proof. Case 1. Suppose that 0 (x) < -e. Then IIh (x)ll= -0 (x).
Case 2. 0 (x) >- -e. Consider the function g: [0, 1] R1 defined by

(3.17) g (t) ____a [[th r (x) + (1 t)h (x)112 (1 t)2llh (x)112.

Then g (0) 0, g(1) Ilh (x)ll= e o and

d2

dt---- g(t) 2{llh (x)" h *(x)lla- Ilh
(3.18)

2{llh(x)ll2-2(h(x), h *(x)>} <-0,
because (h(x), h*(x))>-IIh(x)ll, by construction of h(x) and h(x). Hence g(.)is
concave on [0, 1] and, since g(0)=0 and g(1)>=0, g(t)>=O for all el0, 1]. Con-
sequently,

(3.19)

Similar reasoning gives that

(3.20)

IIh (x )11= e (a r(x ))allh * (x)11=.

and the proof is complete.
COROLLARY 3.1. With 6i defined by (3.15d) and N(xi) defined by (3.15a), we

have 6i <--Na(xi) for all i.
PROPOSITION 3.1. Consider the functions 0(.) defined in (3.13d).
a) For any x if e’ > e" >- O, then 0 ,(x) >- 0 ,, (x).
b) For any e >-O, 0 (" is u.s.c.
Proof. a) Since e’ > e" implies that 0,, (x) 0,, (x) and 0f(x) O,,f(x), this part

is obvious.
b) Since for any e _->0, 0+(.) and Of(.) are both u.s.c., it follows from the

maximum theorem in [B1] that IIh(.)l]

Ilh (x )ll- F(x )llh e (x)11z,



EXTENSION OF CONSTRAINED OPTIMIZATION ALGORITHMS 193

LEMMA 3.2. For every R" such that 00() 0, e (x)>0 and there exists a
> 0 such that

(3.21) Na(x’)&el(x’)>-uel()&b3()>O ]’or all x’ B($,t).

Proof. First, because the set valued maps Of(. and 0O (.) are u.s.c., and 0(x) < 0,
() <-6g. Hence el() >0. Now, forthere must exist an g , >0, such that 0

the sake of contradiction, suppose that there is no t > 0 such that (3.21) holds. Then
there must exist a sequence {xi}, xi--> such that

(Xi) > --Sue () for all i.(3.22) 0,)

Since by Lemma 3.2 01)(.) is u.s.c., we conclude from (3.22) that

(3.23a) -&,e 1() <- lim 01)(xi)<=0 )()

But, by Lemma 3.2, 01<)($) >_- 0)1 (), and hence (3.22a) implies that

(3.23b) -e 1() < 0 1()(),

which contradicts the definition of e 1(). [-1

THEOREM 3.2. Let {xi}i0 be any sequence constructed by Algorithm 3.1. Then
any accumulation point of {xi}i=o satisfies () <-0 and O s co {Of() t_J 04()}.

Proof. With N1, N2, N3, 6i defined as in (3.15a-d), we see that at any such that
NI()N2()N3()O, by Lemma 3.2, there exists a t>0 such that b1() =b3()
,e1(2)>0 satisfy (3.7a) and (3.7c) for all x’B(2,). Since Oof(x) and Of(x) are
both u.s.c., it is clear that a required b2(:)>0 exists for (3.7b) to hold in B(, t).
Finally, by Corollary 3.1, we have that 6i <=-Nl(xi) for all i. Furthermore, Assumption
3.1 and Lemma 3.2 ensure that Nl(x)N2(x)N3(x)=O implies that condition (i) of
Theorem 3.1 is satisfied. Consequently, the desired result follows directly from
Theorem 3.1.

Our second algorithm has exactly the same structure as Algorithm 3.1, except
2 (x). It is a directthat hi is computed by evaluating a different optimality function, 0

extension of the most efficient phase-I-phase-II method of feasible directions known
[P3]. We need the following notation. Given 3’ > 0, for any e -> 0 and x s R" we define

(3.24a) 02(x) a__ min {1/21lhll= + max {(r. h)-y+(x), r Of(x);(s%, h), % 0+O(x)}}
h

and

(3.24b) h 2(x) arg min {1/211h = + max {(r, h)- yqt+(x), r Of(x); (u,, h), , 0+O(x)}}.

It follows by duality that when $+(x)=0, for all e>=0, Oa(x)=O2(x) and
h2(x) h(x). Hence, the behavior of the two algorithms can differ only in the
infeasible region. We now define

(3.25) 2 A 2
e (x)=max {e lO(x)<--6e}

where e and 6 are as in (3.13f).
Not surprisingly, the conclusions of Lemma 3.1, Proposition 3.1, Lemma 3.2 and

Corollary 3.1 remain valid when e2(x), h2(x) and 02(x) are substituted for el(x),
h l(x) and O(x) in the appropriate definitions. Consequently, we may state without
proof the following:

THEOREM 3 3 Suppose that Algorithm 3 1 is modified so that hi h2 (xi) in(x)
Step 1. If {xi}i=o is an infinite sequence constructed by this modified algorithm, then
any accumulation point of {xi}io satisfies d/() <- 0 and 0 co {0f() [.J 0()}o
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Finally we turn to problems with both inequality and equality constraints, i.e.,
problems of the form

(3.26) P: min{f(x)lgi(x)<-O,im;hi(x)=O,fl}
where f, gi, m and h i,/" e 1, from R into R are all locally Lipschitz continuous. In
the differentiable case, i.e., when f, gi and h i, m,/’ are all continuously differenti-
able, there are two major approaches, based on exact penalty functions, for solving
(3.26). The first is due to Mayne and Polak ([M3]). It replaces the problem P with
Plc, below, c > 0

(3.27) P" min{f(x)-c hi(x)lgi(x)<=O,im;hi(x)<=O,fl}
and, under mild assumptions, computes a finite which makes Plc and P locally
equivalent in the vicinity of Kuhn-Tucker points of P for all c -> & The second approach,
see e.g. [C5], [P14], replaces P with P, below (with c > 0)’

(3.28a) Pc: min fc (x),
x

where

(3.28b) fc(x) a--f(x)+c max {maxi, gi(x)+, maxi,

Again, it can be shown that, under mild assumptions, P and P are locally equivalent
or c sufficiently large, in the vicinity of feasible Kuhn-Tucker points of P (see [P14]).

In the nondifferentiable case, both approaches tend to break down when equality
constraints are present, because stationary points of Pc or P which are feasible for
P cannot be shown to be also stationary for P. Furthermore, arbitrary feasible points
of P may be stationary for pc or P. Thus, consider the problem P. Suppose, for
simplicity, that there are no inequality constraints in P, and that 1, i.e., that there
is only one equality constraint. Then (3.26) and (3.28a) become

(3.29) P" min {f(x)lh (x) O}

and

(3.30) p2. min {f(x) + c Ih (x)l},
Nt

respectively. Suppose that for some c >0, N" satisfies the necessary optimality
condition for P, and that h ()= 0. Then

(3.31) 0 e 0f() + c co {Oh () U Oh (,)}.

Now, from (3.31) we would like to conclude that (1.8) holds, i.e., that either

(3.32a) 0 e co {0/() CI Oh ()}

or

(3.32b) 0 e co {Of( LJ Oh ( )}.

While in the differentiable case (3.32a) or (3.32b) follows-directly from (3.31), a
similar conclusion does not hold in general in the nondifferentiable case, as can be
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seen from the following example. Let x (x x 2)T 2 let f(x) -1/2x
let

h(x).__{(xX)2nt-(x2)2-5 ifxX<-- 1,
2)2x +(x -5 ifx ._->1,

and let (1, 2) r. Then is feasible for P in (3.29) and 0h()=co{(1,4)r, (2,4)r}.
It is easily seen that for all c _-> 1 (3.31) holds, but neither (3.32a) nor (3.32b) does.

This example shows that when Oh() is not contained in a one-dimensional
subspace of 2 and h () 0, then co {Oh () -Oh ()} can be "blown up" by increasing
c so that becomes a stationary point for fc(’), i.e., arbitrary feasible points of P
become stationary points of P. Hence it seems that an exact penalty function method
can be generalized to the nondifferentiable case only when the generalized gradients
of all the equality constraints are each contained in a one-dimensional subspace of, so that co{Ohi()U-OhJ()} does not have an interior point in any multi-
dimensional space. In the presence of inequality constraints alone, exact penalty
methods should work, for the following reason. Suppose that m 1 and that satisfies
g() 0 and 0 Of()+ c Og()+ for some c > 0. Then we have that

(3.33) r+ca4, =0

for some r Of(), ,t, Og() and a [0, 1 ]. Consequently,

[ 1 ca ,] 0,(3.34) (1 + ca)
1 + ca

+
1 + ca

i.e., Oco{Of(),Og()}. Hence it should be possible to solve P by exact penalty
function methods, provided the following assumption holds"

Assumption 3.2. For all f 1, the functions hi(.) are continuously differentiable.

For’ the differentiable case the approach based on Plc is considerably more
attractive, since it permits the use of a broad class of algorithms for solving P, in
particular, second order algorithms. However, this advantage is not obvious for the
nondifferentiable case. We will therefore consider here the more traditional approach
based on P. Although it is not possible to precompute a satisfactory penalty for
P, the theory in [P10] on abstract exact penalty methods shows that such a penalty
can be computed adaptively, provided an appropriate test function can be constructed.
We shall exhibit such a test function for the problems in question.

We now define

(3.35a) r/(x) A max Ih(x)l
jl

(3.35b) 0(x)+ max g(x)+,

(3.35c) 4 (x) max {r (x), O(x)/}.

Next we establish a number of properties of the problem P. The first one is obvious.
PROPOSITION 3.2. Suppose is a local minimizer for P such that rb ()= 0. Then

is also a local minimizer ]:or P.
PROPOSITION 3.3. Suppose that Assumption 3.2 holds and that N is feasible

for P and for some c > 0 satisfies
(3.36) 0 e Of( + c co {Og ( ), e I( OIh (2)1, ] e I}.

Then satisfies (1.8).
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Proof. By assumption, there exist" (i) :f Of(), (ii) i Og’ () and ti [0, 1] for all
I(), (iii) s. [- 1, 1 for all I, such that

(3.37) jf+c , t +c Y. sVhi()=O.
iI() j!

By dividing each element of (3.37) by 1 +c(Y.t ti +,iltil) we get (1.8).
Before we can establish the existence of finite penalties, we must invoke the

following commonly used hypothesis.

Assumption 3.3. For every x and any tl, rE, tt {-1, 1},

(3.38a) 0 co {0gi(x), Kg (x)’, tVhi(x), j K (x)}

where for any e -> 0

(3.38b) K g (x) _a__ {i mlg (x) >_- 4, (x) e },

(3.38c) g (x) {i

We are now ready to establish the existence of exact penalties.
PROPOSITION 3.4. Suppose that satisfies c ( )<-_ 0 and (1.10). Then there exists

a ? > 0 such that

(3.39) OOf()+c co{Ogi()+ eK (); 01h(;)l,/g

for all c > , i.e., is stationary for P.
Proof. By Theorem 1.1 and Assumption 3.3, there exist

and A e R, j e l, such that

(3.40a) Cf + E /x ,0,i + Y’. A Vh(;) 0.
iI(;) !

Therefore, for all c > 0,

(3.40b) Cr+c E 6.,+c E --Vhi(;) =0,

since K()=I() and K()=I. Clearly, there exists a >0 such that for all c >,g

and hence

E -’--O,i "+"

which leads to (3.39).

A--Vh())co(Og’()+,i Kg (); OIh()l, j K ()},

The following proposition is a direct corollary of Assumption 3.3.
PROPOSITION 3.5. Suppose that " is such that cb() > O. Then there exists a
0 such that for all c >-_

(3.41 0 [Of( + c co (0g’ ()+, Kg ()’, O[h ( )1, .i Kh ()}].

Proof. Since b()>0, Og’()+=Og’() for all iKg() and olh()]=Vlh()l for
all j K ().
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By Assumption 3.3 there exists a 6 > 0 such that for any i 0g() with Io()

Nr (co{Og’(), Kg (); Vlh*()l, i g, ()}).

Consequently, Proposition 3.5 holds with

1e . max {11 111 0f(;)}.

We now construct an exact penalty function method which computes the required
penalty parameter c adaptively, making use of the scheme proposed in [P10]. This
scheme uses a test function tc (’) to determine whether c should be increased or not.
As in (2.18) and (2.19), we define, for e _->0 and any x N",

(3.42a) hc. (x) a_ -Nr (Of (x))

where

(3.42b) Of(x)=Of(x)+c

and (with 6 > 0)

(3.42c) e (x) & max {e g’llh, (x)llz _-> 6e }.

Then for any c > 0, x e N" we define

1
(3.42d) t(x) & ec(x) +- (x).

c

In accordance with [M3], we therefore propose the following conceptual
algorithm"

ALGORITHM 3.2.
Parameters" a,/3, v e (0, 1), eo > 0, 6 > 0, and a sequence {ci}’=o +, ci , oo.
Data Xo
Step O" Set 0,/’ 0.
Step 1: If t(x)>0, set zi=x and increase/" to the first/’* such that t.(x)<=O.

Set ] =/’*.
Step 2: If 0 e Of(x), stop. Else compute x+x by applying Algorithm 2.1 to f(.),

from x, using the parameters supplied. Set + 1 and go to Step 1.

THEOREM 3.4. (i) If {Zi} is finite, with last element zi*, then either the sequence
{x} is finite and its least element, say x, satisfies (x)=0 and (1.8), or it is infinite
and any accumulation point of {x}, say , satisfies ()= 0 and (1.8).

(ii) If {zi} is infinite, then it has no accumulation points.
Proof. (i) Suppose that both {x} and {zi} are finite, {x} terminating at x. Then

for some/’ =/’*, we must have 0 e Ofc.(x) and t.(x)<-O. Since e.(x)= 0, it follows
that (x)= 0, and since 0 e Of.(x), it follows from Proposition 3.3 that

0 e co {Of(); Og ()+, I(); Olh ()1, ] I}.

Next, suppose that {x} is infinite, with x _.>t , K N+ and that {zi} is finite,
terminating at ]*. Let i/. be such that x. zi.. Then for all > i/. We have that

1
(3.43) t,.(x) -ecj.(x) +-- (xi) <-- O.

C1.
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But as in the proof of Theorem 2.1 we have that ecj.(xi) OKecj.()=O, and hence
from (3.36) and the continuity of 4 we get that b()=0. Finally, since
implies that 0 00fci.(), it follows that 0 co {Of(); Ogi()+, I(); Olhi()l,

(ii) Suppose that {zi} is infinite. To simplify notation, we assume that f assumes
all the values in N+. Now suppose that z-c, for some subsequence indexed by
K c N+. Since tcj(z)>0, by construction of c+1, we must have that 4(z.)>0 for all
/" N+, and since b(. is continuous, it follows that 4()>_- 0. Also, since {4 (z.)}: is
bounded, it follows that (1/c)b (zj)- 0 as ] o. We distinguish two cases.

Case 1. Either b()>0, or b()=0 and (1.10) does not hold. In either event,
it follows from Propositions 3.3 and 3.5 that there exist a c*> 0 such that 0 Ofc ()
for all c > c*.

First suppose that b () > 0. Then for all c > 0,

(3.44) 0ofc (f) 0f(f) + c co {Og () K () "olh ()1, f K (f)tg

and, hence, because of Assumption 3.3, IINr (0gf(z))ll- oo, as c-, , Next suppose
0that b () 0 and that (1.10) does not hold. Then, because of Proposition 3.4, 0 0;fc (z)

for all c > 0. It now follows from the fact that 0 Of(f) that there exists a 8 > 0 such
that IlNr (0())11--> for all c >0.

Consequently, in both cases considered, there must exist a >0 and an >0,
such that for all c >c*, for all z sB(,t3), e(z)>t?. Now let M =sups:q(zj). Then
there exists a ]*sK such that for all i>=] *, ]sK, zsB(,) and -t? +(1/ci)M<-O.
Hence t(z) <= O, for all/sK, /=>/’*, which contradicts the construction of c+. Thus
case 1 is not possible.

Case 2. Suppose that d ()= 0 and (1.10) holds, Then, by Proposition 3.4, there
exists a/’*K such that OOfc(z) for all c -->c,. Since b(z) >0 for all/’, and zc,
it follows from Assumption 3.3 that [[Nr (0 c cfc(zi)[[ as/" o. Now there exist a

t >0 and a Lipschitz constant L (0, o) such that for any zi, z’ B(z, 2t), satisfying
4(z’) 0, Ilzi-z’[l>-_(z])/L must hold. Hence O.Oefj(zi) for all e >0 such that e <
(zi)/L, f>f*, fK. Clearly, since [[Nr 0fc(z))ll-o as/’c, for all z B(, 2t)
such that 4(z)>0, there exists a/’**>/’*, such that for all f..>--_/’**, fK, e(zi)>--_
4 (zi)/L >-- 4 (zi)/c. Hence tc (zi) =< 0 for all f K,/" >--./’**, which contradicts the construc-
tion of ci/.

To conclude this discussion, we must point out that one could also construct a
similar exact penalty function method in which each constraint is penalized individually,
by setting

l+m

(3.45) [c(X)&f(x)+ E cigi(X)+
i=1

m+j Awith g Ih for/’ 1, 2, I. The penalties c must be then be increased individually
when tici(x)>0, with

1
(3.46) t(x) a- ec(x)+-g (x)+.

C

4. Constrained optimization: Implementable algorithms. We shall consider only
the problem (3.1) and the implementation of phase-I-phase-II methods, since the
implementation of exact penalty function methods is essentially the same as in
Algorithm 2.2.

We shall consider problem 3.1 in the compact form

(4.1) min {f(x)lO (x) <- O}
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with f, 4t" " locally Lipschitz and semismooth. Furthermore, we shall assume that
0

_
Ogt(x) for all x such that g(x)>-0. We shall make repeated use of the bisection

method described in 2 (eqs. (2.26)-(2.30)) which can be used (for semismooth
functions) to find a O[(x) (or 0# (x)) such that (:, h) -< c7 IIh whenever h R"
is such that

(4.2a)

or

f(x Ah) -f(x) > a IIh 2

ALGORITHM 4.1 (implementable).
Data: Co>0, 6>0, ,/3, re(0, 1), e(c, 1), Xoe R".
Step 0: Set 0.
Step 1: Set e co.
Step 2: If O(x)>_--e, go to step 7.
CASE 11 0(Xi) <--8.
Step 3" Set/’ 0 and compute an ho Of(x).
Step 4" If Ilhl] < Be, set e ve and go to step 3.

Else, proceed.
Step 5" Set si arg max {flklsk <--_ (/llhll), k +}.
Step 6: If

(4.3a) f(x, sih) f(x,) <- -sllh {11=,
set hi h{ and go to step 13.

Else, i) use the bisection method to compute a s{ Of(xi) such that

(4.3b) (, h) <=
ii) compute h {/1 Nr co {{, h}, set ] j + 1 and go to step 4.

Step 7: If O (xi) > 0 go to step 14.
CASE 2: 4 (xi) e [-e, 0].
Step 8. Set 0. Compute 0 Of(x), *o O(x) and ho Nr (co {o, o+}).
Step 9" If IIhll= , set e ve and go to step 2.
Step 10’ Set si arg max {/3
Step 11: If

(4.4a) O (x, sh
set h+x h and go to step 12.
Else, i) use the bisection method to compute a :+1 OO(x) such that

(4.4b)

ii) compute h+ Nr (co {:{, , se/x }), set ] ] + 1 and go to step 9.
Step 12: If

(4.5a) f(xi sh{) f(x,

set h =-h{ and go to step 13.
Else, i) use the bisection method to compute a s/ s Of(xi) such that

(4.5b) (sei+l, h{> -< a IIh{ll=,

(4.2b) O(x -Ah)-O(x)> cA IIh ,
with A Ilh and 0 < c < & < 1.

We now present an implementation of Algorithm 3.1.
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ii) compute h//’.+1 Nr (co (:, +1, }),
set --] + 1 and go to step 9.

Step 13" Compute

(4.6) /.i arg max {flklf(xi + flkhi)--f(xi)<=otflkllhill2", O(Xi + khi) <0,-- k e +},

set X+l x / Ah, set/= + 1 and go to step 1.
CASE 3" I[l(Xi) 0.
Step 14" Set j 0. Compute o Of(x), *o eOO(x), F(x) =e -*(x’), hor

Nr(co{’o,o}). Set ho jo, hro r(x,)h; +(1 r(x,))h*
Step 15" If max {llF(x,)hfll=, I1(1- F(x,))hfll} < set and go to step 14.
Step 16" Set si arg max {fl k lk
Step 17" If

(4.7a) 6(x s,h

set h =-h and go to step 20.
Else, use the bisection method to compute a +1 OO(x) such that

(4.7b)

and proceed.
Step 18: If ] -< [F(xi)-1] (the integer part of) and

f(x, -shr)-f(x,) > szllh r]]
O[(x) such that

(4.8)

Else set +1 .
Step 19: Compute

hf+l Nr (co {h
h+ F(x,)h+a +(-r(x,))h i+1.
Set ] ] + 1 and go to step 15.

Step 20: Compute

(4.9) A, arg max(x+h,)-$(x) -al]h]l" k e +}
set x+ x +
set + 1 and go to step 1.

THEOREM 4.1. Suppose that Algorithm 4.1 constructs a sequence {xi}. ff {xi} is
finite, with last element x (i.e., the algorithm jams at xr) then b(x)<-O and O e
co {Of(xl) LI 0(x)}. If {xi} is infinite, then any accumulation point of {xi} satisfies
4,()<-o, Oco{of()o()}.

Proof. a) Suppose that {x} is finite, terminating at xu. Suppose that either
(xu) >0 or that (xu)-<0 and Oco{Of(xi)l.JO$(x,)}.

Case 1. Suppose that (xu) =<0 and 0 co {Of(xu) 0(xu)}. Then referring to
(3.3f), e(Xl) >0 and we can consider two subcases:

Subcase la. The algorithm is cycling between steps 3 and 6. In this case, because
f Proposition 2.3, we must have IIhll--> 0 as ] and hence e a 0 as ] . Con-
sequently, there exists a ]o such that e <-ea(xu) for all ]->-]o and hence (see 3.13b) we
must have that Ilk/f.[[2 > Ilk r (xr)[[2 > tel(,,,) (x) for all/"->-]o, which is clearly a contra-
diction.

Subcase lb. The algorithm is cycling between steps 2, 7 and 12. Since by
Proposition 2.3 h{-0 as/" oo, e 0. If $(xu)<0, then there exists a/" such that
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O(xu) <-e, and hence the algorithm transfers permanently into the loop defined by
steps 3 to 6. But we have already shown that the algorithm cannot jam up in this
loop. Hence, suppose that (xu) 0. In this case, there exists a/’o such that e => e (xr)
for all/’>-/’0 and hence, IIhllZ>-llh)(x,)llZ>-e(x,)>O and, again, we have a
contradiction.

Case 2. Suppose that (xu) > 0. Then, by Assumption 3.2, 0 0O (xu) and e (xr) >
0. Now, if/" , then, by Proposition 2.3, we must have h - 0 as/" - and hence,
by construction in step 19, h 0 as/" . Consequently, e 0 as/’ , so that there
exists/’o such that e _-< e(xl) for all ]-->/’o. But then, for all/" =/’o we must have that
Ilh,*.ll=>h (x,)ll= and IIhll=>llh,)(x)ll. Consequently, max{llr(x)hffll=,(XN)

II(1-F(x))hll}>--Ox(x)>-&(x) which contradicts the conclusion that e x 0.
We have thus shown that the algorithm cannot jam up at a point xr such that

O(x,) >0 or O(x) <-0 and 0 co {f(x) U 0O(x)}.
b) Suppose that the sequence {x} is infinite and that x r, withK {0, 1, 2,. .}

and either ()>0 or ()-<_0 and 0 co {/() U 0O(x)}.
Case 1. 4(x)> 0 for all i. In this case ()>= 0 and e ()> 0. By Lemma 3.2,

there exists an io such that e X(x)->_ ve ()> 0 for all >= io, K. Consequently, since
the test value of e in the implementable algorithm is always greater than or equal to
that in the conceptual algorithm, we must have, by Lemma 3.1, that IIh,II _-> 8e () > 0
for all i>=io, iK. Also, there exists a b< such that IIh, ll---b for all iK. Con-
sequently, in (4.7a), for all K, -> io and/" 0, 1, 2, .., we must have s >= Be (x) =>
[3,2eX()/b. Hence, by (4.9)

(4.10) (x,+l)-(x,)<=-[vel(.)/b]t$otvel(:)=-otv2et()2/b <0
for all e K, -> io. However, by continuity, d/(xi) : 0(:) and hence, since 4,(xi) ,
we must have that d/(xi)O(). But this is contradicted by (4.10) and hence the
theorem is proved for the case where O(xi)> 0 for all i.

Case 2. There exists an io such that O(Xio) <- O. Then, by construction, we must
have O (xi) -<_ 0 for all >_- io. Now suppose that x -,:, K c {0, 1, 2, }, with 0() <-- 0
and 0 co {0/()t.J 0-0()}. Then e ()>0 and there exists an it >_-io such that et(x)>-
,et()>0 for all iK, i>-it. Consequently, with b=sup{llhllliK}<oo, we have
once more that sj >- ,e (xi)/b >- fl,e ()/b for all K, ->_ io, and [Ih[[2 _-> IIh(, (x,)ll -->
8et(xi)>-Svet() for all eK, i>-io. It now follows from (4.3a) and (4.5a) that

(4.11) f(xi+t)-f(x,) <= -ot,2et(.)2/b

for all K, >_-i. Now, f(xi) -:f() by continuity and f(x), hence f(x)-f(). But
this is contradicted by (4.11) and hence the proof is complete. El

$. Conclusion. We have presented in this paper a systematic approach to the
extension of differentiable optimization algorithms to algorithms for the solution of
nondifferentiable optimization problems. We have assumed very little structure in the
functions defining the problem: in particular we have implicitly assumed that there is
no easy way of determining that one is near a point of nondifferentiability. However,
there is an important class of problems, (see e.g. the problems with eigenvalue
constraints in [C6], [P16] and the semi-infinite problems in [G3]) where a clear and
simple indication of approaching nonditierentiability is obtained by a trivial calculation.
For these problems one can develop much more efficient algorithms than the ones
discussed in this paper, but following a very similar approach, as we see in [P16].

There remain a number of open questions to be dealt with: a) What is the rate
of convergence of these new nondifferentiable optimization algorithms? b) How can
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one extend second order optimization algorithms to the nondifferentiable case? and
c) Do outer approximation methods, such as those described in [G2], offer a preferable
alternative to the ones discussed in this paper? The last question is particularly
interesting, in view of [M4] and [P15] where we see that two extremely complex
nondifferentiable optimization problems can be decomposed into infinite sequences
of differentiable problems.

We hope that this paper and the questions we raised will stimulate further research
in nondifferentiable optimization algorithms.

Acknowledgment. We wish to thank Prof. F. Clarke for supplying us with a proof
for Theorem 1.1. (He has subsequently proved this result without requiring that the
set {xlF(x)= 0} have measure zero; see [C4].)
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PIECEWISE-LINEAR HOMOTOPY ALGORITHMS FOR
SPARSE SYSTEMS OF NONLINEAR EQUATIONS*

MICHAEL J. TODDY"

Abstract. When piecewise-linear homotopy algorithms are applied to the problem of approximating
a zero of a sparse function f:R" R", a large piece of linearity can be traversed in one step by using a
suitable linear system. The linear system has n rows and n + 1 columns, but is subject to a number of
inequalities depending on the sparsity pattern of f. We show how an algorithm can be implemented using
these large pieces; in particular, we demonstrate how to update the linear system corresponding to one
large piece to obtain the appropriate system for an adjacent large piece. One measure of the complexity
of such an implementation is the number of inequalities that may be required for any one piece. We prove
that there can be no more than O(n 3/2) such inequalities, and that this bound is essentially tight; the
argument is purely combinatorial. Finally, we provide guidelines on when such a "large-piece implementa-
tion" should be used instead of much simpler "small-piece implementations" for piecewise-linear homotopy
algorithms.

Key words, piecewise-linear homotopy algorithms, solving nonlinear equations, sparsity

1. Introduction. We are concerned with piecewise-linear homotopy algorithms
for approximating a zero of a function f" RnR"; see [1], [2], [4], [9]. Our interest
is in the case where f is sparse, i.e., each component function of f depends on only
a few components of the argument. As in [11], we confine ourselves to Merrill’s restart
algorithm [7], though our approach can also be applied to other such algorithms, in
particular those of Eaves-Saigal [3] and van der Laan-Talman [5], [6]. Merrill’s
algorithm starts by choosing a simple function f’RRwe will always take
f(x) G(x -x) where G is n x n and nonsingularand defining h "R x[0, 1]R"
by h (x, t) tf(x) + (1 t)f(x). Next we choose a triangulation T of R [0, 1 and let
be the piecewise-linear approximation to h with respect to T. One major cycle of

the algorithm generates a sequence of simplices of T that contains the piecewise-linear
path that is the connected component of l-(0) containing (x , 0) (perturbation may
be necessary). If this sequence is finite, we obtain a point (x x, 1)/-(0); either x is
accepted as an approximate zero or another major cycle is initiated after updating T
and f0.

With each major cycle, each simplex that meets l-(0) is associated with a certain
linear system with n + 1 rows and n + 2 columns subject to n + 2 nonnegativities.
Moving from one simplex to its successor requires the evaluation of f or f0 at the
new vertex and a linear programming pivot step in the linear system.

In [10] we showed that, because of the linearity of fo, the pieces of linearity of
were much larger than individual simplices for commonly used triangulations T;

moreover, if f enjoyed special structure, these pieces were larger still. However, [10]
proposed only a "local" method of exploiting this property: whenever it was deter-
mined that the next simplex lay in the same piece of linearity as the current one, one
function evaluation was saved and the linear programming pivot step could be executed
trivially. Later, we derived in [11] linear systems that allowed pieces of linearity of
to be traversed in one step, when f was general, separable or partially separable.
These systems again had n + 1 rows and n + 2 columns, with up to 2n + 1 inequalities.

* Received by the editors January 19, 1981, and in revised form November 27, 1981. This research
was partially supported by a Guggenheim Fellowship, and by the National Science Foundation under grant
ECS-7921279.

" School of Operations Research and Industrial Engineering, College of Engineering, Cornell Univer-
sity, Ithaca, New York 14853.
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However, the important case of a sparse function was not treated in [11]. Finally,
[12] showed how these accelerated methods could use basis factorizations rather than
inverses for numerical stability and preservation of sparsity and suggested that for the
case of a sparse function f, the global idea of [11] for general f could be combined
with the local method of [10] for sparsity.

In this paper we give in 2 a linear system that allows the whole piece of linearity
of to be traversed in one step when f is sparse. This linear system has n rows and
n + 1 columns. However, the number of inequalities depends on the sparsity structure
of f. Section 3 indicates how a piecewise-linear homotopy algorithm can be imple-
mented using these linear systems. One measure of the complexity of such an
implementation is the number of inequalities that may be required for any one piece.
Section 4 shows that there can be no more than O(n 3/2) such inequalities, and gives
an example demonstrating that O(n 3/2) may be necessary. Because of the large number
of inequalities possible, it may not always be advisable to use this linear system. We
discuss this issue in 5. We conclude that if f is very sparse, use of the new system
is worthwhile, and describe an alternative method of implementation for use in other
cases.

Since this paper was written, Saigal [8] has proposed another piecewise-linear
homotopy algorithm that exploits sparsity.

2. The large pieces. In this section we describe the pieces of linearity of the
homotopy when f is sparse and show how, when such a piece t meets 1-1(0) in a
line segment, this line segment can be traversed by considering a linear system of the
form Aw b, Cw >-d. Here A, b, C and d depend on the piece t. A has n rows and
n + 1 columns, and the solutions to Aw b form a line in R "/1 whose intersection
with ={wR"/" Cw >-d} is the desired line segment. The matrix C has n +1
columns, but the number of rows (equal to the number of facets of the piece o)
depends on the sparsity pattern of f. We trace the segment numerically by generating
a particular solution to Aw b, Cw >=d (corresponding to where the piece is
entered) and a vector z in the null space of A. Then {w" Aw b} { + hz}. Then
we find where the segment leaves the piece by finding the range of h for which
C (rP + hz) -> d; this corresponds to a minimum ratio test in linear programming. While
each inequality in Cw >=d is very simple (involving at most two components of w)
the complexity of the algorithm clearly depends on the number of rows of C.

To make this section self-contained, we start by describing the triangulation
1 {fl(v, rr, s)} ofR[0, 1] on which our large pieces are based. It was shown in
[10], [11] that this triangulation induces large pieces of linearity for several types of
structure. We suppress dependence throughout on the grid size e. Each individual
simplex tr =-/’l(V, r, s) depends on the starting vertex v R" x {1}, the permutation r
of {1, 2, ., n + 1} and the vector s R" x {-1}, where each component vi of v is an
odd multiple of e for 1, 2,..., n and each component of s is +1. Define/" by
rr(/’) n + 1 and let e p denote the pth unit vector of appropriate dimension. Then the
vertices of r are v ,+1

,v ,...,v ,where
0 i-1 -a-(i)v =v, v =v +es,.)e l<--i<],

(1)
vj- ,+ k k-1 ()v -e v =v +es,(k)e ]<k<-n+l.

Alternatively, tr can be described by its facets: it is the set of all w R "/ satisfying

(2),
> Sr(]+ 1)(W,n-(/+ 1)-/A,n-(]+ 1)) >-’ > Srr(n+ 1)(W-n-(n + 1)-/)rr(n + 1)) > O.
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Henceforth, is the piecewise-linear approximation to h with respect to
However, because f0 is affinerecall that we chose f(x) G(x -x)even for general
f the pieces of linearity of are larger than the simplices of J1. In [11] we showed
that these pieces formed a (polyhedral) subdivision ]1 {)’l(v, r, s)} of R"x [0, 1].
The individual piece =-]l(v, zr, s) contains the simplex ]l(v, r, s) and several other
simplices; thus several triples (v, 7r, s) yield the same piece & Suppose again that
r(]) n + 1. Then d- is the set of all w R n+l satisfying

(3)

e >-s(l(w,(1)-v,(l) >-" >-s,(j-l(w,(j-l-v,(j-l>) _->e(1- w,/l),

e(1-w.+)>-Iw=-v=l, ] <k <-n + 1,

e(1- w,+l)->O if]=n +1.

Note that has 2n -/" + 2 facets if ] _-< n, and n + 2 if ] n + 1.
Since we will be much concerned with systems of inequalities similar to those in

(3), we now introduce some very useful notation. The inequalities in (3) relate certain
fundamental affine functions of w. Suppressing the dependence on v and s, we denote
these by

0y W-8o=e,
yW-6o=S,(Wo-Vo) for 1--<p<=n,
n+l

"r w-,+=-e(1-w,+),
"+ (1 w.+).

For p, q e N+ -= {0, 1, , n + 1, n + 2} define cq 3, yo and dpq p 6q, and note
that each inequality of (3) is of the form cw >-_ d,q for certain p, q. The appropriate
pairs (p, q) are most easily identified by defining a subset F’ of N+ x N+. It is convenient
to identify such subsets F c__ N+ x N+ with the corresponding directed graphs (N+, F).
Then F’= consists of a path from 0 through 7r(1), r(2),. , r(/’- 1) to n + 1, together
with edges (n + 1, rr(k)) and (Tr(k), n + 2) for ] < k <- n + 1; if/" n + 1, F’= also contains
the edge (n + 1, n + 2).

For any directed graph F on N+, we define the [FIx (n + 1) matrix C(F) to have
as rows the vectors c oo corresponding to (p, q) F, and the IFl-vector d (F) similarly.
It is then easy to verify that the inequalities (3) can be rewritten as C(F’)w >-d(F’).

Note that the same piece is defined by C(F,)w >-d(F,), where, in addition to
the edges in F’, F, contains (0, 7r(i)) and (rr(i), n + 1) for all 1 <_-i <] and (r(i), r(i’))
for all l<-_i<i’<]. Clearly this new system contains a number of redundant
inequalities, and the unique minimal set is as given in (3), with at most 2n + 1
inequalities. Summarizing, we have

LEMMA 1. The piece is exactly {w e R "+1" Cw >- d}, where either C C(F’) and
d d(F’) or C C(F=) and d d (F,).

Let As denote the derivative matrix of the affine function from R"+ to R" that
agrees with on & Then clearly, for any w,

(4) l(w) l(# +Aa(w ff).

Note that, because of the form of , As can be obtained very simply from the function
values of f and f0 at the vertices of & Let us write y for the projection of v e R" x [0, 1]
on R ", so that/(v) =f(y ) for 0-<i </’, and yJ =yi-1. If a denotes the ith column of
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Ao, we find

a =(i)= (f(yi)--f(yi-l]/eSr(i), 1 <= <f,

(5) a /’<k_-<n +1,
n+la =f(y )_fO(y ),

with gk the kth column of the matrix G used to define f0. From Lemma 1, (4) and
(5) we obtain"

TIJEORF.M 1. The set of w lying in l-(O)ffl is the set of solutions to Aw =b,
Cw >-d, where A =Aa is given by (5), b =A#-/() for any e and C C(F’=),
d =d(r’).

Now we introduce the sparsity of f. We say that coordinates p and q interact if
there is some component of f that depends on both xp and xq. If f is ditterentiable, p
and q interact if the pth and qth columns of the derivative matrix Dr(x) have nonzeroes
in some common row. Naturally, we choose fo to have the same sparsity pattern as
f. Note that, except for its final dense column, the matrix Aa has the same sparsity
pattern as G and Dr(x).

Suppose p 7r(i) and q zr(i + 1), 1 <-i </’- 1, do not interact. Then if -k denotes
zr with the positions of p and q interchanged, we find that & l(v, .k, s) differs only
slightly from ; indeed, just one vertex v of & changes, and A coincides with A,
except possibly in its pth and qth columns, which become

f(yi +8sqeq)_f(yi-l+esqeq) f(yi+l_espeP)_f(yi_espeO
and

ESp 8Sq

respectively. But because p and q do not interact, these vectors are precisely the same
if the terms +es e and -esp e are deleted everywhere. ThusA A. It follows that

is linear in & U&. Continuing in this way we may obtain a much larger piece of
linearity than d- if f is sparse. To describe this piece, which we denote & l(V, zr, s),
we define certain subgraphs of F=. Let Z (corresponding to sparsity) be the graph
consisting of all edges (0, p), (p, n + 1), (n + 1, p) and (p, n + 2) for 1 <_-p _-< n, as well
as (0, n +1) and (n +l,n +2), together with edges (p,q) and (q,p) for l<_-p, q<-_n if
p and q interact.

Next let A= F= fqZ. We can then define as {w R"+" Cw >=d} for C C(A=),
d d(A=). However, just as the system C(F=)w =>d(F=) contained many superfluous
inequalities, so does this new system. We therefore define the "minimum cover" of
A= as A’ {(p, r) A=. there is no q with (p, q) A= and (q, r) A=}. By considering a
piecewise-linear path joining any two of the points in we can then easily prove:

LEMMA 2. is linear on the polyhedron , which is the set of all w R n+ satisfying
Cw >=d, where C C(A’) and d d(A’=) or C C(A=) and d d(=).

While A= is always smaller than F=, the same is not always true of A’= with respect
to F’=. This implies that the number of inequalities defining , or, geometrically, the
number of its facets, may be larger than 2n + 1. We shall investigate this further in
4. However, we immediately have:
THEOREM 2. f’ll-(0) is {w Rn+a’Aw =b and Cw >-_d}, where A and b are

as in Theorem 1, C C(A ’), and d d(h ’).
In the next section, we discuss how a piecewise-linear homotopy algorithm using

the large pieces d could be implemented.

3. Implementation. We have already given, at the beginning of 2, an outline
of how a result such as Theorem 2 can be used to traverse a given piece d. Here we
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are concerned with some details of an implementation of a piecewise-linear homotopy
algorithm using these large pieces.

First, we describe what must be stored in such an algorithm. We maintain a point
with l(ff)= 0, which is the point at which the current piece & was entered. We

keep the vectors y (the projection of v onto R n), ].(y) and s, the matrix A Aa and
some representation of its null space. In order to generate new columns of A, we also
store, for each p, a vector of O’s and +l’s such that, if l<-r-l(p)</", a=
(f(y + et + eso e) -/(y + et))/eso and a"+ f(y + et"+) _f0(y + et,+). Finally the
graph A’= is stored. Note that this information is not enough to recover the permutation
zr, nor even its first ]- 1 elements, although/" can easily be obtained by counting the
edges emanating from node n + 1.

In order to be able to generate vectors in the null space of A, we will maintain
an LU factorization of some permutation of the columns of A. Thus L-AP- U-
[tQ, u], where L-1 is a product of permutations and lower triangular elementary
matrices, P is a permutation matrix and U is upper triangular, with U nonsingular.
Thus

is in the null space of A.
The graph A=A’= is stored by maintaining with each q e N+ the set P(q)=

{peN+: (p, q)eh} of predecessors and the set S(q)={r eN+: (q, r)eA} of successors
of q. We also store I ={0, 1, 2,..., n + 1}\S(n + 1) in a doubly-linked list so that if
(p, q) e A f) (I I), p is before q in the list. By "add (delete) (p, q) from A" we mean
make the appropriate changes to S(p) and P(q).

Initially, we have -(x, 0), y the nearest odd integer multiple of e to x and
s arbitrary for 1, 2,..., n. We evaluate f(y) and thus obtain A [G, f(y)_f0(y)];
if an LU factorization of G is available or computed, we obtain easily a corresponding
LU factorization of A. We set each - 0. The graph A’ is the graph with edges
(0, n + 1) and (n + 1, p), (p, n + 2) for 1 -< p _<-n.

Each iteration is performed as follows. We use the factorization of A to obtain
a vector z in its null space. Ignoring degeneracy, we find that + hz lies in t for
0 <_- h <_- , some > 0, or for <_- h <- 0, some < 0. We will choose the sign of z so
that the former case occurs. Then for h just larger than , # + hz lies in a new piece
d (or has last component greater than one) and we must update everything stored.

The critical value is found by examining the inequalities C(A)( + hz)>--d(A)
and (again under a nondegeneracy assumption) exactly one of these inequalities will
be tight for h . (Otherwise we make a perturbation, replacing by + d,

2 Twhere Ad (e, e , e for small positive e.) Each inequality corresponds to an
edge of A, and we analyze the update by considering each possibility. In each case
=+hz.

Case 1. The critical edge (leading to the tight inequality) is (n + 1, n + 2). Then
(x 1, 1) for some x , and a major cycle is completed. We also have an LU

factorization of a finite difference approximation to Df(x), or at least an "LH"
factorization. (That is, L-DP =H where D Df(x) and H is upper Hessenberg so
that hi 0 for >/" + 1. It is easy to obtain from this an LU factorization of D.
Alternatively, we can maintain the permutation P so that a /1 always corresponds
to the last or penultimate column of U, in which case an LU factorization of D is
immediate.)

Case 2. The critical edge is (n +l,p) for some l<-p<-_n. Define yi-l=
y +e Y.itsie and calculate f(yi-a)=f(y)+e Y’.itsia i. Then set so 1 and evaluate
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f(yj-1 + eseo) and replace a= gO by (f(yj-1 +esoeO)_f(y-l))/eso and then a n+l by
n+la + eso(’a o gO). The LU factorization of A is updated using a standard technique;

see, e.g., [12]. (We may, if desired, keep a"+l corresponding to one of the last two
columns of U; then the second replacement is trivial.) The vectors y and f(y) are
unchanged, while s is only possibly changed in its pth component; we set Yt si e
and n+l= t+soe. Finally, we update A (i.e. the doubly-linked list I and the sets
S(q), P(q) for q N+) as follows.

Delete (n + 1, p), (p, n + 2) and (if present) (0, n + 1) from A.
Add (0, p), (p, n + 1), and, if $(n + 1) , (n + 1, n + 2) to A.
Set B . (B will represent the set of nodes in I with a path to p.)
For I, working backwards through the list from n + 1 to 0 (not including n + 1

or 0):
i) ifS(i)f-IB # fg, BB U{i};
ii) if $(i) f’lB and (i, p) Y_,, add (i, p) to A;

B-BU{i};
delete (if present)
(i, n + 1) and (0, p) from A.

Set I - I t_J {p } and add p to the doubly-linked list just before n + 1.

Case 3. The critical edge is (p, n + 2) for some 1 <-p-< n. Proceed exactly as in
case 2 but with so --1.

Case 4. The critical edge is (p, n + 1). This is the reverse of Cases 2 or 3. We
replace a "/1 by a"/l-eso(a _gO) and a by g and update the factorization of A.
The vectors y, f(y) and s remain unchanged; we set t"/lt"/l-soe. A is updated
as follows. Set I -I\{p} and remove p from the doubly-linked list. For eP(p), delete
(i,p) from A; if S(i)={p}, add (i, n + 1) to A. Remove (p, n + 1) and add (n + 1, p)
and (p, n +2). If S(0)= , add (0, n + 1) to A; if (n + 1, n +2) was present, delete it
from A.

Case 5. The critical edge is (0, p) for some 1 <-p <-n. Then set [odf(y), y --y +2esoe and so-so. Evaluate )(y) and set a -a +()(y)--fold)/eso; update the
factorization ot A. For each q, set q q 2t, e . A is unchanged.

Case 6. The critical edge is (p,q) for some 1-<p,q<_-n. Calculate
[(y+et)=[(y)+efi, (fi, is A with its final column a n+l removed). Evaluate

q q qf(y +et +eSqeq). Set aold a a (f(y +etp +esqeq)--f(y +etP))/esq anda -a +
(a qod --aq)sq/so. Update the factorization of A. Set q tand o - + sq e . The vectors
y, f(y) and s are unchanged. Finally update A as follows.

1) Set Bq {q}. (Bq will represent the nodes before q, and not because of p.)
For e/, working backwards through the list from q to p (not including q or

p)
if S(i)flBq , Bq Bq U{i}.

Set By {p}. (By will represent the nodes before p and not necessarily before
q.)

For e/, working backwards from p to 0 (not including p or 0)
if S(i)Bq ,B -Bq U{i},

if p e S(i), delete (i, p) from A;
else if S(i) f-lBo rs and (i, q) e ;

Bq -Bq LI {i},
add (i, q) to A,
if p S(i), delete (i, p) from A;

else if S(i)f-IBo s , Bo Bo U{/}.
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Add (q, p) to and delete (p, q) from A.
If (0, p) is present in A, delete it.
If P(q)= , add (0, q) to A.

2) Set Ap -{p}. (Ap will represent the nodes after p, and not because of q.)
For /, working forwards through the list from p to q (not including p or q)

if e(i)f-)Ap , Ap <-Ap U {i}.
Set Aq <-{q}. (Ao will represent the nodes after q and not necessarily after p.)
For e/, working forward, through the list from q to n / 1 (not including q

or n+l)
if P(i) 0 Ap y ,, Ap A, t.J {i},

if q P(i), delete (q, i) from 3,;
else if P(i) fq Ao and (p, i) E,

A, Ap tA {i},
add (p, i) to A,
if q P(i), delete (q, i) from A;

else if P(i)f’)Ao
, Ao <--Ao t_J {i}.

If (q, n + 1) is present in A, delete it.
If S(p) , add (p, n + 1) to A.

This concludes our discussion of the implementation of the large-piece algorithm.
Note that, in each case, updating the factorization of A requires the replacement of
one or two columns of A and U" but that only in the final case are two general column
exchanges required. The sparsity of A and its factors is likely to compensate for the
possible increase in work over other implementations requiring only single column
exchanges. Note also that the sparsity information in the graph A is used in performing
the minimum ration test in determining . The work involved in this test, and also in
the rather complicated updating of A, is proportional to the cardinality of A, which
we study in the next section.

4. A bound on the number of facets of a large piece . We have seen that the
complexity of our large-piece implementation depends on the number of facets of
such a piece &, or equivalently on the number of edges of a graph A’. This section
investigates how large this number can be. We can assume that zr=
(1, 2, ,/"- 1, n + 1,/’, , n) for some 1 -</’ -<_ n + 1. Now consider the following
combinatorial problem.

Let m =j+l and let $1, $2,"’, S, be arbitrary subsets of N={1, 2,..., n}.
Write p < q if 1 <- p < q <= m and S f’) So . We wish to find an upper bound b (m, n)
on the cardinality of

(6) E {(p, r)" p < r and for no q is p < q < r}.

The relationship with bounding IA’I is as follows. Define Sl St, N and Si+
{p :fp(x) depends on xt}, l_i </’. Then cPw >dpo is a row of C(A)w >d(A) with
min {p, q } </’ if and only if p + 1 < q’ + 1 where q’ =/’ if q n + 1 and q’ q otherwise;
moreover inequalities of C(/X’)w >=d(A’) with min {p, q}<f correspond in this way
to pairs in the set E. Hence max {1, 2(n + 1-/’)}+{4,(/’ + 1, n)} gives an upper bound
on IA;I. (The first term comes from counting edges of the form (n + 1, p) or (p, n + 2).)

THEOREM 3. (m,n)=min{m(m-1)/2, 2m4(n+l)/3} is an upper bound
on IEI.

Proof. Since p <q implies p<q, [El <- m (m -1)/2. So assume that
2mx/(n + 1)/3 < m(m 1)/2, so that x/3(n + 1)< m 1.
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Define variables xpq, 1 <-p < q <= m, to be 1 or0 according as the pair (p, q) lies
in E or not. Define

Then

ys= Y’. xp.o+s forl-<s<m.

m-1

Now Xr 1 implies that there is some index N with S f’)St, Sq for/7 < q < r.
Thus in the m n matrix of incidences of the sets Sp with N, there is a column with
the pattern (..., 1, 0,..., 0, 1,...) with the ones in rows/7 and r. The sequence of
zeros followed by the one in row r occupies r-/7 positions, and cannot be associated
with any other pair (/7, r) in E. Thus

m--1

(7) X sy, <- ran,
s=l

where the left side gives the number of positions in the incidence matrix required to
obtain the elements of E and the right side is the total number of entries in the
incidence matrix.

Next, we have x +xr +x -< 2 for all 1 -< p < q < r =< m, since if (p, r) E we
cannot have (p, q) and (q, r) in E. Thus for 1 -<_ s < u < m

X (xp,+s + xp+s,p+u + xp,+u) <- 2(m u);
p=l

adding to this

and

xp,p+ < u s
p=m--u+l

0

xo+s.o+, <-s
p=l-s

gives

(8) y +yt+y, =<2m

whenever s + u, 1 -< s, t, u < m.
Now for any odd s -> 3 we deduce from (8)

Yl

3’2 +Ys-2

Y(s-1)/2 + Y(s+IV2

summing these inequalities gives

s-1 S 1
(9) X1= Yr +TYs <=2m

+Ys-1 + Ys <= 2m,
+ y -< 2m,

+ys_-<2m;
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This inequality is also valid for s >= 3 and even, using half of

2ys/2 + ys -<- 2m
as the final inequality. Then, by induction, (9) yields

2ms
r=l 3

for any s->_ 3. Indeed, (10) is exactly (9) for s 3, while (t-2)/2 times (10) for s
added to (9) for s + 1 yields t/2 times (10) for s + 1. Further, we have, trivially,

(11) yl-<_m and yl+y2-<2m.

Then adding inequality (7) to the inequalities in (11) and inequality (10) for s
3, 4, .., t- 1 we obtain

t-1 ,-1 mt(t-1)Y. y+ Y sy<=mn+m+

so that
,,-1 m(n + 1) re(t- 1)

(12) Izzl
=1 3

Now choose t= [/3(n +1)] <_-m-1 where for any real h, [hi denotes the least
integer not less than h and [hi the greatest integer not greater than h. Then
m(n + 1)/t<-_mx/(n + 1)/3 and m(t-1)/3<-_mx/(n + 1)/3 and the theorem is proved.

Next we show that the bound in Theorem 3 is essentially tight.
THEOREM 4. The sets Sl, , S,, can be chosen so that

[E[ >=min {[-] m [x/] }2

Proof. Suppose first n >- [m2/4J. Assume rn is even--the construction is similar
with m odd. Then we choose Sl, , S,, so that (p, q)E if and only if p <-m/2 <q.
Indeed, since n >= m2/4 we can assign to each pair (p, q) a different N, and then
let So and Sq but no other Sr contain this i. It is clear that IEI-m2/4 with this
construction.

Now suppose n < Lm2/4] so that v [x/] <m/2. Write m =rv +s, O<=s <v.
We then divide M ={1, 2,..., m} into M1,’’’, Mr, the first, second,..., rth group
of v elements, and Mr/l, the last s elements of M. Since n >-v 2 we may associate
with each N a pair (t, u) with 1 <= t, u-<_ v. This index is then put into the r + 1
sets St, Sv+,+u, S2v+{t+2u},’’’, Srv+{t+ru} where {h} denotes the integer between 1 and
v that equals h modulo v. For certain t, u, the final S may have an index greater than
m--arbitrarily change it to m. It can be checked that the resulting E contains all pairs
(p,q) with pMk, qMk+l, k=l, 2,...,r; thus there are (r-1)v+vs
v(rv + s -v) v(m -v) >my rn [x/J/2 pairs in E. This completes the proof.

Theorem 3 implies that the number of facets of can be no more than 1 +
2(n + 2)x/(n + 1)/3. Theorem 4 (by adding sets So S,,+I N to the extremes of the
sets constructed there) shows that there may be as many as 1 + n [x/J/2. That is,
the bound is O(n 3/2) and is tight.

5. Discussion. Section 3 has described how a large-piece implementation can be
designed, based on Theorem 2. Thus we use the linear system

(13) Aw b, Caw >-d/’,
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where Ca=C(A’), da=d(A’). Some measure of the complexity of such an
implementation is provided by the number of inequalities in (13), which we have
seen can be 0(n3/2).

An alternative implementation would use the smaller pieces t and Theorem 1
instead. This would therefore involve the linear system

(14) Aaw b, Crw >=dr,
where Cr C(F’), dr=d(F’). Note that (14) has at most 2n + 1 inequalities. If we
move from t into an adjacent piece and is linear on U t (see the discussion
below Theorem 1), then A A and Cr and dr have at most three new rows; only
two new ratios need be computed. We can then search for the new minimum ratio
(i.e., traverse t) and continue in this way. If it is likely that several small pieces
belonging to one large piece will be encountered, then it may be worthwhile maintain-
ing the ratios in a heap instead of recomputing the minimum afresh each time.

To determine whether it is more efficient to use (13) than (14) and whether it is
worthwhile to form a heap in the latter case, we need to answer two questions. Firstly,
is it likely that (13) will have more than a small multiple of n inequalities; secondly,
are the pieces t generally composed of many pieces t, or, more precisely, can line
segments in pieces t meet many pieces t? We give some indication of the answer to
these questions.

First note that the number of inequalities in (13) equals the number of facets of
the piece t. Since, from Lemma 1, each piece has at most 2n + 1 facets, we conclude
that whenever (13) has O(n 3/2) inequalities, t consists of at least O(n 1/2) pieces
A much more complete analysis can be made in particular cases.

Let us first consider the example constructed in Theorem 4 (we assume m n).
The number of pieces t contained in one piece & is then the number of permutations
that keep the first [x/J positions ahead of the next [x/J, and so on. However each
subgroup can be arbitrarily permuted, so that there are at least ([x/l !)t4-,l > (n/9)n/2
such pieces. Secondly, it is possible to choose w and z so that w satisfies (14) but
w + hz, as h increases, completely reverses the order of the first [x/J terms, the
second [x/J terms, and so on before any of these subgroups cross. This implies that
at least [x/J 2([x/J -1)/2 inequalities of (14) that do not occur in (13) are violated
before encountering one from (13); thus there are line segments in & that meet O(n 3/2)
pieces t. It is of course very likely that far fewer pieces t within a given piece & will
be met by most line segments. For this example it seems reasonable to avoid having
O(n 3/2) inequalities by using (14) rather than (13), but to maintain the ratios in a
heap to guard against sequences of a large number of pieces within one piece

Let us now consider a much more reasonable example. Suppose that each
component fi of the function f depends on at most r components xi of the argument
x and that each xi similarly affects at most c fi’s. Then each individual coordinate can
interact with at most c(r-1) other coordinates. It follows that (13) has at most
max {2, c(r 1)/2}n inequalities. If cr is relatively small (e.g., c < 5, r < 5) then using
(13) does not seem to exact too high a price. Let us examine the possible inefficiencies
of using (14) when Dr(x) has small band width, i.e., fi depends on xi only if [i-/’1 < k
for some k << n. In this case c r 2k 1; suppose for simplicity that n (2k 1)t.
Let the permutation zr take (1, 2,. ., n + 1) into (1, c + 1,..., (t- 1)c + 1, 2, c +
2,...,n,n+l) and let &=/"l(v, zr, s) for some v, s. Then, since the first,
second,..., cth group of consecutive elements can be arbitrarily permuted and yet
give rise to the same piece &, we see that & contains exactly (t !)c pieces t; for example,
if Df is tridiagonal, c r 3 and (t!)c= ((n/3)!)3. In addition, by choosing w and z



214 MICHAEL J. TODD

appropriately as in the previous example, we find that t contains line segments meeting
at least ct(t- 1)/2= n(t- 1)/2-n2/4k pieces t. Hence this example suggests the use
of (13), which can be far more efficient than using (14) without incurring an excessive
number of inequalities.

The conclusion from these examples is that use of the new linear system (13) for
traversing the large pieces is recommended when the function f is very sparse so
that D[ has O(n) nonzeros; otherwise the use of (3) is suggested, with the ratios
maintained in a heap.

Acknowledgment. I am grateful to Mike Powell and the referees for several very
helpful suggestions concerning this work.
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WEAKEST CONDITIONS FOR EXISTENCE OF LIPSCHITZ
CONTINUOUS KROTOV FUNCTIONS IN

OPTIMAL CONTROL THEORY*

R. B. VINTERt

Abstract. Let Y be a metric space; let (y,, y,) be a point in the product space Y Y, and let v be
an "admissible value function" on Y Y taking values in the extended real line. We give a necessary and
sufficient condition for existence of some Lipschitz continuous function 4’: Y R such that

4’ (y +) 4’ (y -) <- v (y -, y+), all(y-, y+) Y Y,

4’ (y.)-4, (y-,)= v (y,, y.)

(such functions are called Krotov functions). These results provide conditions, which are in a certain sense
weakest, for the applicability of methods of Carath6odory in the calculus of variations and optimal control
theory concerning validation of extremals.

Notation and conventions. Let S be an abstract set. T(S) denotes the usual real
linear space of functions " S --> R. "(S) is the algebraic dual of T(S), that is, the usual
linear space of linear functionals on (S).

As is well known, ’ is in "(S) if and only if there exists a finite set of points
pl, ",Pk in S and real numbers cz 1, , CZk such that

f’(f) otif(Pi), all f r(S).

R denotes {+oo} {-oo}. Given a, b , we follow the customary rules for
evaluating "a + b" when either a or b is finite, or when a and b are infinite but of
the same sign. We set a + b b + a -oo if a +oo, b -oo.

1. Introduction. Let Y be a metric space and let v Y Y - be a given function
which satisfies

v(y,y)=0, allyY,

I)(yl, yE)+/)(y2, y3)>--v(yl, Y3), all Yl, Y2, y3 Y
+(such a function will be called an admissible value function"). Suppose that (y,, y,)

is a point in Y Y. Our main result is a necessary and sufficient condition (we shall
call it "strong calmness") under which there exists a Lipschitz continuous function
b" Y , satisfying

b (y +) b (y -) <- v (y -, y +), all (y -, y +) Y Y,

4,(y+ +,)-b(y,) v(y,, y,).

Functions $ satisfying these conditions have previously been referred to as Krotov
functions in the literature [5].

What is the significance of such a result? To answer this question we examine
the optimal control problem: let a function R" x I" I {+oo} and points

* Received by the editors January 25, 1982. This research was supported in part by the National
Research Council under grant A9082, while the author was visiting the Department of Mathematics,
University of British Columbia, Canada V6T 1Y4.

-Department of Electrical Engineering, Imperial College of Science and Technology, London SW7
2BT, England.
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(x,, ti), (x + + "+,, t, in t, > t,, be given. We seek the infimum of the functional

ft tl(1.1) l(x(t), t, (t)) dt

over admissible arcs x (.) satisfying the endpoint conditions

+(1.2) x(ti) x,, x(t) x,.

By "admissible arc" we mean an absolutely continuous function x(.) such that
l(x(t), t,(t)) is measurable (we adopt the usual conventions in evaluating the

integral when either --, max {l(x(t), t, (t)), 0} or - max {-l(x(t), t, (t)), 0} is
integrable, and set the integral to -oo when neither is integrable). An admissible arc
which satisfies (1.2) and achieves the infimum will be called a minimizing arc. The
infimum of the integrals is the minimum cost.

Although this problem has the guise of a problem in the calculus of variations,
we refer to it as an optimal control problem because is permitted to take the value
+oo; this feature permits us to treat within our formulation constraints on x(t) and
(t) normally seen as lying in the domain of optimal control theory.

An approach to solving this problem commonly associated with the name of
Carath6odory (see [1] and also [6], [14] for historical background) is centered on the
following simple result:

PROPOSITION 1.1. Let x(.) be an admissible arc satisfying (1.2) and qb" n+l._)
a continuously differentiable function satisfying

(1.3) dt(x,t)+dx(x,t)<-l(x,t,) forall (x,t,),

(1.4) (x +,, t,)-(x,,+ t-)= l(x(t), t, (t)) dt.

Then x (.) is a minimizing arc and (x +,, t,)-(x,,+ i) is the minimum cost.

Proof. For any admissible arc 2 (.) satisfying (1.2) we have

+ t-),, t,)-(x,,

[4)((t),t)+4)((t),t)i(t)]dt

<- l(g(t),t,(t))dt.

It is customary in the solution of specific problems to choose the function in
Proposition 1.1 as the cost (1.1) associated with a "field of extremals" parameterized,
say, by the right endpoints of the field elements (see [6] or [13]). We note however
that , if it exists, may be determined as the solution of an optimization problem"

PROPOSITION 1.2. Suppose there exists some continuously differentiable function
c satisfying (1.3) and (1.4) for some admissible arc x(.) satisfying (1.2). Then c
achieves the maximum of(x +,, t,)-(x,,+ t) over the class of continuously differenti-
able functions satisfying

(1.5) tp(x,t)+O(x,t) <-l(x,t,Y) for allx, t,.
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Proof. For any continuously differentiable satisfying (1.5), we have

(x+ + l(x(t), t, 2(t)) dt,, t,l-qb(x,, t,)=
,,;,

>- [4(x(t),t)+O(x(t),t)2(t)]dt

dj(x + + t-),,t,)-(x,,

While a number of problems have been solved by methods in the spirit of
Proposition 1.1 (see [6], [7], [14]), there are other problems, notably many problems
involving "state" and "control" constraints, to which Proposition 1.1 is not applicable.
The approach fails here because, loosely speaking, the requirement that the function

be continuously differentiable is too strong.
Such considerations motivated Ioffe to modify the optimality condition inherent

in Proposition 1.1 so that it make sense even when the function is not continuously
differentiable and thereby to extend its applicability. These modifications we now
describe.

Let r/((x-, t-), (x +, t+)) be the infimum of the integral (1.1) over admissible arcs
/x(. satisfying x(t-)= x x(t+) x (The value of the infimum is taken as +c if no

such admissible arcs exist.) It is clear that if a continuously differentiable function
satisfies (1.3), (1.4) then 4, also satisfies

(1.6) (x+,t+)-(x-,t-)<=,l((x-,t-),(x+,t+)), all((x-,t-),(x+,t+))eR"+lR"+1,

(1.7) (x/ / tT,) n((x- t-) (x / /,,t,)-(x,, ,, , ,,t,)).

We shall refer to (1.6), (1.7) as the integrated versions of (1.3), (1.4). The noteworthy
fact about the integrated versions is that they make sense for an arbitrary function. That an optimality condition can still be given in terms of them is obvious.

PROPOSITION 1.3. Suppose that there exists a function : R"+I "+1--> satisfying
(1.6), (1.7). Then the admissible arc x(.) satisfying (1.2) is minimizing if and only if

(x,, t,)-(x,, t,)= l(x(t), t,(t)) dt.

The modified optimality condition (Proposition 1.3) is applicable, in principle, to
a very wide class of problems even if is restricted to be continuous. This we conclude
from the following notable result proved by Iotte [5].

THEOREM 1.1. Suppose the function q is finite at the point ((x,, t,), (x /,, t,)).+
Then"

a) there exists some function qb satisfying (1.6), (1.7)/f and only if there exists some
satisfying (1.6), and

b) if q is lower semicontinuous on "+"+, then there exists some continuous
function qb satisfying (1.6), (1.7)/f and only if there exists some continuous function
satisfying (1.6).

These conditions assuring existence of satisfying (1.6), (1.7) are very mild. For
example, the conditions under which a continuous function exists are often met in
problems where is nonnegative valued and either is convex in its dependence
or we permit relaxation of the controls [13].
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Thus we achieve in Proposition 1.3 our goal of significantly extending the range
of applicability of Proposition 1.1. There is however a major drawback in these
developments: the intractability of the integrated constraint (1.6). How should we
test that a function b generated by, say, a field of extremals, satisfies (1.6), which is
expressed in terms of r/, the value of which at ((x-, t-), (x /, t/)) we are trying to find?

One way round the difficulty is to give ar optimality condition in terms of a
sequence of smooth functions 4 such that the infinitesimal form (1.3) of the constraint
is satisfied along the sequence [12]. If however we aim for a more precise optimality
condition expressed in terms of a single function 4, we require a variant of Theorem 1.1
which asserts, under weakest conditions, the existence of a function b which satisfies
(1.6), (1.7) and for which (1.6) can be expressed in testable, infinitesimal form. (Of
course the second condition (1.7) also depends on r/but this is not cause for concern:
when b is generated by a field of extremals we may replace (1.7) by (1.4), in which
x(.) is the field element satisfying the boundary conditions (1.2). We view (1.4) as
testable since it does not involve r/.) It would appear that the class of Lipschitz
continuous functions is just about the largest of the simply described classes of functions
b for which condition (1.6) can be expressed in infinitesimal form.

It is against this background that our main result, which provides (in the context
of optimal control theory) a weakest condition assuring existence of a Lipschitz
continuous function b satisfying (1.6), (1.7) should be viewed. Indeed, r/is an example
of an admissible value function. The foregoing suggests a sense in which our results
provide the weakest condition under which the Carath6odory approach works.

In [10] (this issue, pp. 235-245) an analogue of Proposition 1.2 for Lipschitz
continuous functions b is proved for a related optimal control problem in which (1.5)
is replaced by

(1.8) tp,(x,t)+x(x,t)Yc <=l(x,t,A) for alia and a.e. (x,t):

Equation (1.8) is the appropriate infinitesimal form of (1.6). We also show that our-
results on existence of a Lipschitz continuous function satisfying (1.6), (1.7) lead
directly to new necessary conditions that an admissible arc be minimizing [10].

Our results, we believe, make a striking connection with another branch of control
theory. It turns out that the condition we introduce, "strong calmness", is a condition
intermediate in strength between calmness of the optimal control problem and a
stronger, uniform notion of calmness. The condition of "calmness" introduced by
Clarke (see, e.g., [2] or [3]), is the weakest known condition assuring normality of
the control problem. (Normality is the condition that the Pontryagin maximum prin-
ciple yield a nonzero multiplier associated with the functional to be minimized and,
therefore, in a sense, yield nontrival information.) Actually the notions of calmness
and strong calmness essentially coincide under mild compactness and Lipschitz con-
tinuity assumptions on the data (see [11]). It is intriguing to observe that the theory
of necessary conditions in optimal control theory and the Carath6odory approach rest
on the foundations of related hypotheses. Such connections were anticipated by
L. C. Young [12, p. 264].

Various conditions are available elsewhere in the literature [4], [9], [14] from which
may be deduced conditions under which the conclusion of our main theorem applies.
The weakest appears to be the condition of Lipschitz continuity of r/ on its effective
domain, hypothesised by Lewis [8]. This Lipschitz continuity condition is stronger
than uniform calmness (which amounts to a kind of one-sided Lipschitz continuity
assumption) which, in turn, is stronger than our strong calmness. All these papers
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(and also [12]) make continuity and compactness assumptions on the data, which play
no part here.

Finally some comments about our methods. In broad outline these pattern those
of Iofte [5], used in proving Theorem 1.1. As in [5] we interpret b’s satisfying (1.6),
(1.7) as subgradients of a convex function, and thereby reduce the problem to one of
establishing nonemptiness of a subdifferential. We too must confront the difficulty
encountered by Ioffe in [5]that this convex function has, possibly, effective domain
with empty interior. Ioffe uses a criterion for nonemptiness of the subdifferential
which applies in such circumstances; we get round the difficulty by constructing a
convex cone whose interior is both nonempty and disjoint from the epigraph of the
convex function, so that an elementary separation principle is applicable. The main
difference between [5] and this paper is the choice of spaces. Since the subgradient
is to be a Lipschitz continuous function, we must adopt as domain of the convex
function some predual space of the Lipschitz continuous functions. What should this
be? The answer is provided by concepts due to L. C. Young. Young’s space of
"(simplical) boundaries" with the boundary norm [12] is indeed such a predual space
and is ideally suited to the present application. However, the results on boundaries
in [14] must be extended and reworked since the continuity and compactness assump-
tions in [14] are not present in our development. We believe that the space of
boundaries is exploited as a predual of the space of Lipschitz continuous functions
here for the first time.

Concerning related research, we mention that the problem of maximizing b (y)-
b(y) over continuous functions which satisfy (1.6) can be interpreted as the dual
problem (in the sense of convex programming) of a special case of Kantorovich’s
"mass transportation" problem. The mass transportation problem has been extensively
studied by Levin and Milyutin [8]. These authors are primarily concerned with
conditions under which the values of the mass transportation problem and its dual
problem coincide with respect to both continuous and Lipschitz continuous b’s; in
contrast, our concerns, viewed in relation to the mass transportation problem, are
with conditions under which the dual problem has as solution a Lipschitz continuous
function.

2. Admissible value functions. Let Y be a metric space. The metric on Y will
be written m.

DEFINITION 2.1. A function v" Y Y- is an admissible value function if and
only if

v(y,y)=O for allyY,

V(y, y2)+/A(y2, y3)-->V(yl, Y3) for all y, y2, y3 Y.

We have given one example of an admissible value function in 1 (the function
r/on "/x R"+). A special feature of this example, which is common to all admissible
value functions arising from optimal control problems in which one coordinate is
identified as time (so called nonparametric problems), is that

(2.1) r/((x-, t-), (x + t+)) +oo when +<t-
Note however that conditions such as (2.1) play no part in Definition 2.1, and our
results on admissible value functions (to follow) are relevant to control problems not
covered by the formulation in 1, and in particular to parametric problems.

Notice that the metric m defines an admissible value function on Y Y. That
this is so follows simply from the defining properties of the metric.
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+3. Strong calmness. Let v be an admissible value function, and let (y,, y,) be
a point in Y Y. By analogy with the definition current in the optimal control and
mathematical programming literature [2], [3], we say v is calm at (y:, y:) if there
exists a real number c such that

v(y y+)-v(y,, y,)->-c[m(y y,)+m(y /, y,)]

for all (y-, y+) Y Y (m is the metric on Y, remember).
We have commented in 1 on the significance of such a condition in optimal

control theory as assuring nontriviality (i.e., normality) of the conclusions of the
Pontryagin maximum principle. (It should be added however that calmness understood

I"+- IR"+in the above sense, when specialized to apply to the function r/ R of
1, differs slightly, and is rather stronger, than the condition of the same name

hypothesized by Clarke [2]. Clarke’s hypothesis requires (3.1) to hold only locally, in
a sense made precise in [2], and for perturbations only of the x-component of either

/y, or y,.)
We shall say that v is uniformly calm if there exists a real number c such that

(3.1) holds for all y-, y/ +
Y,Y, Y.

The notions of calmness and uniform calmness will not enter elsewhere into this
paper. Our reasons for including them here is that they are natural, simply stated
conditions on the stability of the associated minimization problem under data perturba-
tions, which illuminate the concept in terms of which our main result is expressed,
namely strong calmness.

Before introducing strong calmness we take note of the interpretation of calmness
/)suggested by Fig. 1" we can view v as defined on directed line segments cr(y y

/joining the arbitrary points y y/ in Y. v is calm at r* r(y,, y,) when there exists
some real number c such that, on replacing the segment r* by a new segment
r r(y-, y+), the decrease in the value of v is not greater than c times the sum of

+the lengths of the gaps (the dashed lines) in any polygonal arc joining y, and y,
which includes the new segment r.

The condition of strong calmness of v at (y ,, y) (with modulus of calmness c)
imposes an essentially similar restriction on v, with the exception that now we consider
replacement of r* by an arbitrary finite set of segments (rt,""’, r}: the decrease
in the sum of the values of v at rt,’’ ’, r, as compared with that at r* must not
exceed c times the sum of the lengths of the gaps in any polygonal arc from y to
+y, which includes cry,. , r. (See Fig. 1 again.)

FIG. 1. The strong calmness condition.
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DEFINITION 3.1. The admissible value function v’ Y x Y - is strongly calm at
4- 4-(y ,, y ,) Y Y if and only if v (y ,, y, is finite and there exists a real number c such

that for any collection of points {(y -, y ),. ., (y , y)} in Y x Y we have"

(3.2)

and

(3.3)

+ 4- +E v(yi, y/)--v(y,, y,)=>--C m(yi+l, y.+,)+m(y,, y-)+m(yk, y,
i=1 i=1

/)(yi, y]-)>-- m(y,+l, y)+tn(yk, y-
i=1

The minimum of all nonnegative values of c satisfying (3.2), (3.3) for all collections
+is called the modulus of calmness o[ v at (y,, y,).

The qualification "essentially" in the paragraph preceding Definition 3.1 refers
to the extra condition (3.3). This condition is very weak; when v is associated with
some optimal control problem as in 1, we may arrange that (3.3) holds whenever
the function in (1.1) is bounded below.

We have used terms "segment" and "arc" in this section in a loose, provisional
sense to describe the ideas behind Fig. 1. These terms will be given a different, precise
meaning below.

4. The main result. The class of Lipschitz continuous functions on Y, written
Lip, is understood in the following sense’

DEFINITION 4.1. The set Lip is the family of functions b" Y - which satisfy

sup {16 (y) 6 (y’)]/m (y, y’)} < oo.
y#y’

The Lipschitz constant of b Lip is the number c,

(4.1) c sup {[b (y)- 6(y’)[/m (y, y’)}.
y#y’

Given an admissible value function v and a point (y,, y,) in Y Y, we examine
conditions under which there exists an element b Lip with the following properties:

(4.2) 4 (y /) b (y -) -<_ v (y -, y+) for all (y-, y+) Y x Y,

(4.3) b (y,)-b (y,) v(y,, y,).

It is a simple matter to show that there is some connection between the conditions
(4.2), (4.3) and strong calmness (defined in 3). Indeed suppose that b cLip, with

+Lipschitz constant c, satisfies (4.2), (4.3) for some (y,, y,) Y Y. From (4.2), (4.3)
we deduce

k k

Z t(yi, yT)-v(y,, y,)>-- Z [t(y-)--6(yi )]--[6(y +,)-t(y,)].
i=1 i=1

The right-hand side may be rearranged to give

k-1

E [b (y)-b (y -+1)] + b (y)-b (y -) + b (y)-b (y ,).
i=1

Inequality (3.2) now follows from (4.1).



222 R.B. VINTER

Likewise we deduce from (4.2) that
k k

v(y-, y-)_-> [b(y-)-b(y-)]
i=1 i=1

k-1

E [(Y?)--(Yi)]+(Y)--(Y),
i=1

which implies (3.3) by (4.1). Note that the modulus of calmness is at most c.
Thus, strong calmness is necessary for existence of Lip satisfying (4.2), (4.3).

It is perhaps unexpected that strong calmness is also sucient. This is our main result.
We summarize:

+THEOREM 4.1. Let v be an admissible value function and (y,, y,) a point in
Y Y. Then there exists Lip with Lipschitz constant c satisfying

(y+)-(y-)v(y y+) for all(y y YxY,

(y+ +,)-O(y,) v(y,, y,)
+if and only if v is strongly calm at (y ,, y ,) with modulus of calmness c.

In general terms, Theorem 4.1. has the form that Ioffe’s Theorem 1.1 would lead
one to expect. Ioffe showed that a continuous function " "+ satisfying (1.6),
(1.7) exists if, essentially, the admissible value function of 1 satisfies a kind of
one-sided continuity condition (namely lower semicontinuity). Theorem 4.1 asserts
that a Lipschitz continuous function " Y satisfying (4.2), (4.3) exists if v satisfies
a kind of one-sided Lipschitz continuity condition (namely strong calmness).

The rest of this paper is given over to proving Theorem 4.1 and, prior to that,
setting up the necessary machinery for the purpose.

5. Flows and their boundaries. In this and the next section, we treat Y as merely
a nonempty abstract set.

An ordered pair of points (s s 6 Y Y defines a segment s. This is an element
in ’(Y x Y) defined by

s(g) g(s-, s +) for g (Y x Y)

(the spaces (Y x Y), ’(Y Y) were defined in the opening section). We refer to
the ordered pair (s-, s +) as the endpair, and to s- and s + as the left and right endpoints,
of s.

A flow f is a linear combination in ’(Y x Y) of segments {s}
k

(5.1)
i=1

in which the coefficients {} are nonnegative. Linear combinations in ’(Y x Y) with
nonnegative coefficients are referred to as mixtures. For example, a flow is a mixture
of segments.

An arc is a flow f expressible as (5.1), but in which ai 1, 1,..., k, and
s s+a, 1,. , k 1. Here s[ and s are the right and left endpoints of s. If,
further s k S, then the arc is closed. The endpair and left and right endpoints of an
arc which is not closed are defined in an obvious way. A subarc of an arc p is an arc
whose constituent segments are also constituent segments of p. A two-arc is an arc
expressible in terms of two segments.

Given a flow f, the boundary of f, written 0f, is an element in ’(Y) defined by

0[()=[(), for all & e (Y),
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where (y+, y-)=b(y/)-b(y-). It is so called because it is defined through the
restriction of f to some subspace of ’(Y Y). The space of boundaries is written .

A point b "(Y) is in if and only if it may be expressed

(5.2) b(b)=a,[4(y-)-b(y-)], all b (Y),

in which the a, s are nonnegative and the y-’s, y are points in Y. Indeed b given
by (5.2) is the boundary of f given by

(5.3) f(g)=Za,g(y:,,y-) forallg;(YY).

Conversely, every flow [ can be expressed (5.1) and, therefore, has boundary of the
form (5.2).

It is clear from the preceding observation that is a linear subspace of "(Y).
is obviously a convex cone. However, given b there is a corresponding -b,

obtained by interchanging each y and the associated y in the representation (5.2)
of b. Thus, is a linear subspace.

Another representation of boundaries is useful. A point b ’(Y) is in if and
only if it is zero or it can be expressed

(5.4) b(6) X a6(y)-E a;6(y;), all 6 e (Y),

+ -’S + -’Sin which the a, a are positive, the y i, y are distinct and

+(The y i--, Y]+’S and a, a[’s in (5.2) and (5.4) are not necessarily the same.) Indeed,
given (nonzero) b expressed as (5.2), we may obviously re-express it as (5.4) by
coalescing repeating y[, y ? ’s and throwing out terms with zero coecients. Conversely,
given (nonzero) b ’(Y) satisfying (5.4), then b is the boundary of the flow:

-1

id

here s is the segment with endpair (y , y i).
Some terminology is required in connection with boundaries. The representation

(5.4), which is obviously unique to within ordering of terms in the summation, is

referred to as the normal representation of b. We denote by supp+{b} the set {y [} (in
the representation (5.4)) and by supp-{b} the set {y/}.

One may think of supp+{b} and supp-{b} as the supports of the positive and
negative components, obtained from Jordan decomposition, of the measure associated
with b.

A flow with zero boundary is called a closed ow. Obviously mixtures of closed
arcs are closed flows. Of crucial importance is the converse of this result"

LEMMA 5.1. Every closedow is expressible as mixture oclosed arcs.

Pro@ Let [ be a closed flow. We may assume that [ is nonzero since, otherwise,
the result is trivial. By definition, is expressible as a mixture of segments

(5.5) 2s

in which we may suppose that the coecients are positive and segments are distinct.
Let S be the set of segments in the mixture. Since the mixture (5.5) is expressed in
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terms of distinct segments, we may associate with each si S, in a unique way, the
coefficient of the corresponding term in (5.5).

Let L, R be sets comprising respectively left, right endpoints of the segments in
S. Choose any y Y. Define b (Y) to take the value 1 at y and zero elsewhere.
Since the flow f is closed,

We conclude

(5.6)

where (a, b) b (6) b (a).

iSL(Y) iSR(y)

in which St(y), SR(y) is the set of index values for which y is respectively a left,
right endpoint of the segment si. Since the a’s are positive, (5.6) implies that if a
point y is some right endpoint then y is some left endpoint and vice versa.

Now choose y R. We have just observed that we can choose a segment d S
with left endpoint y. We can proceed and choose dz S with left endpoint the right
endpoint of dl, and so on, thereby constructing a sequence of segments d1,’’ ", dN.
We terminate this procedure when the right endpoint of a newly selected segment
coincides, for the first time, with the left endpoint of a previously selected segment.
Termination must occur since S is a finite set. By discarding initial terms in the
sequence, we may arrange that dl + dz +’" + dN, which we write pl, is a closed arc.

Let c be the smallest of the coefficients associated with dl,’’ ", d. f may be
expressed as

f =r+clpl,

in which r is a mixture of segments in some proper subset $1 S. The segments which
are eliminated from S to form $1 are those used in the construction of p and whose
coefficients are c 1.

In similar fashion we may decompose r as the sum of a mixture of segments in
some proper subset $2 S and a "weighted" closed arc 2p2, and so on. Since S is
a finite set, after a finite number of steps, M, the set SM is empty. There follows the
desired representation

M-1

f= Z cp,.
i=1

LEMMA 5.2. Suppose that s is a flow and b Os. Then s is expressible as

S gl + g2,

in which g is a mixture ofclosed arcs and g2 is absent or a mixture of arcs with endpairs
in supp- {b } supp+ {b }.

Proof. We may suppose that the boundary b is nonzero (otherwise the lemma
reduces to Lemma 5.1). Let

(5.7) b(b) Y ab(y)-Y, a}-b(y-), all b (Y),

be the normal representation of b.
Define Y*= Y . We embed Y in Y*" y (y, 0). Let {zi} be a collection of

distinct points in Y*\(Y x {0}). Treating the y-, y’s as embedded in Y*, we may
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define the segments in ’(Y*x Y*).

s r(y, z)+o’(z, y-).

Here tr(y-, y/) denotes the segment with endpair (y-, y/). Define also the flow in
’(Y*, Y*),

-1

Srev O EEOl;OljSij.
i,j

By embedding the endpoints of the constituent segments of s in Y*, we may view s
as a flow in ’(Y*x Y*). It is easy to see that

tgSrev --OS.

It follows that s + Srev is a closed flow (in "(Y* x Y*)). By Lemma 5.1 then, s + Srev
is expressible as a mixture of closed arcs; thus,

(5.8) S + Srev E cidi.

We may take the coefficients ci positive since s, and so certainly s + Srev, is a nonzero
flow.

But the constituent elements of srev are defined through two-arcs with distinct
midpoints, and the set of midpoints, which is in Y*\(Y x {0}), is disjoint from the left
and right endpoints of segments in Y x {0}, a mixture of which represents s. These
constituent elements cannot be broken up in the representation of s + Sr,v as a mixture
(with positive coefficients) of closed arcs. It follows that we may separate out the
constituent elements of Srv and write

(5.9) Y cidi cidi + Srev.

Here the di’s are d’s from which all two-arcs sj have been removed. But then from
(5.8) and (5.9),

(5.10) s cidi.

The endpoints of the constituent segments of the d’s are in Y x {0}. We may therefore
view (5.10) as providing a representation of s in ’(Y x Y). Our construction expresses
s as a mixture of arcs with endpairs in supp-{b} x supp/ {b } and, possibly, closed arcs.
However, arbitrary closed arcs, with zero coefficients, can always be included in the
mixture. The lemma is proved. U

6. Functionals induced by admissible value functions. Let v be an admissible
value function (see 2) which takes value nowhere -. Then v induces a functional
on the space of flows, thus,

(6.1) a(/) E ,,v(y;, y),

where i aitr(y -, y -) is some representation of f as a mixture of segments tr(y -, y -)
with endpairs (y -, y [ ). In (6. i) we define aiv (y -, y to be zero if ai 0 and v (y -, y
+oo. It is easy to see that, with this convention, the value of 5(f) does not depend on
the particular representation of f chosen.

We may associate with v a functional dv on the boundary space d, via the
functional

(6.2) Ov (b inf {t (f)" f is a flow, Of b }.
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The following properties are simple consequences of the definition of "admissible
value function" and are stated without proof.

LEMMA 6.1. Let v be an admissible valuefunction taking value nowhere -o. Then
(i) For any arc g whose endpair coincides with that of the segment s, we have

(g) ->_,(s).

(ii) For any closed polygonal arc,

(g)>--_O.

LEMMA 6.2. Let v be an admissible value function taking value nowhere -, and
let b Y. Then there exists a ]tow f such that

of=b, Ov (b 5 (f).

If b is zero, f can be taken as the zero flow. If b is nonzero, f may be expressed as a
mixture of segments with endpairs in supp- {b } supp+ {b }.

Proof. We deal first with the case b -0. In this case any flow f such that Of b
(= 0) is expressible as a mixture of closed arcs (see Lemma 5.1). By Lemma 6.1,
t7 (f)_-> 0. But then t7 achieves its minimum value Ov (b) over flows with zero boundary
at the zero flow.

Now suppose that b 0. We order the elements in supp+ {b}, supp- {b} as {y },
{y -}, respectively. Let the positive numbers {a }, {a -} be defined now through the
normal representation of b"

+4(y;) EaFd,(y, ), all 6 ,(V).b(6)=Z,,

Let sii be the segment with endpair (y -, y ;). It is easy to see that the set

5v {flows s: Os b, s is a mixture of the sii’s}

is nonempty (indeed, (Zia;-)-1Z,i,iaTasii is such a flow), and that the mixture
Y. i.i cqsgi lies in Sf if and only if

{c,} P,

where
+P {{Cij}" Z Cij Oli, Z Cij Olj, Cij - 0}.

Now consider

(6.3) inf {tT(s): s St},

which, in view of the foregoing, may be written

inf {tT( c,s,)" {c,,} P} inf {,. c,(s,,)" {c0} P}.
If the value of the expression (6.3) is +, then the infimum is achieved by any s
and, in particular, on some s with boundary b. If the value is finite, then the infimum
is again achieved since its determination reduces in effect to minimization of a linear
function over the nonempty compact polyhedron in the finite dimensional linear space
of matrices (of a certain, fixed, dimension)’

P (’{{Cii}: Cij =0 if (Sii)-- -1"00}.
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We are interested in

(6.4) Ov (b) inf {v (s)" Os b }.

We have just shown that the infimum in (6.4) is achieved if the constraint Os b is
supplemented by the requirement that s is a mixture of the elements sij each of which
has endpair in supp-{b} supp/ {b}. The proof will be complete then if we can that,
given a flow f with Of b, there exists s Se such that

(f)>-(s),

for then the supplementary constraint can be added without reducing the infimum.
This we proceed to show.

Let f be such that 0f b. By Lemma 6.2,

(6.5) f E otigi + , ihi,

where the a’s,/’s are nonnegative, the g’s are arcs with ends in supp- {b } supp+ {b }
and the h are closed arcs. Now define g, 1, 2,. to be segments with endpairs
those of g, 1, 2,. ., and set

S E Oligi.

Clearly, s . In terms of the representation (6.5), tT(f) may be expressed

However, by Lemma 5.1

It follows that

(hi)>=O and (g,)>-(,).

We have exhibited an element s in 6e with the desired properties. [3
Lemma 6.2 specialized to boundaries of segments gives:
COROLLARY 6.1. Let v be an admissible value .function taking value nowhere

and let b be the boundary of a segment with endpair (y-, y+). Then

or(b) v(y-, y+).

LEMMA 6.3. Let v be an admissible value function taking values nowhere -oo.
Then, for b, b 1, b2

(i) Ov(b)>-oo,
(ii) 0v(0) 0,
(iii) 0v (ab) a 0v (b) for a > 0, and
(iv) Or(b1 +b2)<-OV(bl)+Ov(b2).
Proof. (i) follows from our assumption that t cannot take value -oo and the fact

that the infimum in (6.2) is achieved (see Lemma (6.2)). (ii) and (iii) are direct
consequences of the definitions of 0v. Finally, to prove (iv), we choose f, f2 such that

Ov(b) (fl), Of b, Or(b2) (fE), ore bE

(this is permissible by Lemma 6.2). Then

Ov(b + bE) inf {tT(f)’ Of= bl + bE} <-- (f +fE)

=(fl)+(f2)=OV(bl)+Ov(b2). [-1
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7. A topology on the space of boundaries and the associated dual space. In this
section, we use the metric m on Y.

As we have observed ( 2), m is an admissible value function, m therefore induces
a function Om on (see 6) which, we recall, may be written

Om (b inf {th (f)" Of b }

in which rh is the "extension" of rn to the class of flows.
LEMMA 7.1. Om defines a norm on .
Proof. m takes values in [0, oo) since m takes values in [0, oo). By Lemma 6.3

and the fact that Om is finite valued, we have that Ore(b1 + b2)<=Om(bl)+Om(b2), and
Om(ab) am(b) for all a-> 0. In order to verify that Om is a norm, it remains to
show that 0m (b) > 0 when b # 0. However, if b # 0, there exists a mixture of segments
Y.i csi with endpairs in supp- {b } x supp/ {b } such that the ai’s are positive and

Om (b Z airfii(si)

(see Lemma 5.2). Since supp- {b} and supp/ {b} are disjoint, and since rn is a metric,
it follows that the rfi (s)’s are positive. We conclude that Om (b)> 0 as required. [3

The norm 0m on is called the boundary norm and is written l" Ira. We now
identify Lip as the topological dual of with boundary norm (Lip was defined in 4).

PROPOSITION 7.1. A linear functional on is continuous with respect to the norm
[" [ if and only if there exists some ck Lip such that

(7.1) l(b) a,[$ (y -)- $ (y -)],

where the right-hand side is expressed in terms of a, (y -, y ), 1, 2, , taken from
any representation of b of the form
(7.2) b(4,) Y’. a,[$(y)-$(y-)], all d (Y).

Proof. Suppose first that is a continuous linear functional. Then there exists
some nonnegative number K such that

[/(b)] <=g[blm for all b s .
Let y* s Y be an arbitrary point. We now define

6(Y) =/(6(y)- 6(y*)), all y Y.

Here and below 6 (y) denotes the functional taking value $ (y) on & r(y).
We observe that, for y, y’ Y,

]& (y)-& (y’)[ ]l(8(y)- 8(y*)- 8(y’) +8(y*))]

]/((y)-(y’))] _-<g[,(y)-,(y’)lm Km (y, y’).

The final equality follows from Corollary 6.1. We have shown & Lip.
Notice also that, if b Y a(6 (y) 8 (y -)), then

l(b) ( a,((y)-6(yT, )))
=l (Z c,[ (y)-6 (y *)]-E ,[6 (y?)-(y*)]

\i /
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, olil (8 (y 8 (y *)) olil( (y - 8 (y *))

E

We see that l(. is expressed in terms of b as stated.
This deals with the necessity of the condition for continuity of l. We now prove

sufficiency. Suppose that is defined by (7.1), in which 4 Lip. According to Lemma
6.2, we may suppose that the representation (7.2) is so chosen that

Ibl = im(y?, y).

From (7.1) then

I/(b)[ <--E a,[b (Y-)-b (Y-)[ <--/ E aim (y -,
in which/ is the Lipschitz constant of d. It follows that is continuous.

8. Proof of the main result.
LEMMA 8.1. Let v be an admissible value function which is calm at (y,, y,)

Y Y and which has modulus of calmness c. Let bo be the boundary of the segment
+with endpair (y,, y, ). Then for any b 3

v(o + b) ov (.bo) >-_ -c I 1.

Proof. Choose a flow f (in -’(Y Y)), which we express as a mixture of segments

(8.1) f Yc,o’(ar a-)

such that

(8.2) Ov (bo + b) ()

and

(8.3) Of =bo+b.
In (8.1) and throughout this proof, r(y y denotes the segment with endpair
(y y

Choose also a flow f (in ’(Y Y)), expressed as a mixture of segments

K

(8.4) f Y do’(b :,, b-)
i=1

such that

(8.5)

and

Ib I r

(8.6) Ofl=b.
Such choices of f and fl are possible by Lemma 6.2.

Define Y* Y x R. We embed Y in Y*" y --> (y, 0). Viewing now the a -, a, b -,
b ’s of (8.1) and (8.4) as embedded in the larger space, we may regard f and f, given
by (8.1) and (8.4), as flows in ’(Y*x Y*). Let ex,"’,er be distinct points in
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Y*\(Y x {0}). We define a flow/rl in "(Y* Y*) with boundary -b"

K

(8.7) ]1 di[o’(bi-,ei)+cr(ei, b7,)]
i=1

(comparing (8.4) and (8.7), we see that/?1 is obtained from fl by replacing segments
by "reversed two-arcs").

Since Of bo + b and 0fl -b, it follows that

(8.8) O(f +fi) bo.

Let us for the time being make the assumption

(8.9) bo0.

Then, by Lemma 5.2, the flow f +/1 may be expressed

(8.10) f+fl fo +f.

In (8.10) f0 is a mixture with positive coefficients of arcs with endpairs (y, y). f0
can be so chosen because fo, a flow with nonzero boundary bo, is nonzero. The flow

f is a mixture with positive coefficients of closed arcs (or f is the zero flow). We
assumef is nonzero. The casef is zero is treated by deleting all terms below associated
with re; the conclusions will be the same.

Now the constituent elements of 11 are two-arcs with distinct midpoints. The set
of these midpoints is in Y*\(Y x {0}) and is therefore disjoint from the set {b-, b /

1, 2,...} of endpoints of the two-arcs, from the set of endpoints of the segments
providing the representation (8.1) of f, and from y,, y,, since all these points are in
Y {0}. Consequently these two-arcs cannot be broken up in the representation (8.10)
of f+1 as a mixture with positive coefficients of arcs which are either closed or have

+endpairs (y,, y,). It follows that fo, f can be expressed

(8.11) fo= ai ( g,),

In (8.11) and (8.12) each g, is either a segment which is a constituent segment
of f, or a two-arc of the form o-(b /k, ek)+tr(ek, k) for some k. Further, for each i, {g0,
/’= 1, 2," "} defines an arc with endpair (y., y.) and {g, /" 1, 2,...} defines a
closed arc. The coefficients {ag}, {/3} are all positive.

By (8.8), (8.10), (8.11) and (8.12), we have, for b taking value 1 at y, and zero
elsewhere,

(8.13) E a, O(f +fl)() 1.

For each define

S’ "-{i" gij is a segment}, -/= {]" ii is a segment}.

Since the gi’s which .are segments can only arise as constituent segments of f and since
the i’s which are two-arcs can only arise as constituent two-arcs of 171 (the same is
true of the i’s), we may separate out contributions of f and fl in the expressions
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(8.11) and (8.12). We obtain representations of f and f as follows"

Now the flow f is recovered from f by replacing two-arcs gi, i in (8.15) by
segments having endpairs the reverse of the endpairs of the two-arcs (see (8.4) and
(8.7)) If we define hi (b +

k, b )when gii is a two-arc gii (b{,ek)+(ek, b +k ), some
k, and define gi similarly in relation to gi, we may write

Notice that the ’s, for ] e S and the h’s have endpoints in Y x {0} (an analogous
property holds for the ’s, ’s). In fact, all flows considered in the remainder of
this proof are expressible through segments with endpoints in Y x {0} (the flow ,
of which this was not true, was merely a device for setting up the representations
(8.14) and (8.16)). We revert, therefore, to considering flows as elements in ’(Y x Y).

Equations (8.14) and (8.16) may be interpreted as follows: The flow is expressible
as a mixture of arcs which are either closed or have endpairs (y,, y, and from which
have been removed certain subarcs. The mixture associated with the subarcs, on
reversal of these subarcs, provides a representation of. (In the case of an arc in this
mixture with endpair (y ,, y,), we may assume that subarcs have been removed which
incorporate initial and concluding segments of this arc; this may be arranged by
including, if necessary, additional trivial segments of the form (y,, y,), (y,, y,)
in the representation of . These are trivial in the sense that g, take value zero
on them. In the case of a closed arc, we may arrange, again by introduction of trivial
segments, that at least one subarc is removed).

These conclusions may be stated as follows"
There exist positive integers , i= 1, 2,..., and , 1, 2,... ,; for

+)} in Y x Y and collections of arcs {p},1..., K there exist points {(y , y q

{ri}0 such that
p has endpair (y , y), ] 1,..., K;
rq has endpair (y(+, y), ] 1,..., K- 1;
r0 has endpair (y3 y ), r, has endpair (y , y),)" and for 1,..., there

+)} in Y x Y, and collections of arcs {q}Z, {s} such thatexist points {(z , z q

q has endpair (z , z ), ] 1, , K;
sq has endpair (z(+, z), ] 1,... ,K-1;
s, has endpair (z 1, z );

with the following properties"
[ may be expressed as

(8.17) [ a p + q
i=1 i=1

Also fx, modified possibly by addition of a mixture of "trivial segments", may be
expressed as

(8.18) f= a r + s
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The coefficients c,/3 in (8.17), (8.18) are the same as in (8.14), (8.16).
Recall the properties (8.2), (8.3), (8.5), (8.6) of f and f, which may now be

written in terms of the representations (8.17), (8.18)"

(8.19) Of =bo+b,

(8.20) Ov (b0 + b) Z a, Z t(pi) + Z , Z (q,i),
i= i= i= i=

(8.21)

i= =0 = =
We may replace the flows and [ by new flows in which the arcs {pi}, {qq}, {r},

{s} are substituted by segments with the same endpairs. The new , [ so obtained
still satisfy (8.19), (8.21) since the changes do not affect the endpairs of the constituent
arcs and, therefore, the boundaries, of [, . Furthermore the changes cannot increase
the values of the right-hand sides of (8.20), (8.21) since, for example, (pi) v(y-, y+),
where (y y is the endpair of p (see Corollary 6.1). It follows that the new
still satisfy (8.20), (8.22) since, by the nature of the definition of Ov(bo + b), [bl and
by (8.19), (8.21), the values of the right-hand sides cannot be decreased.

After making these changes and on noting that, by Corollary 6.1, g((y-, y+))=
v(y-, y+), ((y-, y+))= m(y-m y+) for (y-, y+)e Y x Y, we may write (8.20), (8.22)
in terms of y i, Y , etc.’

(8.23) Ov(bo+b)= ai V(Yii, Yii + i V(Zii, Zi]
i=

[b[ i m(yi(i+), yq)+m(Yil, y,)+m(y +,, Y
i=1(8.24)

"+" i / (Y i(]+l), Y i] -at- rn (y il, Y ili
i=1

We have, by (8.13) and Corollary 6.1,

Ov (bo) ai Ov (bo) ai v (y,, y,).

Subtracting this equation from (8.23), we obtain

+ + +(8.25) Ov (bo + b) Ov (bo) oli 1.) (y i], Y i] I.) (y ,, y, @ i v (z i], z i]
i=1 i=1

However, since v is calm at (y ,, y,) with modulus c, we have for each

v(yii, Yq) --v(y,,y,)
(8.26)

=>-c m (y i(i+), yq)+m(yia, y.) + m (y +,, Y ig,+

and

(8.27) + + +1)(Zij, Zi.i)--C m(yi(i+), yq)+m(yi, Yigi
]= i=1
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It follows from (8.24), (8.25), (8.26) and (8.27) that

(8.28) Ov (bo + b) Ov (bo) >-- -c Ib
Recall that (8.28) has been proved under the assumption (see (8.9)) that bo # 0.

We now sketch the proof of (8.28) when b0 0. In this case f+f is a closed flow (see
(8.8)). We may assume that f+f is a nonzero flow; otherwise, f is also zero, b then
is zero (by (8.6)) and our assertion (8.26) obviously holds. By Lemma 5.1 the closed,
nonzero flow can be expressed as a mixture, with positive coefficients, of closed arcs
or, in other words, as (8.10) in which the term fo is absent. We now follow through
the previous arguments but making no reference to the now absent fo. There results
(8.24) and (8.25) in which the coefficients cz are all zero. We conclude (8.28) from
these equations as before.

Proof of Theorem 4.1. In view of the results in 4, it remains to show that strong
calmness is a sufficient condition for existence of $ Lip satisfying (4.2), (4.3) and
that, if v has modulus of calmness c, then b may be chosen with Lipschitz constant

+not greater than c. Suppose that v is strongly calm at (y,, y,) with modulus of calmness
+c. By definition of strong calmness, v(y,, y,) is finite. By (3.3) v takes values

nowhere.
Let bo be the boundary of the segment with endpair (y , y). By Corollary 6.1,

+Ov(bo) is v (y,, y, and is therefore finite.
Consider the subsets in the linear space x with product norm

(8.29) Sx {(a, b): a >-_Ov(bo+b)-Ov(bo)},

(8.30) S2 {(a, b): -a _->c[bl}.

We deduce from Lemma 6.3 that S is a convex cone with apex the origin. S2 too is
a convex cone with apex the origin.

Now the interior of S2 is nonempty and disjoint from S by Lemma 8.1. The sets
S and S may be separated then by a continuous linear functional on R x . There
exist therefore an element in the topological dual of and a number ao, not both
zero, such that

(8.31) aoa -l(b)>-(l (a, b) S,

(8.32) aoa l(b <= O, (a, b) S:.
The separation property may be expressed in this manner since the origin is common
to $1 and $2.

From (8.30) and (8.32), we deduce that

(8.33) -l(b) <-a0c[bl for all b .
Since is a linear space and is linear, (8.33) implies

(8.34) It(b)l<-, oclbl for all b .
It is clear from this inequality that a0 must be positive, for otherwise, a0 and would
both be zero. We may assume then that and a0 have been scaled so that ao- 1.

(8.34) may now be written

(8.35) [l(b)[ <-c[bl for all b .
We have from (8.29) and (8.31)

l(b)<-Ov(bo+b)-Ov(bo) for all b s.
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We readily deduce from the positive homogeneity of Ov (see Lemma 6.3) that

(8.36) l(bo)=Ov(bo),

(8.37) l(b) <- Ov (b) for all b

Now let & e Lip represent (we refer to 7). Suppose that b is the boundary
of a segment with endpair the arbitrary point (y-, y+) in Y Y. According to Propo-
sition 7.1,

(8.38) (b) (y +) , (y -).

However, by Corollary 6.1, 0v (b) v (y-, y +) and [b [ m (y-, y +). We conclude then
from (8.36), (8.37) and (8.38) that

O (y +) & (y-) -< v (y-, y +) for all (y-, y +) s Y x Y,

&(y,)-O(y,) v(y,, y,).

From (8.35) we have

]O (y +) & (y-)[ <= cm (y-, y +) for all (y-, y +) s Y x Y,

or in other words, 0 has Lipschitz constant at most c.
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NEW GLOBAL OPTIMALITY CONDITIONS IN
OPTIMAL CONTROL THEORY*

R. B. VINTERt

Abstract. We give global optimality conditions expressed in terms of a function b which satisfies
conditions related to the Hamilton-Jacobi equation. Thus our results are in the spirit of sufficient conditions
for optimality associated with Carath6odory in the calculus of variations, and of the verification theorems
of optimal control theory. The novelty here is that th is permitted to be merely Lipschitz continuous. A
weakest hypothesis, strong calmness, is provided under which our results apply. Evidence that the strong
calmness hypothesis is a reasonable one is presented elsewhere in the literature.

1. Introduction. We shall be concerned with the optimal control problem:

subject to

tl
Minimize (x (t), t, u (t) dt

dx
(t) f(x(t), t, u(t)) a.e. e [to,(1.2) d--

(1.3) X(to) Xo, x(tx) xx,

(1.4) (x(t), t)eA,

u(.)e.

Here l(., .,. ): " x g x R" R, f(.,.,. ): R" R" --> n are given functions. (Xo, to),
(x l, tl) are given points in n/l. A is a subset of " R. q/ is a subset of functions
u(. R--> " which is "closed under switching". By this we mean Ul(" ), u2(" )e a//, e
imply that v(.) e q/, where v(s)=ul(s) for s <t and v(s)=u2(s) for s >-t.

In the control problem we seek the infimum of the integral functional (1.1) over
admissible processes. By an "admissible process" we mean a pair of functions
(x (.), u (.)), in which x (.) [to, tl] --> is absolutely continuous and u (.) e a//, with the
following properties: (1.2)-(1.4) are satisfied and --> l(x (t), t, u (t)) is a Lebesgue
measurable function on [to, tl]. The integral (1.1) is interpreted as taking value +o
when t-+ max {0, l(x(t), t, u(t))} and t-, max {0, -l(x(t), t, u(t))} are both nonin-
tegrable. Sometimes we emphasize the choice of data (Xo, to), (x l, tl) by referring to
a process as "admissible with respect to (Xo, to), (x l, tl)". We assume that processes
admissible with respect to (Xo, to), (Xl, tl) exist, and that the infimum of the functional
(1.1) over such processes is finite.

A process admissible with respect to (Xo, to), (x l, tl) is termed optimal if it
minimizes (1.1) over such processes. The infimum of the functional (1.1) over admis-
sible processes is called the infimum cost.

Consider now a well-known sufficient condition for global optimality, which
summarizes a methodology generally associated with the name of Carath6odory. (For
results in this spirit, see [1], [15], [6] or [8].)

* Received by the editors January 25, 1982.

" Department of Electrical Engineering, Imperial College of Science and Technology, London
SW7 2BT England.
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PROPOSITION 1.1. Let (x(. ), u(. )) be an admissible process.
(a) Suppose there exists a continuously differentiable function d (., ):n

_
such that

(1.5) dt(x,t)+dx(x,t)f(x,t,v(t))<-l(x,t,v(t)) forall (x,t)A, v(.)all

and, for almost every [to, tl],

(1.6) ct(x(t), t)+4x(x(t), t)f(x(t), t, u(t))= l(x(t), t, u(t)).

Then (x (.), u (.)) is optimal.
(b) If a continuously differentiable function c exists such that (1.5) and (1.6) are

satisfied, then c solves the maximization problem:
Maximize (x1, tl)- (x0, to) over continuously differentiable functions /sub]ect to

/t(x, t)+x(x, t)f(x, t, v(t))<-l(x, t, v(t)) forall (x, t)A, v(.)ll.

Part (a) of Proposition 1.1 provides the sufficient condition in terms of a function
4. Part (b) identifies the function 4 as the solution of a certain infinite dimensional
linear programming problem.

Proof of Proposition 1.1 is elementary.
While this approach has been employed in the solution of some specific optimal

control problems (see, e.g., [6], [9] and [15]), no conditions appear to be known, of
an unrestrictive nature, assuring the existence of a continuously differentiable function

4 characterizing optimal controls as in Proposition 1.1. In fact optimal control
problems may easily be devised, of a nature such that we should not like to exclude
them from consideration (see, e.g., [14, Example 5.2]) which illustrate how Proposition
1.1 can fail to apply. These problems suggest that the essential limitation in Proposition
1.1 is the smoothness required of the function b.

The difficulty may be circumvented by giving a modified optimality condition in
terms of a sequence of continuously differentiable functions [13] (such a condition is
implicit too in the duality results of K16tzler [7] and Levin and Milyutin [10]) or, at
the price of destroying the local nature of condition (1.5), by expressing the condition
in terms of a continuous function [5]. Such results lack precision however, and the
question arises whether there exists some class of functions larger than the class
of continuously differentiable ones, with the following properties:

Firstly, an optimality condition having the flavor of Proposition 1.1 can be given
in terms of some 4 .

Secondly, the modified optimality condition applies under reasonable hypotheses.
Our purpose in the present paper is to show that the class of Lipschitz continuous

functions meets the first requirement. We derive optimality conditions involving a
Lipschitz continuous function 4 in which either the constraints (1.5) are required
merely to hold on the dense subset of the domain of b on which b is differentiable,
or (1.5) is replaced by an analogous constraint expressed in terms of the generalized
directional derivatives of b.

A weakest hypothesis is presented under which the new optimality conditions
apply. The hypothesis, a kind of regularity condition on the infimum cost with respect
to data perturbations, we term "strong calmness".

Is strong calmness a reasonable hypothesis? Evidence is given in [12] that strong
calmness is indeed reasonable and, therefore, that the class of Lipschitz continuous
functions meets the second requirement on the class demanded above. Under mild
assumptions, concerning Lipschitz continuity of the data in their x-dependence and
boundedness of the underlying domains, strong calmness is equivalent (in a sense
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made precise in [12]) to calmness. "Calmness", a notion introduced by Clarke (see,
e.g., [3]), appears to be the weakest available condition assuring normality of the
multipliers arising from application of the Pontryagin maximum principle to our
optimal control problem. Thus we can expect our optimality condition to apply
whenever the Pontryagin maximum principle yields nontrivial information.

We conjecture also that our results will be significant as regards numerical
computation of the infimum cost. We identify the Lipschitz continuous function
appearing in our optimality conditions as the solution of an infinite dimensional linear
programming problem similar to that in part (b) of Proposition 1.1. This problem
lends itself to solution by finite element methods along the lines of those reported in
[4] for free-endpoint problems. The fact that the solution is a Lipschitz continuous
function would lead us to expect order one convergence for linear elements.

The question concerning weakest conditions under which a result similar to
Proposition 1.1 may be given in terms of a Lipschitz continuous function was answered
in a general context in [11] (this issue, pp. 215-235). The main result in [11], as it
relates to the problem of interest here, is stated in 4. This paper may be seen as a
justification of the developments in [11] in that we show how the results in [11]
specialize to give refinements of familiar optimality conditions in optimal control
theory.

2. The value function. We define the value function r/(.,.):
U {+oo} U {-oo} as

n ((:o, Zo), (, ’)) inf (x (s ), s, u (s )) ds

where the infimum is taken over processes admissible with respect to (o, o), (, ’1)
when such exist. Otherwise the value of is interpreted as

It is a simple matter to check the following properties of "PROPOSITION 2.1.
(i) n(Y, y) 0 for all y
(ii) r/(y, y) + r/(yz, y3)--> r/(y, y3) for all y, yz, y3"+.
(iii) r ((Xo, to), (x , t)) <.
3. Strong calmness. The following definition, which enters into the hypotheses

imposed in the main results to follow, was first introduced in [11]:
DEFINITION 3.1. The problem (P) is strongly calm if there exists a real number

c such that for any collection of points in "+"+
q- q-{((, 7), (, )),..., ((, ;), (, ))}

we have

k

E T/((:7, TT), (?, T-))--T((X0, to), (Xx, tl))
i=1

(3.)
>-_-c I(;/, 7.i-+l)-(,,?)l+l(x0, to)-(sc-, cT)l+l(, )-(x, t)l

and

(3.2)

k

i=1
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The strong calmness condition is discussed, and related to conditions which have
arisen elsewhere in the literature in [11]. As an alternative viewpoint on strong
calmness, we give the following control theoretic interpretation"

Consider an ordered collection of processes {(xi(’),ui(’))}=l such that
(xi(’), ui(" )) is admissible with respect to (:-, r-), (:, r-) for 1,..., k. We may
view the whole collection as a single "generalized" process /in which the trajectory
is permitted to jump in (x, t)-space. The jumps are from (x0, to) to (-, --), from
(-, + + tl). We evaluated the cost of y as-a to (g:, r),. ., and from (:, ’k) to (Xx,

k I’riq(’Y) Z l(x,(t),.t, ui(t)) dt
"r-

(see Fig. 1).

/
/

Xo ,to

(x,t)

FIG. 1. The trajectories {xi(" )} corresponding to a generalized process.

Inequality (3.1) in the definition of strong calmness imposes a restriction on the
amount by which the infimum cost, inf {P}, can be decreased by admission of general-
ized processes. Specifically, it is required that there exist a number c such that for
any generalized process y

q(y)-inf {P} >-cd (y).

Here q(y) is the cost of y, as before, and d(y) is the sum of the lengths of the jumps
of y.

The second inequality, (3.2), is usually not significant; we may arrange that it is
satisfied under the mild conditions, say, that the function is bounded below.

As we mentioned in the introduction, the strong calmness condition reduces
essentially to Clarke’s calmness condition [3] assuring normality of the Pontryagin
multipliers, under mild, directly verifiable hypotheses on the data (see [12]).

4. A preliminary result. We summarize in the following theorem the main result
in [11] as it bears on our optimal control problem.

Here, and subsequently, Lip (S), the space of Lipschitz continuous functions on
a subset S "+a is defined to be

s R:
I,(y) ,,!y <Lip (s)

yy’ [Y -y
THEOREM 4.1.

(4.1) r/((Xo, to), (Xl, tx)) max {4(xx, tl)-4(Xo, to)}
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if and only if (P) is strongly calm. In (4.1) the maximum is taken over Lip (A) such
that

(4.2) r((0, ’0), (:t, ’t))->-b(:t, z)-b(0, z0) forall (o, ’o), (, ’t)A.

(The notation "max" in (4.1) indicates that the maximum is achieved.)
The theorem is a special case of [11, Thm 4.1], which applies for any function

having the three properties listed in Proposition 2.1.
Theorem 4.1 expresses the cost as the "value" of a maximization problem in

which the underlying elements, b Lip (A), satisfy the constraint (4.2). It is unsatisfac-
tory as a characterization of the infimum cost insofar as direct verification of (4.2)
requires knowledge of r/, the function whose value at ((x0, to), (xx, tx)) we are trying
to find. The theorem is nonetheless significant as providing the starting point for
derivation of related results in which (4.2) is replaced by simple "local" constraints
on the b’s expressed directly in terms of the problem data. These developments
compel us to impose extra assumptions on the problem data. Our purpose in not
imposing the extra assumptions from the beginning has been to emphasize the general-
ity of the results in [11]; Theorem 4.1 applies under more or less the weakest
assumptions assuring that the optimal control problem makes sense.

5. The main results. We consider the following additional hypotheses:
There exists some subset 12 of Rn such that"

(5.1) ll={measurablefunctionss-u(s): u (t) f a.e.}.

(5.2) A is an open set.

(5.3) Foreachuf,l(.,.,u):n,f(.,.,u):"" are continuous.

THEORE 5.1-A. Suppose that (5.1)-(5.3) are true. Then

(5.4) r/((Xo, to), (x t, t)) max {d (x x, t) d (xo, to)}

if and only if (P) is strongly calm. The maximum in (5.4) is taken over Lip (A)
such that

,(x, t) +qbx(x, t)f(x, t, u)<-l(x, t, u)

for all u l and all (x, t) A at which b is differentiable.
An alternative statement of this result may be given in terms of the "generalized

directional derivative" Db(y; h) of b Lip (A) at the point y A in the direction
h, introduced by Clarke in [2]:

Db (y h) lim sup {e - [b (y, + eih)- b (y,)]}.
yi--

ei$0

This expression is interpreted as the lowest upper bound over all sequences {y},
with yi y, e $ 0 of the limit superior of the bracketed expression.

THEOREM 5.1-B. Suppose that (5.1), (5.2) and (5.3) are true. Then

(5.5) r/((Xo, to), (xt, t))=max {b (x, t)-d(Xo, to)}

if and only if (P) is strongly calm. The maximum in (5.5) is taken over Lip (A)
such that

D((x,t); (f(x,t,u), 1))-l(x,t,u)<-O

for all (x, t, u) A f.



The preceding results characterize the infimum cost and apply even when this
infimum is not attained. The final two results concern optimal processes.

TH.Ort.M 5.2. Suppose that (5.1), (5.2) and (5.3) are true. Let (x(.), u(.)) be an
admissible process.

(i) If (P) is strongly calm then (x(. ), u (. )) is optimal if and only if there exists

& Lip (A) such that

d
(5.6) -(x(t),t)=l(x(t),t,u(t)) a.e. te[to, tl],

(5.7) D((x,t); (f(x,t,u), 1))-l(x,t,u)<-O foratl(x,t,u)eAII.

(ii) If (P) is not strongly calm, then no e Lip (A) exists satisfying (5.6) and (5.7).
Of course satisfying (5.6) and (5.7), if it exists, is given by any achieving the

maximum in (5.4) or (5.5).
Finally we state a variant on Theorem 5.2 in which a greater unity between

conditions (5.6) and (5.7) is achieved by replacing the derivative of the composite
function t-->(x(t), t) in (5.6) by an expression involving the generalized directional
derivative of ; the price we pay for this refinement is that we retain only necessity
of the optimality condition.

THEOREM 5.3. Suppose that (5.1) and (5.2) and (5.3) are true and that (P) is
strongly calm. Then there exists Lip (A with the following property:

D((x, t); (f(x, t, u), 1))-/(x, t, u)=<O

for all (x, t, u) A f and, if (x (.), u (.)) is an optimal process, then

D((x(t), t); f(x(t), t, u(t)), 1)-l(x(t), t, u(t)) 0 a.e. e[t0, tl].

The function may be taken as any ck achieving the maximum in (5.4) or (5.5).

6. Connections withthe maximum principle. Let (x*(.), u*(. )) be an optimal
process.

For the purpose of illustrating the relationship between our optimality conditions
and the Pontryagin maximum principle let us suppose that the problem considered is
such that the conclusions of Theorem 5.2 apply with a twice continuously differenti-
able function.

We readily deduce from (5.6) and (5.7), and the assumption that is twice
continuously differentiable, that

and
C,(x*(t), t) +x (x *(t), t)f(x*(’t), t, u*(t))-l(x*(t), t, u*(t)) 0 a.e. 6It0, tl]

,(x,t)+x(x,t)f(x,t,u)-l(x,t,u)<-O all(x,t)eA, uef.

These properties imply that, for almost every e [to, tl],

(6.1)

and

x C,(x, t)+(x, t)f(x, t, u*(t))-l(x, t, u*(t))

is maximized over {x: (x, t)eA} at x*(t)

(6.2)
u --> Cx(x*(t), t)f(x*(t), t, u)-l(x*(t), t, u)

is maximized over 11 at u*(t).

Now suppose that, for almost every [t0, tl], x*(t) is interior to {x: (x, t)A}
and that x --> l(x, t, u*(t)), x f(x, t, u*(t)) are differentiable functions at x*(t).
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We deduce from (6.1) that

Ctx(x*(t), t)+x(x*(t), t)f(x*(t), t, u*(t))

+&(x*(t), t)f(x*(t), t, u*(t))-l(x*(t), t, u*(t)) =0 a.e. [to,
However

d
d--’ ckx (x*(t), t) &(x*(t), t)f(x*(t), t, u *(t)) +,(x*(t), t) a.e. e [to, tl],

whence
dp(t)

(6.3) d-7+p(t)f(x*(t),t,u*(t))-l(x*(t),t,u*(t))=O a.e.t[to, h],

where the absolutely continuous function p (.) is given by

p(t) 6x (x*(t), t).

We note that (6.2) may be written

u -p(t)f(x*(t), t, u)-l(x*(t), t, u)
(6.4)

is maximized over ll at u*(t), a.e. [to,

Equations (6.3) and (6.4) will be recognized as a statement of the Pontryagin
maximum principle. We may loosely interpret our optimality conditions then as
variants on the Pontryagin maximum principle in which a function replaces the
costate variable p(. and a maximization property with respect to the x-variable (6.1)
replaces the costate differential equation (6.3). We caution the reader though against
pushing this interpretation too far. The Pontryagin maximum principle, which is a
necessary condition for "local" optimality, and Theorem 5.2, which (under the strong
calmness hypothesis) is a necessary and sufficient condition for "global" optimality,
have very different characters. We have suggested connections only under conditions,
namely existence of twice continuously differentiable function with suitable proper-
ties, which are highly restrictive and difficult to test.

7. Proof of the main results.
LEMMA 7.1. Suppose that hypotheses (5.1)-(5.3) are true. Let (a, b) be an open

interval containing the number and let x be a point in R". Let (x (.), u (.)) be a process
admissible with respect to (x (a ), a ), (x (b ), b) and such that x (t) x. Let be a Lipschitz
continuous function defined on a neighborhood of the graph of x (. ). Suppose that is
a Lebesgue point of s f(x (s), s, u (s)). Then the limit, as 0, of
(7.1) c-1[ (x(t +c), +a)- (x, t)]

exists if and only if the limit, as 0, of
(7.2) -[ (x + af(x (t), t, u (t)), +) (x, t)]

exists. The limits, if they exist, are the same.
Proof. Write d (c) for the difference of (7.1) and (7.2). Then

-1 f
t+c

Id(a)[<-K a f(x(s),s, u(s)) ds-f(x, t, u(t))

for a sufficiently small. Here K is the local Lipschitz constant. Since is a Lebesgue
point of s f(x(s), s, u(s)), the limit of the right-hand side is zero, as a$0. The
assertions of the lemma follow.
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LEMMA 7.2. Suppose that hypotheses (5.1)-(5.3) are true. Let Lip (A). Then
the properties (i), (ii) and (iii) below are equivalent.

(i) b (y l) b (y o) <_- /(yo, yl) for all y0,

(ii) ct(x, t) + bx (x, t)f(x, t, u) <- (x, t, u) for all u I and (x, t) A at which c is

differentiable.
(iii) Dd((x, t); (f(x, t, u), 1))_-</(x, t, u) for all (x, t)A, u eft.
Proof. (i) implies (ii): Assume that (i) is satisfied. Let (x, t)A be a point at

which b is ditierentiable, and let u f be given. By the standard existence theory
governing solutions to ordinary differential equations, there exist some positive number
e and a process (x (.), u) admissible with respect to (x (t e), e), (x (t / e), + e)
such that x(t)= x. Since s f(x(s), s, u) is continuous, is certainly a Lebesgue point
of s f(x (s), s, u). Property (i) implies that, for a > 0 sufficiently small,

--1 It t+ot(7.3) a-l[c(x(t +a), +a)-b (x, t)]<-a l(x(s), s, u) ds.

The right-hand side has limit l(x, t, u), as a $0, since s (x (s), s, u) is continuous. Now

lim a-[4(x +f(x, t, u)a, +a)-d(x, t)] bx(x, t)f(x, t, u)+t(x, t)
a$O

since, by assumption, b is differentiable at (x, t). The limit of the left-hand side of
(7.3) also exists and takes this value, by Lemma 7.1. We conclude that

bt(x, t)+dx(x, t)f(x, t, u)<--l(x, t, u)

as required.
(ii) implies (iii): Fix u I. It will be convenient temporarily to set y (x, t), and

for us to suppress the u-dependence in the notation and write/r(y), [(y) for f(x, t, u),
l(x, t, u). As is known [2], for any y A

Db (y ;/(y)) lim sup {by (yi)/(y)}.
yi-y

The right-hand side is interpreted as the supremum of all accumulation points of the
bracketed term, over sequences of points {yi} at which is differentiable, converging
to y.

But then

(7.4) Db (y ;/r(y)) lim sup
yi-- y

since, for any sequence {y} as above, the difference of the bracketed terms is
by(yi)" (/r(y)_/(yi)); this difference has limit zero by the continuity of/ and the
boundedness of {by(y)}. Now suppose (ii). Condition (ii), (7.4) and the continuity of
[ imply

D4 (y f(y))-<_lim sup {(y)} [(y).
YiY

Thus (iii) is true.
(iii) implies (i)" Suppose (iii) and, in contradiction of our claim, that for some

pair (x(.), u(. )) admissible with respect to (:0, Zo), (sea, ’1) we have

(q, ’)- (:o, to) > l(x(s), s, u)) ds.
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The function b (x (t), t) is absolutely continuous since, by assumption, b is Lipschitz
continuous and x(. is absolutely continuous. It follows that (d/dt)ck (x (t), t) exists
for almost every [’0, zl] and- ck(x(t), t) at > l(x(s), s, u(s)) ds.

We conclude from (7.5) that we can find (’0, zl) at which d(ck(x(t), t))/dt exists,
which is a Lebesgue point for s l(x(s), s, u(s)) and is such that

Now

d
d- (x (t), t) > l(x(t), t, u(t)).

-4(x(t),t)=li 4 x(t)+ [(x(s),s,u(s))ds, t+ -4(x,t)

Using Lemma 7.1 to evaluate this limit, we obtain

lim c-a[4 (x (t)+a[(x(t), t, u (t)), + a c (x (t), t)]> (x (t), t, u (t)).
$0

But then, by definition of the generalized directional derivative,

D,l((x(t), t); (f(x(t), t, u(t)), 1)) > l(x(t), t, u(t))

this contradicts (iii). Thus (i) must be true. [3
LEMMA 7.3. Suppose that hypotheses (5.1)-(5.3) are true. Let (x(.),u(. )) be

admissible with respect to (Xo, to), (x, tt) and let ck cLip (A) be such that

(7.6) D((x,t);f(x,t,u))<-l(x,t,u) forall (x,t)A, uef.

Consider the assertions

(7.7) (x, tl)-4)(xo, to)= l(s(t), t, u(t)) dr,

d
(7.8) d-- (x(t), t) l(x(t), t, u(t)), a.e. e [to, t],

(7.9) Dd((x(t),t),C’(x(t),t,u(t)))=l(x(t),t,u(t)), a.e. te[to, t].

Then
(i) (7.7) is true i and only i (7.8) is true,

and

(ii) (7.9) is true i.f (7.8) is true.
Pro@ Note first of all that t- 4(x(t), t) is absolutely continuous. The function

is therefore ditterentiable almost everywhere and satisfies

d
(xx, tl)-(Xo, to)= - (x(t), t) dt.

We see immediately that (7.8) implies (7.7).
Now suppose that (7.7) is true. Then

(7.10) 4(x(t),t)-l(x(t),t,u(t)) dr=0.
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We shall show that (7.8) and (7.9) are true.
The subset of points in (to, tl) at which s (x(s), s) is differentiable, and which

are Lebesgue points for s l(x(s),s, u(s)) and s-f(x(s),s, u(s)), is of full measure.
Choose such a point t.

We may deduce from (7.6), (7.10) and Lemma 7.2 that

d -1

d---(x(t),t)=lia [(x(t+a),t+a)-(x(t),t)]

(7.11) lim l(x(s) s, u(s)) ds
a$O

l(x (t), t, u (t)).

By Lemma 7.1 and the definite of the generalized directional derivative

-1lima [(x(t +a), +a)-(x(t), t)]

(7.12) lim a -[& (x (t) + af(x (t), t, u (t)), + a) (x (t), t)]

<_- Do((x (t), t); f(x (t), t, u (t)).

From (7.6), (7.11) and (7.12) we conclude that (7.8) and (7.9) are true.
Finally we turn our attention to the theorems of 5. We see that Theorems 5.1-A

and 5.1-B are immediate consequences of Theorem 4.1 and Lemma 7.2. Theorem
5.2 follows from Theorem 5.1-B and part (i) of Lemma 7.3 while Theorem 5.3 follows
from Theorem 5.1-B and part (ii) of Lemma 7.3.
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A NEW CLASS OF STABILIZING CONTROLLERS FOR UNCERTAIN
DYNAMICAL SYSTEMS*

B. R. BARMISH?, M. CORLESS AND G. LEITMANN

Abstract. This paper is concerned with the problem of designing a stabilizing controller for a class of
uncertain dynamical systems. The vector of uncertain parameters q(.) is time-varying, and its values q(t)
lie within a prespecified bounding set Q in R p. Furthermore, no statistical description of q(.) is assumed,
and the controller is shown to render the closed loop system "practically stable" in a so-called guaranteed
sense; that is, the desired stability properties are assured no matter what admissible uncertainty q(.) is
realized. Within the perspective of previous research in this area, this paper contains one salient feature:
the class of stabilizing controllers which we characterize is shown to include linear controllers when the
nominal system happens to be linear and time-invariant. In contrast, in much of the previous literature
(see, for example, [1], [2], [7], and [9]), a linear system is stabilized via nonlinear control. Another feature
of this paper is the fact that the methods of analysis and design do not rely on transforming the system
into a more convenient canonical form; e.g., see [3]. It is also interesting to note that a linear stabilizing
controller can sometimes be constructed even when the system dynamics are nonlinear. This is illustrated
with an example.

Key words, stability, uncertain dynamical systems, guaranteed performance

1. Introduction. During recent years, a number of papers have appeared which
deal with the design of stabilizing controllers for uncertain dynamical systems; e.g.,
see [1]-[7]. In these papers the uncertain quantities are described only in terms of
bounds on their possible sizes; that is, no statistical description is assumed. Within
this framework, the objective is to find a class of controllers which guarantee "stable"
operation for all possible variations of the uncertain quantities.

Roughly speaking, the results to date fall into two categories. There are those
results which might appropriately be termed structural in nature; e.g., see [1]-[3], [6].
By this we mean that the uncertainty cannot enter arbitrarily into the state equations;
certain preconditions must be met regarding the locations of the uncertainty within
the system description. Such conditions are often referred to as matching assumptions.
We note that in this situation uncertainties can be tolerated with an arbitrarily large
prescribed bound. A second body of results might appropriately be termed nonstruc-
rural in nature; e.g., see [4] and [5]. Instead of imposing matching assumptions on
the system, these authors permit more general uncertainties at the expense of
"sufficient smallness" assumptions on the allowable sizes of the uncertainties.

This work falls within the class of structural results mentioned above. Our
motivation comes from a simple observation. Namely, given a theory which yields
stabilizing controllers for a class of uncertain nonlinear systems, it is often desirable
for this theory to have the following property: upon specializing the "recipe" for
controller construction from nonlinear to linear systems, one of the possible stabilizing
control laws should be linear in form. It is of importance to note that existing results
do not have this property. Upon specialization to the linear case, one typically obtains
controllers of the discontinuous "bang-bang" variety; e.g., see [1] and [2]. One can
often approximate these controllers using a so-called saturation nonlinearity; e.g., see
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[7]. Such an approach leads to uniform ultimate boundedness of the state to an
arbitrarily small neighborhood of the origin; this type of behavior might be termed
practical stability.

Our desire in this paper is to develop a controller which is linear when the system
dynamics are linear. By taking known results (such as in [3]) which were developed
exclusively for linear systems, one encounters a fundamental difficulty when attempting
to generalize2 to a class of nonlinear systems; namely, it is no longer possible to
transform the system dynamics to a more convenient canonical form. The subsequent
analysis is free of such transformations.

2. Systems, assumptions and the concept of practical stability. We consider an
uncertain dynamical system described by the state equation

2(t) =f(x(t), t)+ Af(x (t), q(t), t)

+[B(x(t), t)+ AB(x(t), q(t), t)]u(t),

where x(t)R is the state, u(t)R is the control, q(t)R p is the uncertainty and
f(x, t), Af(x, q, t), B (x, t) and AB (x, q, t) are matrices of appropriate dimensions which
depend on the structure of the system. Furthermore, it is assumed that the uncertainty,
q(.):R-->R p, is Lebesgue measurable and its values q(t) lie within a prespecified
bounding set Q cR for all R. We denote this by writing q(.)M(Q).

As mentioned in the introduction, given that "stabilization" is the goal, we must
impose additional conditions on the manner in which q(t) enters structurally into the
state equations. We refer to such conditions as matching assumptions.

Assumption 1. There are mappings

h(.):R"xRPxRR" and E(’):R"xRPxR-R’’
such that

Af(x, q, t) B (x, t)h (x, q, t),

AB(x, q, t)= B(x, t)E(x, q, t),

liE (x, q, t)ll < 1

for all x R , q O and R.
We note that this assumption can sometimes be weakened. For example, in [9]

a certain measure of mis-match is introduced and results are obtained under the
proviso that this measure does not exceed a certain critical level termed the mis-match
threshold.

Our second assumption reflects the fact that the uncertainties must be bounded
in order to permit one to guarantee stability.

Assumption 2. The set O c R" is compact.
Our next assumption is introduced to guarantee the existence of solutions of the

state equations.
Assumption 3. The mappings f(. ): R x R R n, B (’): R x R Rmxn, h (.) and

E(.) (see Assumption 1) are continuous.3

This notion is not to be interpreted in the sense of Lasalle and Lefschetz [12] but as defined
subsequently.

That is, one begins with a linear control law for a linear system and generalizes the controller in
such a way that is applies to a class of nonlinear systems.

In fact, one can modify the analysis to follow so as to allow mappings which are Carath6odory and
satisfy certain integrability conditions. See, for example, Corless and Leitmann [7]. All the results of this
paper still hold under this weakening of hypotheses.
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In order to satisfy our final assumption, one may need to "precompensate" the
so-called nominal system, that is, the system with Af(x, q, t)=--O and AB(x, q, t)----0;
e.g., see [2]. Thus, prior to controlling the effects of the uncertainty, it may be necessary
to employ a portion of the control to obtain an uncontrolled nominal system

(UC) (t)=f(x(t),t)

that has certain stability properties embodied in the next assumption.
Assumption 4. f(0, t)- 0 for all R and, moreover, there exist a C function

V(.):R xR [0, o0) and strictly increasing continuous functions y(.), y2(’),
y3(’): [0, 00) -- [0, 00) satisfying4 yl(0) y2(0)--y3(0) 0 and limr_. yl(r)
limr_. TE(r) lim_.oo ya(r) o, such that for all (x, t) e R" R,

(2.2) v (llxll)

Moreover, defining the Lyapunov derivative o(" ): R"R -R by

(2.3) o(X, t) a 0 V(x, t)
=+V’xV(x,t)f(x,t),

at

where V’ denotes the transpose of the gradient operation, we also require that

t) -<_- -w(llx II)

for all pairs (x, t)eR R. This assumption, in effect, asserts the existence of a
Lyapunov function for the uncontrolled nominal system (UC). Consequently, the
origin, x 0, is a uniformly asymptotically stable equilibrium point for the uncontrolled
nominal system (UC).

The stability concept employed in this paper differs slightly from the traditional
Lyapunov-type stability. To motivate this change of definition, consider the following
very simple example of a system satisfying (2.1) and the associated assumptions:
(t) x(t)+q(t)+ u(t), with initial condition X(to) 1 and uncertainty q(. such that
[q (t)] -<_ 1. Furthermore, suppose the control is a linear feedback of the form u (t) kx (t),
with k <-1. Then, if a state x(t) <-1/(1+ k) is reached, an admissible uncertainty
q(t) =-1 results in motion of the state away from zero. Hence, although we cannot
guarantee uniform asymptotic stability (using a finite gain), we can nevertheless drive
the state to an arbitrarily small neighborhood of the origin.5 The following uniform
ultimate boundedness-type definition captures this notion.

DEFINITION 1. The uncertain dynamical system (2.1) is said to be practically
stabilizable if, given any _d >0, there is a control law pg(.):R’ x R -R for which,
given any admissible uncertainty q(.)eM(Q), any initial time to eR and any initial
state x0 R , the following conditions hold’

(i) The closed loop system

(2.4)
(t) f(x(t), t) + Af(x(t), q(t), t)

+[B(x(t), t)+ AB(x(t), q(t), t)]pa_(x(t), t)

possesses a solution x(. ): [to, tx]R n, X(to) Xo.

4 The limit condition on 3’3(’ can in fact be removed at the expense of a somewhat more technical
development; e.g., see [7].

This is not to be confused with Lyapunov stability, because the required gain k depends on the size
of the neighborhood to which we wish to drive the state.
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(ii) Given any r>0 and any solution x(.):[to, tl]-->R n, X(to)=Xo, of (2.4) with

Ilxoll <--r, there is a constant d(r)> 0 such that

IIx (t)ll <-- d(r) for all [to, tl].

(iii) Every solution x(. ): [to, t]--> R can be continued over [to, oo).
(iv) Given any d >_- _d, any r > 0 and any solution x (.)" [to, oo) --> R ", x (to) Xo, of

(2.4) with Ilxoll--<r, there exists a finite time T(a, r)< oo, possibly dependent on r but
not on to, such that Ilx (t)ll-<- a7 for all >_- to + T(a, r).

(v) Given any d ->_d and any solution x(’): [to, oo)-->R", X(to) =Xo, of (2.4), there
is a constant 6 (a)> 0 such that Ilxoll-<- (a7) implies that

IIx (t)ll--< a7 for all >= to.

3. Controller construction. We take _d > 0 as given and proceed to construct a
control law p _e(" which will later be shown to satisfy conditions (i)-(v) in the definition
of practical stabilizability.

Construction of pa_(’). The first step is to select functions AI(.) and A2(.)’R"
R --> R satisfying

(3.1) A(x, t)-->_max Ilh(x, q, t)ll,

(3.2) 1 > A).(x, t) >-max liE(x, q, t)l[.
qQ

The standing Assumptions 1-4 assure that there is a A2(x, t) such that
1) A2(x, t)<l can be satisfied for all (x, t)eR"R;
2) A(. and A2(.) can be chosen to be continuous; e.g., see [10, p. 116].
Now, one simply selects any continuous function y(. ):R"R --> [0, oo) satisfying

a(x,t)
(3.3) "g(x, t)>-4[1_ AE(x t)][C2-Cl.o(X, t)]’
where C and C2 are any (designer chosen) nonnegative constants such that

a) C1< 1;

b) either C1 # 0 or C2 # 0;
(3.4)

c) C2 # 0 whenever limx_,0 [A(x, t)/o(X, t)] does not exist;

C<( v v)(_d).d)
1 -C

Note that these conditions can indeed be satisfied because of continuity of the 3(.)
and the fact that lim_,o y(r)= 0 for 1, 2, 3.

This construction then enables one to let

(3.5) Pa(X, t)a---y(x, t)B’(x, t)VV(x, t).

Remark. In fact, (3.3) and (3.5) describe a class of controllers yielding practical
stability. It will be shown in 5 that this class includes linear controllers when the
nominal system happens to be linear and time-invariant.

4. Main result and stability estimates. The theorem below and its proof differ
from existing results (see [1], [2] and [6]) in one fundamental way: The control p_a(’)
which leads to the satisfaction of the conditions for practical stabilizability degenerates
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into a linear controller whenever the nominal system, obtained by setting
Af(x(t), q(t), t)=--O and AB(x(t), q(t), t)=-O in (2.1), is linear and time-invariant. This
will be demonstrated in the sequel. In fact, even for certain nonlinear nominal systems,
the controller turns out to be linear. This phenomenon will be illustrated with an
example of a nonlinear pendulum. Central to the proof of the theorem below is one
fundamental concept" a system satisfying Assumptions 1-4 admits a control such that
the Lyapunov function for the nominal system (UC) is also a Lyapunov function for
the uncertain system (2.1).

THEOREM 1. Subfect to Assumptions 1-4, the uncertain dynamical system (2.1)
is practically stabilizable.

Proof. For a given _d>0 and a given uncertainty q(.)M(Q), the Lyapunov
derivative (.)’RnR R for the closed loop system obtained with the feedback
control (3.5) is given by

(x, t)a_ o(X, t)+ V’V(x, t){Af(x, q(t), t)
(4.1)

+[B (x, t)+ aB (x, q(t), t)]pa_(x, t)}.

By using the matching assumptions in conjunction with (3.5), (4.1) becomes

q’(x, t)= f’0(x, t)-3/(x, t)llB’(x, t)VxV(x, t)ll
+ V’V(x, t)B(x, t)[h(x, q(t), t)

-y(x, t)E(x, q(t), t)B’(x, t)VxV(x, t)].

Letting (.)" R R --> R be given by

&(x, t) a---B’(x, t)VxV(x, t),

and recalling the definition of AI(. and Az(. ), a straightforward computation yields

(x, t)_-< 0(x, t)-[1-A2(x, t)]y(x, t)ll (x, t)l[=
+ +/-(x, t)ll (x, t)[I.

Now there are two cases to consider.
Case 1. The pair (x, t) is such that Al(x, t) 0. It then follows from the preceding

inequality that

(x, t) <=o(X, t).

Case 2. The pair (x, t) is such that A(x, t) 0. Then it follows from (3.3) that
,(x, t) > 0. Moreover, in view of (3.3) and the conditions on the Ci,

o’(x, t)_<-.’0(x, t)-[1-A2(x, t)]y(x, t)ll (x, t)ll2 + A(x, t)ll (x,

a(x,t)
Lo(X, t) +

4V(x,t)(1-A2(x,t))

(1-A(x, t))y(x, t)[ A(x, t)
-x +/-(x, t)ll (x, t)ll-2(1_ a=(x t))3,(x, t)

A(x, t)--<-- o(X, t) +
4y(x, t)(1- Az(x, t))

<-- (1-- C1)o(X, t) + C2.
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Combining Cases 1 and 2, and noting that C1 < 1, we conclude (as a consequence of
Assumption 4) that

(4.2) (x, t) <-( -C)o(X, t)+C <-- ( -C,)(llx II)+ C
for all (x, t) e R" x R. Having this inequality available now enables one to apply directly
the results of [7]. That is, the closed loop system (2.4) possesses a solution x(. ): [to, t]-->
R ", x (to) Xo, which is required by condition (i) in the definition of practical stabilizabil-
ity. Moreover, in accordance with [7], if Ilx0ll--< r, one can satisfy the uniform bounded-
ness requirement (ii) by selecting

d(r)&{(y-ly2)(R) ifr<-R,
(,y-I y2)(r) if r > R,

where
R V (C2/1

It now follows that there is no finite escape time so that the solution is continuable
over [to, m) and hence condition (iii) holds. Again for aT>_-_d, using the estimates
provided in [7], one can define

0 if r _-< (yl yl)(a),

(4.3) T(d-, r) A
y2(r) Z(’]/_l yl "y1)(d)

otherwise,
(1 C1)(’y3 "- " "1)’= C2

and in accordance with [7], the desired uniform ultimate boundedness condition (iv)
holds with the proviso that

(4.4) (1 C1)(y3 yl yl)(a)- C2 >0.
Note that this requirement is implied by the satisfaction of condition (d) of (3.4) which
entered into the construction of the controller.

Finally, to complete the proof, it remains to establish the desired uniform stability
property. Indeed, let d->_d be specified and notice that if 6(d)= R, the following
property will hold" Given any solution x(’)’[t0, )R", X(to)=Xo of (2.4) with
tlx011=<3(d), it follows (in view of the uniform boundedness property (ii) and the
requirements on the Ci) that [[x(t)ll<=d(R)<= for all t->t0. ]

5. Specialization to linear systems. The objective of this section is to show that
the flexibility permitted in choosing y(x, t) (see (3.3)) can be exploited in a "nice
way" when the nominal system dynamics happen to be linear and time-invariant; that
is, the control P4(’) in (3.5) can be selected to be a linear time-invariant feedback
of the state. We consider the special case when. (t) [A + AA(q(t))]x(t)+[B + AB(q(t))]u(t)+ w(q(t)),
(5.)

X(to)-Xo,

where A, AA(q (t)), B and AB (q (t)) are matrices of appropriate dimensions and w (q (t))
is an n-dimensional vector. In light of Assumptions 1 and 3 given in 2, it follows that
for all q e Q

AA(q)=BD(q),

(5.2)
AB (q BE(q ),

w(q)=Bv(q),

E(q)ll< 1
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where D (.), E(.) and v (.) have appropriate dimensions and depend continuously on
their arguments. In accordance with Assumption 4, the matrix A must be asymptoti-
cally stable. To obtain a Lyapunov function for the uncontrolled nominal system, we
select simply an n x n positive-definite symmetric matrix H and solve the equation

(5.3) A’P +PA -H

for P which is positive-definite; see [11]. Then we have

(5.4) V(x, t) x’Px
and

(5.5) 0(x, t)=-x’Hx.

It is clear from (5.4) and (5.5) that one can take the bounding functions yi(’) to be

(5.6) yl(r) h min[e]r2, "y2(r) -& h max[.P]r2, "y3 (r) hmin[H]r2,
where h max(min)[’ denotes the operation of taking the largest (smallest) eigenvalue.

Construction of the controller. We take _d >0 as prescribed and construct the
controller p_d(" given in 3. Using the notation above, we define first6

(5.7) po a--maxl[O(q)[I, pz a-maxl[E(q)ll<l p a=maxllv(q)[I.
qO qO qO

Then, in agreement with (3.1) and (3.2), we may take

(5.8) Al(x, t) 0ollxll + 0, A=(x, t) pz.

Using these choices in (3.3) and the fact that o(X, t)<-- Amin[H]llx[[2, one can select
3’(’) such that

(po IIx +
(5.9) y(x, t)_->

4(1 pz)(Chmin[H]llxll2 + C)

with the constants Cx and C2 yet to be specified. We shall examine three possible
cases and see that in all instances one can take y(x, t) constant. Of course, this
implies that the control p_a(" is a linear time-invariant feedback; that is,

(5.10) pa_ (x, t)=-2yoB’Px,

where 3’0 is the constant value of 3’(" ), which will be specified.
Case 1. po > O, p O. In this case, we may select C2- 0 and C (0, 1). Con-

sequently, we can satisfy (5.9) by choosing
2

Po(5.11) y(x, t)=-- yo >-
4(1 -pE)Chmin[H]"

Case 2. po O, p > O. Clearly, it suffices to take C -0 and

(5.12)
y(x, t)_= y0 > 02

4(1 p)C2’

where C2 is required to satisfy condition d) of (3.4). Using the descriptions of the
yi(. given in (5.6), this amounts to restricting C2 by

C2 Xmin[e]<Amin[H]_d2(5.13)
1 C1 Amax[P]

with C1 0 in the above.

6 One can in fact use overestimates to and tSE for Po and pE as long as the inequality tSz < is satisfied.
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Case 3. Oo >0, p >0. Now, in order to satisfy (5.9), we select Ca (0, 1), C2
satisfying (5.13) and

(5.14) y(x, t) =- yo >max { (por +p)2 }r0 4(1-pE)[Clhmin[n]r2-t- C2]
Letting f(r) denote the bracketed quantity in (5.14) above, a straightforward but
lengthy differentiation yields

(5.15) maxf(r)=
1 { 020 +P22}r_->0 4(1-Oz) Clhmin[H]

Hence, any 3’o equal to or exceeding this maximum value will be appropriate in (5.14).

6. Illustrative example. We consider now the simple pendulum which was
analyzed in [7]. However, here it will be shown that the desired practical stability can
actually be achieved via a linear control. This may seem somewhat surprising in light
of the fact that the nominal system dynamics are nonlinear. A pendulum of length
is subjected to a control moment u (.) (per unit mass). The point of support is subject
to an uncertain acceleration q(.), with [q(t)[ <_-l =- constant. Letting x denote the
angle between the pendulum’s arm and a vertical reference line, one obtains the state
equations

21(t)=x2(t),
(6.1)

22(t)=_a sinx(t)+u(t)_q(t) cos x(t)

where a > 0 is a given constant. In order to satisfy the assumptions of 2 one must
assure a uniformly asymptotically stable equilibrium for (UC), the uncontrolled
nominal system. Hence, for a given _d > 0, we propose a controller of the form

(6.2) u(t) =-bx(t)-CXE(t)+pa_(x(t), t),

where b and c are positive constants and p_a(.) will be specified later in accordance
with the results of 3. The linear portion of the controller (6.2) is used to obtain a
stable nominal system. Substitution of (6.2) into (6.1) now yields the state equation

2 (t) f(x (t), t) +B [p (X (t), t) + h (x (t), q(t), t)],(6.3)
where

(6.4)

B
1

f(x, t)
-bx-cxE-a sinx

h(x, q, t)
-q cos xl

A suitable Lyapunov function for the uncontrolled nominal system (with x- 0 as
equilibrium) is

2\ 2(6.5) V(x,t)=(b+gc )x +cxxE+x +2a(1-cosx),

and, provided b is sufficiently large, the associated 3"(. are given by

3"(r)=Alr2,

2r + 4a if r >

/3(r) X3r2
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AA ,5 Xmax[P], ,.
3 min {/, c },(6.7)

(6.8) P=[b+c2 ] ( : )&b+amin
si x >0.

C x

Following the procedure described in 3 for the construction of the controller
p (.), we select first

(6.9) l(X,t)=lcosxl, =(x, t) 0.

Inequality (3.3) can then be assured by requiring
2 2p COS X

(6. 0) e(x, t)
4[

Given our desire for a linear feedback, one can select C 0 and satisfy (6.10) by
choosing

2

(6.11) (x, t)v0>=4C"
To complete the design, C must be selected to satisfy condition d) of (3.4). The

analysis must account for two cases, depending on the size of the given radius > 0.
Case 1. a>h+4a. The required conditions on C are_

h3 d(6.12) 0<C<(3oa o)(g)=(h_ -4a).

Case 2. hlNh +4a. In this case, the constraints imposed by (6.12) are
met if C > 0 is chosen suNciently small so that

(6.13) h2C2 2a(+ 1-cos <d.

Having now selected C, the controller is specified by (3.5) in conjunction with (6.11);
that is,

(6.14) p(x, ) -oB’(x, t)%(x, t) -o(cx: + 2x),

with the proviso that ToN/4. It is interesting to note that there is an obvious
tradeoff between the required gain constant T0 and the given radius > 0. As the
radius decreases, C decreases, which in turn implies that T0 increases. In contrast,
the nonlinear saturation controller of [7] remains bounded by the bound of the
uncertainty, and the radius can be decreased by increasing the nonlinear gain; i.e.,
by approaching a discontinuous control.. eels. This paper addresses the so-called problem of practical stabiliza-
bility for a class of uncertain dynamical systems. In contrast to previous work on
problems of this sort, the main emphasis here is on the structure of the controller. It
is shown that by choosing the function T(’ in a special way, the resultant control law
can often be realized as a linear time-invariant feedback.
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GENERAL INSTABILITY RESULTS FOR
INTERCONNECTED SYSTEMS*

DAVID J. HILLt AND PETER J. MOYLANt

Abstract. General results giving conditions for an interconnected system to be input-output and/or
Lyapunov unstable are considered. These results are derived in terms of the theory of dissipative systems.
This enables a very simple formulation of the requirements for instability. In particular, the restrictions of
linearity and unstable subsystems, that appear in previous results, are seen to be unnecessary. Consequently,
the relationship between instability and stability conditions is made clearer. A wide variety of useful
instability criteria can be easily obtained as special cases.

Key words, instability, stability, large-scale systems, interconnected systems

1. Introduction. In the analysis of general nonlinear systems, useful necessary
and sufficient conditions for stability are not available. Thus, specific attention has
been given to deriving sufficient conditions for instability as well as for stability. As
expected, the main results on stability have instability counterparts. In this paper,
new results on the instability of general interconnected systems are presented. The
main theorems are of a very general nature and the parallelism with results on stability
is seen to be intuitively clearer than in other approaches.

Stability results in the theory of interconnected systems tend to fall into two
categories: the state-space approach, which was initiated (in the sense of interest here)
by Popov, Kalman and Yakubovich, and the input-output approach which was derived
by Sandberg [30] and Zames [48]. The historical details of all this work have been
documented in many books and papers. Reference is only made here to books by
Desoer and Vidyasagar [9] and Michel and Miller [20] and the survey paper by
Willems [46] since these are most useful to later discussions. Willems has given
considerable attention to illuminating the relationship between the two approaches,
and a summary of this work appears in [46]. The basic results are widely recognized
by such names as the circle criterion, Popov criterion, and various more abstract
results such as the passivity and small-gain theorems. These results have counterparts
in each approach, although the abstract results on passivity and system gain emerged
via input-output methods.

The first work on instability of nonlinear feedback systems was due to Brockett
and Lee [7], who used Lyapunov methods. Further results on this approach were
given by Anderson and Moore [1]. Important input-output instability results have
been given by Willems [42] and Takeda and Bergen [34]; these results are summarized
in [9]. Further work for both feedback and general interconnected systems by the
input-output approach has been reported in [10]-[17], [20], [27], [31], [33], [35]-[41].
For general interconnected or large-scale systems, the approach of constructing a
Lyapunov function predicting instability for the composite system as a vector or
weighted sum of subsystem functions has also been studied [12], [20]. The instability
results given by Brockett and Lee [7] are a natural extension from earlier stability
results. The same cannot be said for the subsequent results obtained by input-output
methods. Typically, the conditions are considerably more complicated and restrictive
than the counterpart stability results. It is generally assumed, for instance, that one

* Received by the editors June 29, 1981, and in revised form March 19, 1982.

* Department of Electrical and Computer Engineering, University of Newcastle, New South Wales,
2308, Australia.
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subsystem is linear and unstable; this is the case in all the above-mentioned input-
output results, except [31], [35]. The requirement of an unstable subsystem is clearly
unsatisfactory since stable subsystems can surely combine to give an unstable system.
Further, whereas Lyapunov versions of the abstract input-output stability results have
been established [46], the known approaches to input-output instability results seem
to preclude development of Lyapunov versions (for general nonlinear systems, at least).

Recently, the authors have presented a unifying viewpoint for the stability of
interconnected systems [15], [24]. This work is based on the general property of
dissipativeness, which Willems has introduced as a property for state-space representa-
tions [44], [45]. By casting this property in functional analysis terms, a general result
is given in [24] for input-output stability. Previously known results can be obtained
as special cases. Moreover, by using an improved connection between input-output
dissipativeness and properties of a state-space representation, input-ouput and
Lyapunov stability concepts are treated side by side in a manner yielding considerable
insight into stability theory. Willems has discussed the derivation of Lyapunov instabil-
ity results within the context of dissipative systems [45], [46]. Thus, the authors were
led to consider the development of a more complete theory of instability which is
comparable in scope to the stability results in [24]. Some brief descriptions of inter-
mediate progress have already appeared [16], [13], [25]. Such stringent conditions as
requiring a linear unstable subsystem are dispensed with. Further, the instability
conditions appear to be considerably simpler than those obtained by other approaches.

The present paper and the previous one on stability [24] provide a fairly complete
exposition of the dissipative systems viewpoint on the stability theory of interconnected
systems whose subsystems are defined on inner product signal spaces. This work
reflects the opinion that in general the stability analysis of a nonlinear interconnected
system is not adequately studied by input-output or state-space methods alone. For
instance, an input-output stability test is effectively done for a single initial condition.
For linear systems, input-output behavior (usually described by input-output pairs for
zero initial state) and state behavior are so closely related for a minimal state-space
that it does not really matter which approach is used. For nonlinear systems, the
choice of initial condition (or reference state) has a major influence on the input-output
qualitative behavior. A theory which allows for variable initial state and input is
needed. Dissipative systems results have this facility.

Section 2 of the paper contains a brief treatment of dissipative systems. Since an
important aspect of the paper is the close relationship between stability and instability
results, a brief review of the former is given in 3. This section also serves to describe
the model for interconnected systems. Sections 4 and 5 present input-output and
Lyapunov instability results, respectively. In 6 it is demonstrated how to translate
the general results into frequency domain tests. This is illustrated by deriving an
instability version of the multivariable circle criterion. Section 7 offers some con-
clusions.

2. Dissipative systems. This section provides background information on dissipa-
tive systems. This theory has evolved through a number of papers including [44], [46],
[17]. The exposition given here draws from the ideas presented in [17].

2.1. Notation and definitions. We adopt a description of a dynamical system as
an operator on appropriately defined signal spaces.

DEFINITION 1. Let e be a space associated with spaces S, , and - where e
has elements which are functions v :z--> S. e is called a signal space if is a real
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Hilbert space and Se is an extended space in the following sense: There exists a family
of projections Pr’Ye "> such that for every v 6ee and all T z, we have P7,v 9.

In general, e is not an inner product space. It is often the case that - / a_ [to, 0)
and P7, is an operator which truncates a signal at time T. (Note the facility not to
restrict r to being on the real line.) 9 is the basic signal space and 6e is referred to
as the small signal space. The value of v e at " is denoted v (t). P7, is called the
causal truncation operator, and it is convenient to use the notation vT, a-PT,v. It is
assumed that the inner product (., on fulfills the following properties:

(P1) <uT,, v <u, v7,> <u7,, v7,> =a <u, v >7, V<u, v and VT m -,
(P2)

We can now introduce the definition of a dynamical system in input-output form.
Suppose that a// and ’/J are two signal spaces defined relative to - with projection
operators P and P respectively. 0 is called the input signal space and 0y is called
the output signal space.

DEFINITION 2. A dynamical system input-output representation is an operator
G lle -.> lJe.

DEFINITION 3. G is causal if and only if PGPr PTG.
For the next definition, it is convenient to introduce the anticausal truncation

operator 07" a__ I- PT.
DEFINITION 4. G is anticausal if and only if OGQr Q.
If G is both causal and anticausal, then we call it memoryless. Note that the

definition of a dynamical system above does not include causality of G.
In discussing stability, it is useful to refer to the set

Yr(G) A {u y Gu e }.

Note that :/’(G) is a subspace of 0//if G is linear.
An alternative description of a dynamical system is provided by a state-space

representation. We introduce the so-called state-space X which is just an abstract set
with a zero element. For simplicity, we consider only the case of -c and a time-
invariant system. The system description is via the state transition mapping if" .2 xX x
0 -’)’X and the readout mapping r: " X x U Y satisfying the usual axioms [8].
These mappings describe the time evolution of the state and output according to
x(t) /(t, to, X(to), u) and y(t) r(t, x(t), u(t)) where these are causally dependent on
U.

The state-space representation has been presented as more restrictive than the
input-output representation. Causality is an inherent feature of the usual concept of
system state [8]. The assumption of time-invariance is inessential to the ideas presented
later, but allows a convenient simplification of details. Further, note that the space -becomes one-dimensional so can be interpreted as time.

For dynamical system G with a state-space representation, we should be clear
about the following. The input-output mapping depends on the initial state x (to) x0 e
X. That is, we write y G(xo)u where G(x0): e ’’> 0"fie is an operator depending on
x0. (The precise relation to mappings ff and r is given by y(t) r(t, (t, to, Xo, u), u(t)).)
However, the input-output theory of nonlinear systems [9] is based on properties of
the nonlinear map G and can be developed with no mention of an underlying
state-space. When dealing with input-output properties only, we drop reference to
dependence of G on x0. If the state-space becomes relevant, then it is convenient to
realize that the input-output results refer to G(xo) where x0 is some fixed initial state.
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DEFINITION 5. A state xl s X is reachable if there exist finite tl _-> to and u
such that O(tx, to, O, u)=xx.

DEFINITION 6. A state x0 s X is controllable if there exists finite ta -> to and u 0"//e
such that O(tx, to, Xo, u) 0.

It is convenient to introduce the following notation. Let Xr denote the set of all
reachable points and Xc denote the set of all controllable points.

DEFINITION 7. A region Xd
_
X is zero-state-detectable if VXo Xd G(Xo)0 0

implies Xo 0.
Zero-state-detectability of Xa may be thought of as a weak form of observability.

It implies that, with zero input, the outputs resulting from nonzero initial states in Xa
are distinguishable from the output resulting from the zero initial "state.

We can now give the definitions of dissipativeness for the dynamical system G.
Introduce now the energy supply functional E: O X O’lol X "l" ") defined by

(1) E(u, y, T) __a (y, Oy )r + 2(y, Su)7- + (u, Ru )r

where operators Q: 0"3e -> e, S ---> /o/e and R g --> 0 are memoryless continuous
and linear with both Q and R also selfadjoint. (Since q/e, e are not inner product
spaces in general, continuity refers to the operators Q[," -> etc.) Actually the
basic theory of dissipative systems carries over to a more general class of functionals
than given by (1) [44]. We give E(u, Gu, T) the interpretation of energy input to the
system over time fiterval T when driven by signal UT. We also are interested in the
energy input caused by the complete signal u when Gu . This is denoted by
E (u, Gu where

E(u, y)=a (y, Oy)+2(y, Su)+(u, Ru).

Comment. If it is assumed that the function T--> IIVT][ is monotone increasing and
limT-,oo IIVTI[- IIv II, then, with E having the quadratic form in (1), it follows that

lim E(u, y, T)=Ec(u, y).
T.oc

This property of the inner product is usually assumed in input-output analysis [9],
but is not required for stability or instability results. Hence it is not assumed here.

DEFINITION 8. Dynamical system G with energy supply E is weakly dissipative
if and only if there exists a constant/3 such that

(2) E(u, Gu, T) + >- 0

for all u and for all T -. With/3 0, we call G dissipative.
DEFINITION 9. Dynamical system G with energy supply Ec is weakly ultimately

virtual-dissipative if and only if there exists a constant/3 such that

(3) E(u, Gu)+[3 >-0

for all u s Y{(G). With/3 =0, we call G ultimately virtual-dissipative. If in addition
7{(G) q/, the system is called (weakly) ultimately dissipative.

DEFINITION 10. Assume dynamical system G has a state-space representation
and energy supply E. G(xo) is cyclo-dissipative if and only if

E(u, Gu, T)>-0

for all u and for all T s - such that x(T) Xo.
Comments. 1) Dissipativeness as defined in Definition 8 has been studied by the

authors in [17], [18]. When E has the quadratic form given by (1), we refer to (Q, S, R)
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dissipativeness. Similar nomenclature is used for the other properties. Dissipativeness
contains as special cases the well-known properties used in earlier work in input-output
stability analysis [30], [48], [9], [42]. Table 1 summarizes the special cases which are
of relevance to this paper along with their usual names. It by no means exhausts the
useful ones. Note that the term "strong passivity" in [24] has been abandoned in
favor of "strict passivity". The term "pseudo passivity" has been used by Vidyasagar
[38].

2) Definitions 9 and 10 describe less restrictive dissipativeness concepts. Basically,
the system is required to behave like a dissipative system for a special subset of input
signals. They contain as special cases various properties introduced in [34], [45], [17].
Ultimate virtual-dissipativeness was introduced in [16]. A causal ultimately virtual-
dissipative system is called virtual-dissipative.

3) Definitions 8 and 9 do not depend on the existence of a state-space representa-
tion. If one is available, 3 should be regarded as dependent on Xo [18].

TABLE
Special dissipativeness properties

Q, S, R Type of dissipativeness

-SL 1/2I, -el pseudo strict passivity
O, 1/2I, 0 passivity

-/, O, k 2I finite gain
I, O, -lEI lower bound on gain

-I, 1/2(a + b )I, -abI inside sector [a, b
I, (a / b)I, abI outside sector [a, b

I denotes the identity operator, 6, e, k, l, a, b denote scalar
parameters.

4) If G is linear, it is easy to show that the distinction between the weak and
nonweak versions of the dissipativeness concepts disappears. It turns out that the
obvious definition of weak cyclo-dissipativeness is equivalent to cyclo-dissipativeness
for general dynamical systems.

5) The study of all the relationships between the various forms of dissipativeness
will not be undertaken here. Let us note, however, that cyclo-dissipativeness is a
weaker property than weak virtual-dissipativeness (assuming existence of a state
representation). By imposing certain smoothness and observability restrictions, cyclo-
dissipativeness and virtual-dissipativeness of G(xo) become equivalent [17].

The basic stability and instability results are derived from the quadratic form for
E and Ec with sign definiteness properties on the operator Q. These properties are
defined for elements of the Banach algebra of continuous linear operators on a Hilbert
space S’, which is denoted by (S).

DEFINITION 11. A selfadjoint operator A (6) is said to be positive semidefinite
if (v, Av) >- 0 for all v S. If A -/xI is positive semidefinite for some scalar/z > 0,
then A is strictly positive definite. Similarly, negative semidefinite and strictly negative
operators are defined by reversing the inequalities.

To be precise, when referring to sign properties of Q, it is meant that the restricted
operator Q I, takes one of the properties in Definition 11.

The study of instability in the sequel relies on the following connection between
ultimate dissipativeness and dissipativeness. It is proved in [17].

LEMMA 1. Suppose that the system G is causal and (weakly) (Q, S, R) ultimately
dissipative with Q negative semidefinite. Then G is (weakly) (Q, S, R) dissipative.
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Comment. This result generalizes the well-known relationship between passivity,
ultimate passivity and causality [9].

2.2. Implications of dissipativeness on state-space representation. An important
property of a dissipative system is that it possesses a scalar-valued energy-like function,
which, under certain circumstances, can act as a Lyapunov function. The following
results formalize this fundamental connection between input-output and state-space
representations of G.

TaEOREM 1. Dynamical system G(0) with energy supply E is dissipative if and
only if there exists a/’unction X --> such that (x >= 0/’or all x Xr, 4’ (0) 0 and

(4) 4)(xl)+E(u, G(xl)u, T)>=qb(x2)

]’or all x Xr, for all u ’ and ]’or all T >- to where x2 4’ (T, to, x 1, u ).
THEOREM 2. Dynamical system G(O) with energy supply E is cyclo-dissipative if

and only if there exists a function rb Xr f’) Xc "-> R such that rb (0) 0 and (4) is satisfied
for all xl Xr f’lXc, for all u O’e and for all T>=to where x2=tp(T, to, X1, u).

Comments. Theorems 1 and 2 are proved in [17]. These results are the culmination
of a sequence of generalizations of the well-known Kalman-Yakubovich-Popov
Lemma. In [18], a slightly more general version of Theorem 1 is given which allows
b to vanish on a set.

2) Similar results can be stated for every other dissipativeness property, but only
these two will be needed in the sequel. For weak dissipativeness, the only change to
the properties of b in Theorem 1 is that the condition b(0)=0 need not hold [18].

3. Review of stability. The present section gives a quick review of stability results
obtained from the dissipative systems approach [15], [24]. This serves to introduce
the basic interconnected systems setup and provides for a detailed comparison to the
instability results in the next section.

DEFINITION 12. The dynamical system G is input-output stable if and only if
C(G) 0.

A stronger form of stability is the following property.
DEFINITION 13. The dynamical system G is weakly finite-gain stable if and only

if there exists constants k and/3 such that

for all u s /e and for all T s z. If/3 0, we call G finite-gain stable.
Note that finite-gain stability is a special case of dissipativeness. The basic lemma

for deriving results on finite-gain stability is as follows.
LEMMA 2 [24]. Suppose the dynamical system G is (weakly) (O, S, R) dissipative.

If O is strictly negative definite, then G is (weakly) finite-gain stable.
Comment. This result becomes an equivalence between dissipativeness and finite-

gain stability when/ 0.
At this point, the interconnected system will be described. Suppose we have N

subsystems represented by operators Gi:’llei---> O-ffei, 1,..., N. Let the subsystems
be interconnected via

N

(5) Ui--" Uei- ’ nijy], 1,..., N,
j=l

where ui and yi Giui are the input and output of Gi, the uei are external inputs, and
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the Hij’ ei q/ei are memoryless continuous linear operators. Further, suppose that
the subsystem Gi is weakly (Oi, Si, Ri) dissipative. Then, we have

(6) (Yi, Qiyi)r + 2(yi, Sui)r + (ui, Riui)r + >- 0

for all ui Olei and for all T e -. The outputs of the overall system are taken to be the
Yi.

Now clearly the input and output signal _spaces for the interconnected system G
N N

are product spaces a//e 1-Ii=l 0?/ei and e 1-Ii=1 ei respectively. The elements of e
and 0e are N-tuples u (ul, u2,’’’, ur) and y (yl, y2," ’, yr). Inner products in
these spaces are derived by summing inner products in the component spaces. For
instance, let u, v e 0e and we define

N

i=1

Also, let Pru (Pru 1, PTU2,’’’, PTUN). We require that the system satisfies certain
restrictions to ensure it is well-posed; that is, the operator G" 0 must be well
defined [39]. At this point, it is convenient to adopt a notational device which enables
representation of operators on , 0 as arrays of operators mapping the components.
The array representing an operator A will be denoted by A. With operator H defined
as an array of the operators Hij, (5) can be written more compactly as

(7) u =ue-ay.
Let Q diag {O1, O2," ", ON}, S diag {$1, Sz," ", S}, and R diag {R 1,

R2,’’’, R}. Adding the inequalities (6) and substituting (7), it is straightforward to
show that the overall system is ((, g,/) dissipative with

(8)

and

I Q +H*RH-SH-H’S*

N

i=l

(where the * denotes an adjoint)l. The forms of and/ are of no interest here. In
the special case of the feedback system shown in Fig. 1, we have

[ Q1 +pR2 -S. +pS’
(9) ( L-S’ +p$z R1 +pOz ]
where p is any positive scalar. (This scalar is introduced since the inequalities (6) are
unchanged if multiplied by positive scalars.)

+. U Yu,_=__ ’ ]

l+
Y2 Uez

FIG. 1. Feedback, configuration.

The existence of H* and $* as mappings on and respectively follows only because H and S
are memoryless.
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THEOREM 3. The interconnected systems, with subsystems Hi which are (weakly)
(Oi, Si, Ri) dissipative, i= 1,..., N, and interconnected according to (5), is (weakly)
finite-gain stable if the operator is strictly negative definite.

Comments. 1) This result has been given by the authors in [24], [25]. In [15],
[24], a Lyapunov version was also presented (with [15] considering only the feedback
configfaration). This, of course, requires the imposition of the extra assumptions
associated with existence of state-space representations. Further discussion of
Lyapunov stability results is left to 5.

2) Consideration of finite-gain stability when ( is negative semidefinite (but not
necessarily strictly negative definite) has been given in [23]. Stability can still hold if
( satisfies some extra rank conditions.

3) In [24], Theorem 3 and its Lyapunov version are shown to include most of
the known results on interconnected system stability as special cases. Moreover, these
results are almost trivial to extract and there is the flexibility to consider a variety of
new situations. Only one result on passivity is given here for illustration. This and the
general result will be adequate for later comparison of stability and instability results.
Here, and in later results, the scalar parameters, e, 6, etc., are those in the definitions
given by Table 1.

COROLLARY 1. Suppose that the two subsystems of a feedback system are pseudo
strictly passive. Then the system is finite-gain stable if

Prooj. Setting p 1, becomes

2+8>0.

0 -(e + 2)I

where I is the identity operator on the common signal space for the subsystems. The
result is then immediate from Theorem 1. [3

Comment. The result was given by Vidyasagar [37] as a generalization of earlier
passivity stability resultsmsee the references given in [37]. A similar result for
Lyapunov stability was given in [15].

4. Input-ouput instability.
4.1. General results. In this section, the main results of the paper are presented.

Firstly, two basic instability lemmas will be proved.
LZMMA 3. Suppose that the dynamical system G is causal and ultimately (0, S, R)

virtual-dissipative, but not ((2, S, R) dissipative. If (2 is negative semidefinite, then G
is input-output unstable.

Proof. We argue via a contradiction. Suppose that for all u R it holds that
y ; that is, we have fit’(G) q/. From Lemma 1, it is immediate that G is dissipative.
The contradiction is thus established.

LEMMA 4. Suppose that the dynamical system G is causal and weakly ultimately
(0, S, R) virtual-dissipative with constant fl, but not weakly (0, S, R) dissipative for
some constant >--ft. If O is negative semidefinite, then G is input-output unstable.

Proof. Follows by a minor extension of that for Lemma 3. 71
Comments. 1) These results, although almost trivial to prove, given Lemma 1,

play the same role for instability results as Lemma 2 does for stability results.
2) A further possibility for producing instability results could appear to be mixing

of "weak" and "nonweak" versions of dissipativeness properties. In this discussion,
we assume G is causal and O is negative semidefinite. Clearly, if G is ultimately
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virtual-dissipative and not weakly dissipative, then Lemma 4 can be applied. This
leaves in question the situation where G is weakly ultimately virtual-dissipative and
not dissipative. Such systems can be input-output stable [18].

3) It is interesting to note that Lemmas 3 and 4 offer the possibility of constructing
a destabilizing control. In Lemma 3, since G is not dissipative, there exists a control
u E 0" and time T _>-0 such that

(10) (y, Oy )T + 2(y, Su )T + (U, RU )T < O.

NOW let Ud PTU. Then Ud ql-77{(G). To see this, we assume that Yd GUd . It
is easy to show that (10) implies

(11) (Yd, OYd) + 2(yd, SUd) + (Ud, RUd) < O.

This contradicts the assumption that G is ultimate virtual-dissipative. A similar
construction holds for Lemma 4.

The above lemmas lead to two very general results on the instability of intercon-
nected systems. They provide counterparts to the stability result in Theorem 3.

THEOREM 4. Assume that the interconnected system is causal. Suppose the subsys-
tems Gi are ultimately (Oi, Si, Ri) virtual-dissipative for 1, , N, but not (Qi, Si, Ri)
dissipative for at least one i. Then the interconnected system is unstable if is negative
semidefinite and one or both of the following conditions holds"

(i) at least one of the subsystems which is not dissipative is linear;
(ii) for each subsystem (except possibly one of the nondissipative ones), Gi is
unbiased and Qi is negative semidefinite.

Proof. It is easy to see that the interconnected system G is ((, ,/) ultimately
virtual-dissipative. We have

Y’(G) u s 0. u u -lty e II Y’(G)
i=1

Let E be the energy supply functions for the subsystems G, 1,.. , N. We identify
G as one of the nondissipative subsystems. Then it follows that there exists an input
Uo e and time To e r such that E(Uo, Guo, To) < 0.

Note for the interconnected system

N

E(ue, Gue, T)= , Ei(ui, Giui, T),
i=1

subject to equations (5).
Case (i). Consider a set of subsystem inputs Uio, 1 ..., N. Now modify the Ue

to achieve
hUo, k,

b/i
t Uio otherwise.

(This relies on the well-posedness assumption for the interconnected system G.) Then,
since G is linear, we have

N

E(Ue, Gue, To)=h2Ek(uko, Gkuo, To)+ Y. Ei(Uio, Giuio, To).
i=1
ik

Obviously, taking A large enough will ensure that an input Ue can be found such that
E(ue, Gue, T0)<0; that is, the system G is not dissipative. The result follows from
Lemma 3.
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Case (ii). Choose external input Ue such that

Then, we have

Uko, k,
ui= 0 otherwise.

N

E(ue, Gue, To)’-Ek(Uko, Gk.Uko, To)+ . (G/0, QiGiO)To.
i=1
ik

If Gi is unbiased, then Gi0--0. If Qi is negative semidefinite for k, then
1,k(GO, QGO)ro<O. Thus under condition (ii), the system G is again not

dissipative and Lemma 3 can be applied.
THEOREM 5. Assume that the interconnected system is causal. Suppose the subsys-

tems G are weakly ultimately (Q, Si, Rg) virtual-dissipative for i= 1,..., N, but not
(Q, S, Rg) weakly dissipative for any constant [31ifor at least one i. Then the interconnec-
ted system is unstable if t) satisfies the conditions of Theorem 4.

Proof. Follows by essentially the same argument as for Theorem 4. [3
Comments. 1) Theorems 4 and 5 are considerably more general in scope than

previous results on input-output instability and appear to emanate from simpler
technical arguments. Most of the previous results have been derived for rather
restrictive situations which include the undesirable assumption that some subsystems
are linear and unstable [20], [27], [33], [36]-[38], [40]. The results in [31], [35] for
instance manage to avoid this to some extent, but do not appear to be closely related
to those presented here. Neither theorem requires subsystem instability, and linearity
only enters as part of Theorems 4 and 5.

2) Theorem 4 sharpens results which were previously presented in [16], [13],
[25]. Theorem 5 is new. In [16] the basic ideas were developed and the need to
explicitly assume unstable subsystems was dispensed with. In [25], it was observed
that the linearity of one subsystem is not needed when the remaining subsystems are
unbiased.

3) It is of interest to compare Theorems 4 and 5 on instability with Theorem 3
on stability. Given the framework that all subsystems are ultimately virtual-dissipative,
loosely speaking we have (a) stability if all subsystems are dissipative and 0 is strictly
negative definite and (b) instability if one subsystem is not dissipative, the overall
system is causal, and Q is negative semidefinite. The interesting difference is the
requirement of causality in the instability result. It is well known [9], [42] that instability
and noncausality are intimately related.

4) Condition (ii) of Theorem 4 could be weakened further to apply only to the
dissipative subsystems if on choosing Uo and T such that E(ugo, Guo, Tio)< 0 for
each nondissipative G, there is no loss of generality in taking all the T to be equal.
In general, though, such an assumption would be hard to justify.

5) The condition on/3 lk in Theorem 5 can be relaxed to require Gk not be weakly
dissipative for some/3 g, satisfying

N

i=1

6) In view of comment 4) following Definitions 8-10, we see that Theorems 4
and 5 are equivalent for linear systems.
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4.2. Special cases of general results.
4.2.1. Feedback systems. The following result summarizes general instability

criteria for feedback systems.
THEOREM 6. Assume that the feedback system is causal. Suppose subsystems Gi

are (Qi, Si, Rg) ultimately virtual-dissipative for 1, 2 and given by (9) is negative
semidefinite. Then the feedback system is unstable if one or more of the following
conditions holds:

(i) G is linear and not ((21, $1, R 1) dissipative
(ii) Ga is not (01, S1, R1) dissipative and Gz is unbiased and Qz is negative
semidefinite

(iii)-(iv) interchange G and G2 in (i) and (ii).
Comments. 1) Theorem 6 is a special case of Theorem 4. Results based on weak

dissipativeness properties which correspond to Theorem 6 and subsequent Corollaries
2 to 6 are easily obtained from Theorem 5. The details will not be presented.

2) If O2 is strictly negative definite and 0Yf(G2), then G2 is unbiased. This
gives some connection between the alternative conditions in (ii).

Now we state a general passivity instability result.
COROLLARY 2. Assume that the feedback system is causal. Suppose that the

subsystems Gi are ultimately virtual pseudo strict passive ]’or 1, 2. Then the feedback
system is unstable if

and one or more of the following conditions holds:
(i) G1 is linear and not pseudo strict passive;

(ii) G1 is not pseudo strict passive and G2 is unbiased and/or 62 >- 0;
(iii), (iv) interchange G1 and G2 in (i) and (ii).
Comments. 1) Corollaries 1 and 2 provide a complete set of conditions for stability

and instability of the feedback connection of passive subsystems.
2) Note that a further special case of Corollary 2 is the following very simple

result: If the feedback system is causal, G1 and G2 are virtual-passive and G or G2
is not passive, then the system is unstable. This should be compared with the complex
set of conditions presented in other passivity instability results for feedback systems
[27], [33], [34].

The next result deals with a feedback interconnection of finite-gain systems.
COROLLARY 3. Assume that the feedback system is causal. Suppose that the

subsystems G are ultimately virtual finite-gain with gain bounds of ki for 1, 2, but
G1 is not finite-gain. Then the feedback system is unstable if klk2 <- 1.

Proof. We have

0 (k -p)I

Clearly I0 is negative semidefinite if k lk2 <= 1. Since Q2 =-/, the result follows from
Theorem 6(ii). [3

Comment. This result is clearly superior to previously published versions of a
small gain instability theorem [34], [16].

Considering subsystems with a lower bound on gain leads to the following result.
COROLLARY 4. Assume that the feedback system is causal. Suppose that the

subsystems G are ultimately virtual lower bounded with gain bounds ei ]’or i- 1, 2.
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Then the feedback is unstable if 12 >= 1 and one or more of the following conditions
holds:

(i) G is linear and not lower bounded;
(ii) G is not lower bounded and G is unbiased;
(iii), (iv) interchange roles ofG and G in (i) and (ii).
Proof. Again, this follows by simple use of Theorem 6. Clearly, condition (ii)

with negative semidefinite does not apply.
Besides passivity and finite-gain results, other known input-output stability results

are based on the property of conicity.
COROLLARY 5. Assume that the feedback system is causal. Suppose that G is

ultimately virtual inside the sector [a + A, b-A], where b >0, and G is (ab, 1/2(a +
b), (1-b8)(1 + aS)) ultimately virtual-dissipative. Then the feedback system is unstable
if both constants A and are nonnegative and one or more of the following conditions
holds:

If a<-O,
(i) G is not (ab, 1/2(a +b), (1-bS)(1 +aS)) dissipative;
(ii) G is not inside the sector [a + A, b A].
Ira>O,
(i) G. is linear and not inside the sector [a + A, b -A];

(ii) Ga is not inside the sector [a + A, b A] and G is unbiased.
Pro@ Note that G is (-I, 1/2(a + b)I, -(a + A)(b- A)I) ultimately virtual-dissipa-

tive. The details are more tedious for this case, but are basically similar to those used
for the corresponding stability result [15]. [3

Comments. Corollaries 2, 3 and 5 provide instability counterparts to the well-
known positive operator, small gain, and conic operator theorems [48], [9]. Corollary
4 is less familiar, but demonstrates the flexibility of the dissipativeness framework.
Of course, other situations can be considered, as for special cases of the stability result
[15].

4.2.2. General interconnected systems. In the interest of brevity, we will only
prove results for passive and finite-gain systems. At this stage, it should be clear that
numerous other results could be derived.

COROLLARY 6. Assume that the interconnected system is causal. Suppose that the
subsystems Gi are ultimately virtual pseudo strict passive for 1, , N, but not pseudo
strict passive for at least one i. Then the interconnected system is unstable if the matrix

M D +H*EH+ 1/2(H + H*)
is positive semidefinite and one or more of the following conditions holds:

(i) at least one of the nondissipative subsystems is linear;
(ii) for each subsystem (except possibly one of the nondissipative ones), Gi is

unbiased and/or 6g >-O.
Proof. Define

E diag {eJ.i}, D diag {iln,}
where I., are appropriate identity operators. We have

0 -O- n*En-1/2(rl+ n*.
The result follows immediately from Theorem 4. [3

Comments. 1) It usually holds that the interconnections are passive; that is, the
symmetric part of H is positive semidefinite. In this case, we merely require array
D + H*EH to be positive semidefinite.
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2) This result is considerably simpler than that given by Vidyasagar [37]. A more
detailed comparison is reserved for the next section.

From Theorem 4, we get immediately the following result on interconnections
of finite-gain systems.

COROLLARY 7. Assume that the interconnected system is causal and the subsystems
have a scalar output and input. Suppose that the subsystems G are ultimately virtual
finite-gain with gain bounds ki for 1,..., N, but not finite-gain for at least one i.
Then the interconnected system is unstable if there exists a diagonal positive definite
matrix P such that P-ATPA is nonnegative definite where A KH and K diag {k}.

Proof. The th subsystem is (-p, O, pike) ultimately virtual-dissipative for any
p > 0. This leads to

( -p + AT"PA,

and the result follows from Theorem 4.
The study of positive definiteness of p-ATpA has been important for other

results in stability theory [4], [20], [24]. For computational simplicity, it is desirable
to replace the difficult task of calculating P by a more direct matrix test on A. (This
more direct test will be simpler to apply, but is possibly more conservative.) For the
present situation, we can use the following matrix instability test. The relevant matrix
definitions and theory have been summarized in Appendix A.

COROLLARY 8. Under the conditions of Corollary 7, the interconnected system is
unstable if I-]A] is an M-matrix or A is strongly irreducible and I-[AI is a semi-M-
matrix.

Proof. Follows immediately from Theorems A.1 and A.2.
Comments. 1) An equivalent test on A is to require O(A)< 1 or p (A)= 1 and A

strongly irreducible, where o(A) denotes the spectral radius of A. (This follows from
Fact A.4.)

2) Vidyasagar [36] has given closely related results for systems with some subsys-
tems assumed inter alia to be linear and unstable. The instability condition is either
O (A) < 1 or O (A) _-< 1, and at least one of the unstable subsystems is connected to every
stable subsystem. A further related result is presented by Michel and Miller [20],
where only one linear unstable system is assumed. In the case where o(A)= 1, they
require A> 0, which certainly implies strong irreducibility.

3) Using the graph theoretic interpretation of irreducibility given in Fact A.5,
the strong irreducibility requirement on It in Corollary 8 can be related to system
structure: the digraphs (I-I) and ([I-IIT]I-I[) must be strongly connected. (I-I)is a
direct representation of system structure with vertices and edges corresponding to
subsystems and interconnections respectively. Let [HI [h h] whereh are vectors
i= 1,..., N. Then the (i, f)th element of Ir l [r l is Clearly hfh 0 if and only
if outputs y, and yj are not connected to a common input. So if  (lI l lr l)is not
strongly connected, the subsystem outputs can be divided into two groups which have
feedback interconnections to disjoint groups of inputs.

Example. Figure 2(a) shows an interconnected system with three subsystems.
Figures 2(b), (c) show the associated digraphs. Ignoring the dotted interconnections,
we see that d(lt) is strongly connected, but (I-17"I-l) is not even connected. On adding
the two extra connections, both digraphs become strongly connected and H is strongly
irreducible.

4.3. Allowing for strongly unstable subsystems. A major portion of the previously
published results on interconnected system instability has assumed that some
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FIG. 2. (A) Interconnected system. (b) Digraph G(H). (c) Digraph G(HrH).

subsystems satisfy a special strong instability assumption [20], [34], [36]-[38], [40]. In
this section, we establish some connection with these results.

DEFINITION 14 [36]. The operator G: 0 -"> ?J is said to belong to Class U if
(i) G is linear;
(ii) Y{(G) is a proper subset of
(iii) There is a finite constant yc such that

(iv) there is a family of constants a (T) such that

Comments. 1) It is shown in [34] that conditions (i)-(iv) imply that G is a strongly
unstable system in the sense that the orthogonal complement of Yg(G), denoted Yg+/-(G),
contains nonzero elements.

2) Condition (iii) merely says that G is ultimately virtual finite-gain with gain
bound yc. Conditions (i) and (iv) imply G is causal. Condition (iv) is a well-posedness
restriction on G. yc supuc(o (llOull/llull)is called the conditional gain of G in [40].

It is convenient to note the following result.
LEMMA 5. Suppose the system G is causal and (Q,S,R) ultimately virtual-

dissipative with Q negative definite. Then G is not (Q, S, R) dissipative if and only if
 C(G)

Proof. Only if. Follows immediately from Lemma 3.
If. Suppose G is (Q, S, R) dissipative. Then Lemma 2 implies G is finite-gain

stable, which is a contradiction.
It is now evident that a class U operator represents a linear, well-posed, causal,

ultimately virtual finite-gain, but not finite-gain system. The well-posedness condition
ensures strong instability, and this is essential when it is required to exhibit destabilizing
controls. This feature is of no importance in the results presented in this paper, but
is required in carrying over L2-instability criteria to L-instability criteria [41].

We now suppose that each subsystem Gi is (Qi, S, R) ultimately virtual-dissipative
2and some are also in class U. Each class U subsystem is (Q-aL i, Ri q-OTc,I)
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ultimately virtual-dissipative for any a >_-O. The original matrix I) is now augmented
to

t)a 0 + a ((rH)I)(rcH) D)

where diag {/,I,} and D= diag {dil,} where

if G is class U,
d=

0 otherwise.

Obviously, the general instability results in Theorems 4-6 can be rewritten here with
I) replaced by I). However, it is useful to state a more specific result.

THEOREM 7. Assume that the interconnected system is causal. Suppose the subsys-
tems Gi are (Qi, S, Rg) ultimately virtual-dissipative for 1, , Nand some are class
U. Then the interconnected system is unstable if:

A. At least one of the Class U systems has Q negative definite and Q is negative
semidefinite, or

B. At least one of class U systems has Q negative semidefinite and one of the
following holds"

(i) 0 is negative definite;
(ii) 0 is negative semidefinite and

(12) rank [I O]=r, rank [H] rank I,
where r is the total number of outputs.

Proof. Case A. Suppose G is Class U and O is negative definite. Then G is
linear, and from Lemma 5 we see that it is not (O, $, Rk) dissipative. The result
follows from Theorem 4 Part (i).

Case B. Since O-aI is negative definite for a > 0, the result follows from Case
A if a can be chosen to ensure I is negative semidefinite. This is clearly possible if
( is negative definite. It is shown in [23] that the conditions in (ii) imply the existence
of an appropriate a. []

Comments. 1) The special case of Theorem 7 Part A where all subsystems are
ultimately virtual finite-gain is clearly a special case of Corollary 7.

2) In Theorem 7 it is possible to replace the Class U constraint on some
subsystems by the requirement / < oo and ’{’(G) 07/. The result holds if appropriate
extra assumptions of unbiasedness and/or O negative semidefinite are made according
to Theorem 4. This version of the result represents a sharpening of a result given in
[40].

3) Suppose we group all the Class U systems together as the first m numbered
subsystems and partition H in the obvious way as

H=

Then the rank condition (12) can be written as

rank[Q ] rank I.H
4) If there is no Class U subsystem for which Qk is negative semidefinite, the

instability conditions must be stated as the existence of some a > 0 such that Qk- aI
is negative definite for some Class U subsystem and I) is negative semidefinite. In
this case, a will not be arbitrarily small.
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To illustrate one special case of Theorem 7, we consider the following passivity
result for feedback systems.

COROLLARY 9. Assume that the [eedback system is causal. Suppose that the
subsystems Gi are ultimately virtual pseudo strict passive for 1, 2 and G1 is Class
U. Then the interconnected system is unstable i conditions

a) 61_->0,
b)
c) t:+e120

are satisfied and either inequality a) or c) is strict.
Proof. The cases where a) and c) are strict follow from Theorem 7 Parts A and

B(ii) respectively.
Comments. 1) The result of Takeda and Bergen [34] has the conditions of this

corollary with 81=e2=0 and predicts instability if e1+82>0 and Gx =0 implies
x 0. The present result does not require this last condition on G2. A closer look at
the proof in [34] reveals that in deriving the result, the assumption u 0 is made.
In driving the system unstable from one input, one expects more stringent conditions,
although this issue needs more attention.

2) It is straightforward to derive a large-scale version of Corollary 9 and to show
it relates very closely to the results of Vidyasagar [38], [40] which are large-scale
counterparts of the feedback result in [34].

$. Lyapunov instability. We have seen in Theorems 1 and 2 that dissipativeness
properties of a dynamical system with a state-space representation imply the existence
of energy-like functions of the state. In this section, we briefly look at how these
energy functions can be used to deduce internal instability properties of interconnected
systems.

Firstly, it is convenient to review the technique for producing stability results.
Willems’s original formulation of dissipative systems favored a state-space outlook
and included the basic ideas for studying Lyapunov stability [44], [45]. Some more
precise results have been presented in [15], [24].

Let xi be the state for subsystem Gi; then x (xl, x.," ", xN) is the state for the
interconnected system under certain well-posedness conditions [26]. For simplicity,
we now assume L2e(Rn) signal spaces and xi e Rn. Suppose that each subsystem G(0)
is (Oi, $, R) dissipative and has a storage function b :Xir- / such that bi(0)= 0. In
[17], it is shown that if the subsystem also satisfies a local controllability condition in
Xr, then b(. is continuous. For convenience, a system which is controllable reachable
and locally controllable is called strongly controllable. If bi(. is continuous, the time
derivative along system trajectories can be defined by

D+b(x(t)) lim
1
-{b[xg (t + h)]- bi[x (t)]}.

h-0+

The following result is a restatement of Theorems 1 and 2 in the present context.
LEMMA 6 [17]. Suppose that the dynamical system G(O) is strongly controllable.

Then the system is cyclo-dissipative (dissipative) if and only if there exists a continuous

function qbi :ni
_

satisfying b(0) 0 (bi(0) 0, bi(x) _-> 0 for all xi) and

(13) D/bg (xi (t)) <- w(ug(t), ri(xi(t), u(t)))

for almost all >-_ to along the system trajectories, where

Wi(Ui, yi)= yQiyi + 2y/Siui 3t- uTRiui.
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Now consider the total storage function
N

(x) E , (x,)
i=1

under the assumption that all Gi(0) states are strongly controllable. It is straightforward
to show that

(14) D+b (x(t)) _-< yr
for Ue 0. NOW suppose that all subsystems are zero-state-detectable. It follows under
some mild restrictions on the wi(’, that 4,i(xi) >0 for all x 0 [17]. The total storage
function b is then positive definite.

Let the origin x 0 be an equilibrium point for the autonomous interconnected
system. Then under the above-mentioned assumptions, there are two main stability
criteria [15], [24]:

1. If 0 is negative semidefinite, the origin is Lyapunov stable.
2. If 0 is negative definite, the origin is locally asymptotically stable. Global

asymptotic stability follows if a stronger form of zero-state-detectability is imposed
on the subsystems.

Comments. 1) If 0 is negative semidefinite and certain subsystem combinations
are zero-state-detectable, the interconnected system can be shown to be locally
asymptotically stable [15].

2) The second form of result and Theorem 3 indicate a close relationship between
finite-gain input-output stability and local asymptotic stability. This has been studied
in [18]. We note that if the subsystems are only weakly dissipative, then the system
need not be locally asymptotically stable or even stable. The discussion in [18] allows
for stability of a subset of X rather than just a point.

3) The first result has no counterpart in the input-output stability results.
It is important to realize that all the above-mentioned results, although different

in detail, are based on the input-output conditions for stability. That is, by imposing
minimality assumptions, relaxing definiteness of I), etc., the input-output stability
conditions become conditions for some form of state stability. In fact, we readily see
that results in all four categories of input-output stability, input-output instability,
Lyapunov stability and Lyapunov instability are variants to a basic set of dissipativeness
requirements for stability [13].

Now consider instability of the origin for the autonomous interconnected system.
The details for the following results follow from standard Lyapunov theory [47] using
the total storage function. The above minimality assumptions still hold.

THEOREM 8. Suppose that the subsystems G(O) are (Q, Si, R) cyclo-dissipative
]’or 1,..., N, but not dissipative for at least one i. Then the origin is not globally
asymptotically stable if ( is negative semidefinite.

Comment. As in the results to follow, the input-output property of "ultimate
virtual-dissipativeness" has been replaced by the slightly weaker property "cyclo-
dissipativeness" in the state-space instability results. Recall Comment 5) following
Definition 10.

THEOREM 9. Suppose that the subsystems Gi(O) are (Qi, Si, Ri) cyclo-dissipative
]’or 1,..., N, but not dissipative for at least one such that (.) takes negative
values arbitrarily close to the origin. Then the origin is not locally asymptotically stable
if ( is negative semidefinite and Lyapunov unstable if ( is negative definite.

Comments. 1) Suppose one o the nondissipative subsystems in Theorem 9 is
linear and finite-dimensional. Then we have b(x) =2-xfPx, where l is found as the
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solution of a set of algebraic equations [2]. Moreover, Pi is nonsingular under the
restrictions which ensure bi(’) to be positive definite when Gi(0) is dissipative. It is
easy to see that for Gi(0) to be cyclo-dissipative, but not dissipative, Pi must have a
negative eigenvalue. Hence, bi(" takes negative values arbitrarily close to the origin.

2) Willems has presented some general instability results for dissipative systems
which are closely related to Theorems 8 and 9 [45]. However, the present results
reveal more clearly an essential unity with input-output instability results.

3) In Theorem 9, if bi(xi) < 0 in a neighborhood of the origin for some subsystem,
then the origin is completely unstable.

4) As demonstrated by Willems [45], it is almost trivial to generate the known
Lyapunov instability criteria [7] for feedback systems from general results such as
these, once certain frequency domain connections are made. A general discussion of
this is left to the next section. It is not so easy to compare the results on large-scale
system Lyapunov instability [12], [20]. They start by assuming the general Lyapunov
theory conditions for instability on some subsystems and combining them to demon-
strate instability of the overall system.

6. Frequency domain tests for instability. The previous results have given general
conditions for instability of nonlinear interconnected systems in terms of dissipativeness
properties. The classical absolute stability problem deals with the stability of systems
consisting of linear dynamical and nonlinear memoryless subsystems. The stability
conditions on these subsystems are expressed as frequency domain and sector con-
straints respectively. In this section, we briefly indicate how such results for instability
are easily derived from the general results.

Consider a linear, time-invariant system G with proper transfer function matrix
description G(s). If G(s) has a state-space realization (A, B, C, D) then

G(s) D + C(sl- A)-IB.

We assume any such realization is minimal. We then have the following frequency
domain tests for dissipativeness [44], [14]. The proofs are simple consequences of
results concerning a certain frequency domain inequality in linear optimal control
theory [43], [21].

THEOREM 10. Let w(., .) have the property that.for all y there exists u such that
w(u, y)_-<0. Then system G is (Q,S,R) dissipative if and only if

(15) M(s)=R+STG(s)+Gn(s)S+G"(s)QG(s)

is positive semide]nite ]or all s such that Re Is _-> 0 where GHdenotes the usualHermitian
transpose of G.

The function w (.,..) was defined in Lemma 6.
THEOREM 11. System G is (Q, S, R) cyclo-dissipative if and only if M(fw ), dened

in (15), is nonnegative de,hire for all real w.
For the next result we introduce the notation GK for the system G with linear

feedback u Ue Ky.
THEOREM 12. Suppose system G is (Q, S, R) cyclo-dissipative and let K be any

matrix such that I + KG() is nonsingular and

(16) Q: Q-SK-KT"S7" +KT"RK
is negative semidefinite. Then G is (Q, S, R) dissipative if the linear system G: is
asymptotically stable.
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Comments. 1) As special cases of Theorems 10 and 11 we see that (cyclo-passivity)
passivity corresponds to (generalized) positive real matrices and finite-gain with unity
gain bound corresponds to bounded real matrices [2].

2) Theorems 11 and 12 imply that if M(/’w) is positive semidefinite and a suitable
stabilizing control exists, then the system is dissipative. This often provides a more
convenient test for dissipativeness than Theorem 10.

3) Note that if QK in Theorem 12 is in fact negative definite, then Lemma 2
gives the converse relationship that dissipativeness implies K is a stabilizing control.
(The implied equivalence is also a consequence of Lemma 5). Further, it can be shown
that Pi in Comment 1) following Theorem 9 is nonsingular since the state-space is
completely observable.

Using Theorems 10-12 to substitute frequency domain conditions for the dissipa-
tiveness properties, we can obtain frequency domain instability tests. We will now
illustrate this straightforward process by deriving an instability version of the multivari-
able circle criterion.

Suppose G. is a nonlinear memoryless system described by y2 (u2), and G1 is
a linear time-invariant dynamical system with transfer function matrix Gl(s). Let G2
be inside the sector [a + A, b- A] where b ->_ a > 0 and A => 0. Associate G with the
dissipativeness triple (ab, 1/2(a + b), (1- bS)(1 + aS)), without being specific on the type
of dissipativeness at this stage. Applying the input-output conicity result of Zames
[48], its Lyapunov version [15], Corollary 5 and Theorem 9, we find the following
stability conditions for the feedback system:

A. Suppose G is dissipative"
1) 8, A both nonnegative => Lyapunov stability;
2) 8, A both nonnegative and either is positive::), finite-gain stability and

asymptotic stability.
B. Suppose G is ultimately virtual-dissipative (=-cyclo-dissipative in this case),

but not dissipative:
1) 8, A both nonnegative =), input-output unstable and not asymptotically stable;
2) 8, A both nonnegative and either is positive :: input-output unstable and

Lyapunov unstable.
To save carrying these details, in the sequel we will assume both 8, A are

nonnegative and refer to "stability" or "instability" according to whether G1 is
dissipative or cyclo-dissipative and not dissipative.

Note that if G1 is dissipative, then it is outside the sector [-1/a -8,-lib +8].
It is convenient to introduce two parameters

(17) c -\ ab ]
r =- ab

+ 8.

Then (Q, $1, R) (I, -cL (c2- r2)l). Now consider linear feedback u g/e -i- y/C that
is, K =-I/c. Then we have that Q: =-r21/c 2 is negative definite. So if det (cI-
G()) 0, we can use Theorems 10, 12 to obtain frequency domain tests. The matrix
M(]w) in (15) is given by

M(/w) (G (-fw c l) 7c (G (fw c l) rl.

The nonlinear feedback system is (stable) unstable if M(/’w) is positive semidefinite
and Gt is (asymptotically stable) unstable. Now Gn is a linear system for which
stability can be assessed by well-known techniques [9], [19]. In the simple case where
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Gl(/w) is a normal matrix, it is easy to show that testing whether M(]w) is positive
semidefinite reduces to the scalar tests

where Ai(Gl(./w)) are eigenvalues of Gl(/w), 1, , m; such a simple test on these
eigenvalues for the general case does not exist [29]. The required positivity of M(jw)
condition is therefore left as Amin(M(fw))0 where Amin refers to the minimum
eigenvalue. An equivalent way to express this is

O.max((Gl(fW)_Ci)_) <=1___

where O’max(F) denotes the largest singular value of F [11]. Collecting these facts
together, we can state the following result.

COROLLARY 10. Suppose that the nonlinear feedback (.) is inside the sector
[a +A, b-A] where b >=a >0, det (Gl()-cI S0, and

1
O-max((Gl(/W)-C[)-1 <=--

r

where r, c are given by (17). Let Gx(s) N(s)D-(s) where N(s), D(s) are right coprime
polynomial matrices. Then the feedback system is (stable) unstable if the polynomial
det (cD(s)-N(s)) has (all its zeros with negative real parts) one zero with positive real
part.

Comments. 1) Recall that the exact type of stability or instability which is implied
for the feedback system depends on the positivity properties of 6 and A.

2) The test for stability of GK(s) is taken from [9]. The generalized Nyquist
criterion due to MacFarlane and Postlethwaite [19] could also have been used. In this
case, stability or instability follows according to the number of encirclements of the
"critical circle’" of centre O+jc and radius r in the complex plane.

3) This result provides a version of the multivariable circle criterion with its
instability counterpart. The stability result was first given by Sandberg [30] in an
input-output setting (with (. assumed to be decoupled). A scalar Lyapunov instabil-
ity version of the circle criterion is due to Brockett and Lee [7] and is a special case
of Corollary 10. An input-output version of the result in [7] appears in [9].

7. Conclusions. This paper gives a theory for the instability of interconnected
systems. Many of the constraints used in previous results are seen to be unnecessary.
Along with an earlier paper on stability [24], the paper provides an essentially complete
stability theory by the so-called dissipative systems approach. An important feature
is the treatment of both input-output and Lyapunov stability concepts within a unified
setting.

It has been suggested by Sandell et al. [32] that input-output methods are superior
to Lyapunov methods for large-scale systems. The approach taken here offers a
perspective which shows that each method is basically similar in scope. However, each
method needs to complement the other in order for one to fully study the stability
of nonlinear systems.

Appendix A. The following notation will be used. If A is a square real n n
matrix, its elements will be denoted by aii, and its transpose and inverse, by AT and
A-1 respectively. If A or the vector x have all elements nonnegative (positive), this
is represented by A=> 0, x_-> 0 (A>0, x> 0). The matrix IAI will be the matrix obtained
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from A by replacing every element by its absolute value. Matrices with nonnegative
(positive) elements are generally called nonnegative (positive). By a permutation of
A, we mean a permutation of the rows of A combined with the same permutation of
the columns. The spectral radius of A is denoted p(A).

DEFINITION A. 1. Let A satisfy aii >--0 for each and aij <_-0 whenever #/’. Then
A is called a semi-M-matrix (M-matrix) if all principal minors of A are nonnegative
(positive).

DEFINITIO A.2. The matrix A is called semiquasidominant (quasidominant) if
there exists a vector d > 0 such that

diaii > X djlai[ for all/
\
(diaii > Y dilaiil for all i).

i#i

DEFINITION A.3. A matrix A is called reducible if there is a permutation that
puts it into the form

All 0

A21 A22]
where All and A,22 are square matrices. Otherwise A is called irreducible. If both A
and I ITIAI are irreducible, we call A strongly irreducible.

Comments. 1) Much has been written about the theory of M-matrices emanating
from their utility in stating results on competitive equilibrium in economics, numerical
analysis, and the stability of large-scale systems [3], [6], [10], [22], [28]. For a more
complete list of references, compare those cited in the surveys [6], [28]. The term
semi-M-matrix is borrowed from Araki [3]. These matrices have also been called
singular M-matrices [28]. Similarly, dominance properties for matrices are well known.
Definition A.2 extends one in [22] to include semistrict dominance.

2) The property of irreducibility plays an important role in the theory of semi-M-
matrices [6], [10], [28]. The property of strong irreducibility is introduced here for
convenience in presenting later results.

3) Obviously, reducibility of A is equivalent to reducibility of IAI and has nothing
to do with magnitudes of aii. However, examples show that the reducibility properties
of A, AT"A, and IAI IAI are independent in general.

In the remainder of this Appendix we derive a result for semi-M-matrices which
is not available elsewhere. We are concerned with conditions on matrix A to ensure
that matrix P-ATPA is nonnegative definite for positive definite diagonal P. The
following facts will be useful.

FACT A.1 [10]. Let A satisfy a, >-0, for each i, ai <-0 whenever #j, and be
irreducible. Then A is a semi-M-matrix if and only if there exists x > 0 such that Ax _-> 0.

FACT A.2. An irreducible semi-M-matrix is semiquasidominant.
Proof. Immediate from Fact A.1.
FACT A.3. The real part of each eigenvalue of a semiquasidominant matrix is

nonnegative.
Proof. Let A be an eigenvalue of semiquasidominant matrix A. The matrix AI-A

has diagonal elements 3, -a,. Suppose that Re A < 0. Then

[A a,,l lRe , a,l > la,,[.
So AI-A is quasidominant. It follows that this matrix is nonsingular [22] and X cannot
be an eigenvalue of A. This contradiction implies that for A to be an eigenvalue it
must satisfy Re A _-> 0. [3
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FACT A.4. Let A be a nonnegative matrix. Then I-A is a semi-M-matrix
(M-matrix) if and only if p (A <-_ 1 (p (A < 1).

Proof. Follows easily from results in [6]. E]
As an intermediate step to obtaining the main result, we establish the following:
LEMMA A.1.2 Let A be an irreducible nonnegative matrix. Then I-A is a

semi-M-matrix if and only if there exists a positive definite diagonal matrix P such that
p-ATpA is nonnegative definite.

Proof. The steps are similar to those used by Araki [3] to relate the M-matrix
property of I-A to existence of P satisfying the strict version of inequality (A.1).
The key tool is Fact A.1. E]

THEOREM A. 1. Let A be a strongly irreducible matrix. If I-IAI is a semi-M-matrix,
there exists a positive definite diagonal matrix P such that P-ArPA is nonnegative
definite.

Proof. From Lemma A.1, it follows that there exists a positive definite diagonal
matrix P such that P-[AITpIA] is a semi-M-matrix. Irreducibility of [AIT[AI gives that
P -[A[T PIAI is semiquasidominant from Fact A.2. It is then easy to see that P AT"PA
must be semiquasidominant for the same P. It then follows from Fact A.3 that
P- AT"PA is nonnegative definite. ]

This result is a counterpart to the following one due to Moylan [22] on M-matrices
which is an extension of Araki’s counterpart of Lemma A.1.

THEOREM A.2 [22]. If I-IAI is an M-matrix, there exists a positive definite
diagonal matrix P such that P-ATPA is positive definite.

A convenient characterization of irreducibility is in terms of digraphs.
DEFINITION A.4 [6]. The associated digraph if(A) of matrix A consists of vertices

labelled 1, , n where an edge leads from vertex to vertex/" if and only if aii 0.
DEFINITION A.5 [6]. A digraph ff is strongly connected if for any ordered pair

(i,/’) of vertices in if, there exists a path which leads from vertex to vertex j.
FACT A.5 [6]. A matrix A is irreducible if and only if if(A) is strongly connected.
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THE MATRIX RICCATI EQUATION AND THE NONCONTROLLABLE
LINEAR-QUADRATIC PROBLEM WITH TERMINAL CONSTRAINTS*

PAVOL BRUNOVSKr AND JOZEF KOMORN[.K$

Abstract. It is proved that each positive semidefinite symmetric solution of the matrix Riccati equation
corresponds to an optimal control problem with suitable terminal cost and constraints. The approximation
scheme for the computation and characterization of the optimal cost and optimal controls of the problem
with terminal constraints is extended to the noncontrollable case.

Key words, matrix Riccati, linear-quadratic, terminal constraints

Introduction. Consider the linear-quadratic optimal control problem on the inter-
val Is, T], to =< S <= T, given by the equation

(1) 2 =A(t)x +B(t)u

(x e R ", u R r), the initial state

(2) x(s)=y,

the cost function
T

(3) Cr(y, u)= Is c(t,x, u) dt +x’(T)Rx(T)

with c(t, x, u)= x’Q(t)x + u’M(t)u and the terminal constraint

(4) Dx(T)=O,

D being q n, q n, with full rank, A, B, O, M being continuous, O, M symmetric,
O -> 0, M > 0 on [to, T], R ->_ 0 symmetric.

Under the condition that the system with output Dx is output controllable
on Is, T] for each to<=S < T, we have shown in [1] that the minimal cost for this
problem can be expressed by a solution of the corresponding matrix Riccati equation

(5) Ii +A’W + WA +O- W’BM-B’W =0
(cf. also [2]) on [to, T) that blows up for t/ T. We have characterized this solution as
a limit for m --> oo of solutions of (5) expressing the optimal cost of the corresponding
unconstrained problem with cost

(6) Cr,,, (y, u CT (y, u + m IlDx (T)II
containing a term penalizing the deviation of the response of u from the terminal
subspace. Also, we have shown that the optimal control and optimal trajectory for
the problem (1)-(4) are limits for rn o of those for the problems (1)-(3), (6).

This result can be put into an interesting context with the ideas of [3]. By
associating with (5) a flow on the Grassmann manifold GR(n) of n-dimensional
subspaces of R 2", we can prove an inverse theorem on the solutions of (5) ( 3) and
extend our results from [1] to noncontrollable problems and problems with constraints
at several points ( 4). In 5 we show that the techniques of 4 can be used to deal
with the infinite interval problem in case the finiteness of cost is not assumed for all

* Received by the editors March 11,1981, and in revised form October 7, 1981.
# Institute of Applied Mathematics, Comenius University, 84215 Bratislava, Czechoslovakia.. Department of Probability and Statistics, Comenius University, 84215 Bratislava, Czechoslovakia.
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points. Section 2 contains a summary of the items of [3] that are important for this
paper.

All the necessary material about the Riccati matrix equation and the unconstrained
linear-quadratic problem is summarized in [1].

2. The associated flow on GR (n). Denote

J

where E is the n xn unity matrix. For z (x, p)eR x R n, 1, 2, denote

oo(z , z) z IJz x

o is a skew symmetric nondegenerate form on R. An n-dimensional linear subspace
L of Rn is called Lagrangian, if the restriction of to L vanishes, i.e. (z, z)=0
as soon as z , z e L. We denote the set of Lagrangian subspaces of Rn by .

A linear differential equation in R

(7) i =H(t)z

is called Hamiltonian if w is its integral, i.e. is constant along its solutions. This is
equivalent to

(8) H’J +JH O.

By we denote the natural projection of R2 R" x R onto its first factor, and
we denote

0 {sl) R}.

We have L s0 if and only if there exists a symmetric n x n matrix W such that

{(x, Wx)lx s R "}.

The (time-dependent) flow of the equation (7) carries linear subspaces into linear
subspaces of the same dimension and thus generates an associated (time-dependent)
flow on the Grassmann manifold GR (n) of the subspaces of R 2" of dimension n.
More precisely, if L GR (n) and we denote by t,s(L) the linear subspace filled by
the values at of the solutions of (7) with values in L at time s, then there is a
differential equation on GR (n) such that t,(L) is the value at time of its solution
having L as its value at time s. Since GR (n) is compact, the solutions of this equation
are defined for all s R. Since is an integral of (7), it is invariant under , i.e. L s
implies t,(L) for all t, s s R.

Consider now the flow on GR (n) associated with the differential equation

(9) Ax -BM-XB’p, p -Qx -A’p

with A,B, M, Q coming from (1), (3). The matrix

H=
-A

obviously satisfies (8), which means that (9) is Hamiltonian. If L and L(t) ,(L)
o for all I (t, t2) and some s L then there exists a matrix function W(t),
(t, rE), such that L(t)= {(x, W(t)x)lx R}. This matrix satisfies (5).

Note that although limo W(t) may not exist for to ti or t0 rE, L(t)= ,(L)
can always be extended beyond I to all R.
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3. The inverse theorem. Let A,B, Q,M be as in (1) (3).
THEOgEM 1. Let W(t) be a positive semidenite solution of the matrix Riccati

equation (5) on [to, T). Then there exist a q <-n, a q n matrix D and a positive
semidefinite symmetric matrix R such that y’W(s)y is the optimal cost for the problem
(1)-(4) for to <= s < T.

Proof. Denote L(t)={(x, W(t)x)lx sR"}. If lim,_,r_ W(t) exists then we take
D 0, R lim,_,r_ W(t); the statement of the theorem in this case is standard [4].

If limt_,r_W(t) does not exist, then L(T)=limt_,r_L(t):o. Let q=
codim vr (L (T)) > 0.

There exist n x n matrices Sx, S such that rank

(Sx, Sz) n and L(T) {(x, p)lSxx +Sp 0}.

If x r(L(T)) then there exists a p such that Szp =-Sx, i.e. Sx Range Sz. The
condition rank (Sx, Sz) n means

(10) Range S + Range Sz R ,
from which it follows codim Range $2 q. Consequently, there exists a q n matrix
with full rank N such that y s Range Sz if and only if Ny 0. From (10) it also follows
that if we denote D NS, then rank D rank N q. Also, x ’(L(T)) if and only
if Dx 0, i.e., x s Ker D.

Let K be any n n matrix, the restriction of which to Range $2 is a right inverse
of $2, i.e. we have SzKS $2. Then, (x, p)sL(T) if and only if x s Ker D and

(11) p +KSx sKer S.

Denote R0 =-KS.
Since L(T) , for any p, P2 Ker $2, x, xz s Ker D we have

(12) (R0Xl +p)’xz-(Roxz +pz)’x O.

Choosing xx =0 and using (12) we obtain p’x =0 for any p sKerS, x KerD.
However, p’x 0 for all x s Ker D is equivalent to p Range D’, so Ker S Range D’.
Since rank D =q codim Range Sz dim Ker Sz, we have

(13) Ker Sz Range D’.

Choosingpa =Pz 0 in (12) we have x’xR’x0 2 x’Rox2forallxx xzKerD. Also,
if we take any x Ker D, then (x, Rox)L(T). Since L(T)=lim_r_L(t) (in GR(n)),
there exists a sequence of points ti T, (xi, Pi) (xi, W(ti)xi)_L(ti), (xi, pi) (x, Rox).
Since W(t) is positive semidefinite, for each < T, we have x’RoX limi.: x i’W(ti)Xi >
0.

Denote R PRo, R (E-P)Ro, where P is the orthogonal projection of R"
onto Ker D. For any x , x2 s Ker D we have

x ’xRox: X’lR oX2
and, consequently,

x’Rx->0, x’Rx2= xIRx.
Thus, the restriction of R o to Ker D is symmetric and positive semidefinite.

Obviously, we can find an R symmetric and positive semidefinite on all R such that

(14) RIKerD=R[KerD.
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By (13), for x Ker D, (11) is equivalent to

p Rox p Rx Rx Range D’.

Since Rox is orthogonal to Ker D, we have RoX Range D’, which means that (11)
is equivalent to

(15) p -Rx Range D’

for all x Ker D. By [5], [2], (14) is the transversality condition for the solution of
the adjoint equation of the problem (1)-(4). Since R >-0, M(t)>0 and Q(t)>=O for
t [to, T], if (x(t), p(t)) is a solution of (9) with Dx(T)= 0 and p(T) satisfying (15),
then x(t), e[s, T] is an optimal trajectory for the problem (1), (3), (4) with initial
state x (s), the corresponding optimal control being generated by the feedback law

(16) u (t) -M-1(t)B (t)p (t) -M-(t)B (t)W(t)x (t

for s -< < T. Since cx(L(S)) R n, the points x(s) obtained in this way for all possible
choices of x (T) and p (T) fill up all R n.

We have
r d

,(x’(s)W(s)x(s)=p(s)x(s)=- -(p(t)x(t)) dt+p T)x(T)

T

=x’(T)Rx(T)-I [(’(t)x(t)+p’(t)2(t)]dt

T

Is [x’(t)O(t)x(t)+u’(t)M(t)u(t)]dt.

Since x (t), u (t) are the optimal trajectory and control, respectively, this completes the
proof.

4. The noneontrollable problem. In this section we consider the problem (1)-(4),
but unlike in [1], [2], we shall not assume that the system (1) with output =Dx is
output controllable. It is obvious that the set of points that can be controlled to the
terminal set Dx (T)= 0 on Is, T] is a linear subspace of R", but for a nonautonomous
problem it is moving with s in general, and it is not entirely obvious how to characterize
it.

The following theorem gives two characterizations of this subspacemone in terms
of the flow on GR (n), the other in terms of the approximation scheme of [1]. Also,
it shows that for this approximation scheme to work, the output controllability
assumption is not essential.

As in [1], we denote by 0?/T(y) the set of controls steering the system from the
point y to the terminal set (4) on Is, T] and by W, the solution of (5) satisfying the
terminal condition W,,(T)=R + mD’D. Note that y’W,,(s)y is the minimal value of
the cost for the unconstrained problem (1)-(3), (6). The optimal control u,,(t) for this
problem is given by the optimal feedback law

(17) u -M-(t)B’(t) Wm(t)x,

i.e., we have u,(t)=-M-(t)B’(t)W,,(t)x,,(t), where Xm(t) is the solution of the
equation

2 =(A-BM-B’W,,)x
with x,,(s)= y.
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Denote

U(s) {y [q/T(y) # },

V(s) {y[ lim sup y’W,.(s)y < },

L(s) s,r ({(x, p)lDx 0, p -Rx Range D’}).

THEOREM 2. For all s [to, T),

(18) U(s) V(s)= Zrx(L(s)).

For y U(s), the optimal control Uo(t) for the problem (1)-(4) is given by

Uo(t)= lim u..(t)=- lim M-l(t)B’(t)W..(t)Xm(t),
m-oo moo

and the optimal value of the cost is given by

(19) min Cr(y, u)= Cr(y, Uo)= lim y’W,.(s)y.
ueo sT(t)

Proof. First, we prove V(s)c U(s). From (9) we obtain by simple calculation for
any k. m, s fixed, y xi(s) and pi(t) Wi(t)xi(t), k, m,

[(x,. (t) xk (t))’O(t)(x,. (t) xk (t)) + (u,. (t) Uk (t))’M(t)(u,. (t) Uk (t))] dt

T d
-[(p.(t)-pg(t))’(x,.(t)-x(t))]dt

-(p. (T) -pk (T))’(x,. (T) Xk (T))

(20)
=-(x,.(T)-xk(T))’(W,.(T)x,.(T)- Wk(T)x(T))

-(x,.(T)-x(T))’(R + kD’D)(x,.(T)-x(T))

(x, (T) x(T))’(m k)D’Dx,. (T)

-(x,.(T)-x(T))’(R + kD’D)(x,.(T)-xk(T))

-(m-k)x’..(T)D’Dx,.(T)+x’(T)(W..(T)- Wk(T))x.(T).

Using the invariance of o), we have

x’(T)(W,(T)- Wk(T))x,.(T) p ’(T)x(T)-p ’(T)x,.(T)

p (S)Xk (S) --p (S)X. (S)

y’(W,.(s)- W(s))y.

Denote 6k.,(s)= y’(W..(s)- W(s))y.

8k(S)= lim 8k.,.(S);

(21) O<-6.,.(s)<-6-(s)<oo, lim 6(s)=0 fork<m,y V(s).
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From (20) it follows that
T

6k,.(s)- Jo [(x..(t)-xk(t))’Q(t)(x.(t)-x(t))

+ (u.(t)- u(t))’M(t)(u.(t)- u (t))] dt
(22)

+(xm(T)-xk(T))’(R + kD’D)(x.,(T)-xk(T))

+ (m k)x ’,. (T)D’Dx., (T).

Since all the right-hand side terms are nonnegative, we have

(m k )llDxm (T)II= (m k )x ’,. T)D ’Dx,. T) &,,,. (s <- 6- (s ),
(23)

1
0 <= IlDx,. (T)II -< , (s)

and, by (21),

lim IlOx.(T)[l=O.

Also, from (22) it follows that

sup (u,(t)-uk(t))’M(t)(u.(t)-u(t)) dt <-8(s).

Since M(t) is continuous and positive definite on [s, T], it is uniformly positive definite
on Is, T]. From this and (21) it follows that {u,} is a Cauchy sequence in L2(s, T) and
therefore has a limit Uo(t) in L2(s, T). From the representation of Xm (t) by the variation
of constant formula it follows immediately that {x,} converges uniformly to the
response Xo(t) of Uo(t) satisfying Xo(S)= y.

By (23), we have
Dxo(T) O.

This proves V(s)c U(s) and also the second equality of (19). To prove the first
equality (having as its consequence the optimality of u0) we note that for each u q/sT(y)
we have

c(y, u) C... (y, u) > min CT.,, (y, u) y W, (s)y.

This also proves U(s) c V(s). To complete the proof of the theorem it remains to prove
the second equality of (18).

If y 7rx(L(s)) then there exists a solution (x(t), p(t)) of (9) with Dx(T) 0 such
that x(s)= y. The function x(t) is a response of the control u(t)=-M-l(t)B’(t)p(t)
which means u q/T(y). Consequently, q/T(y)# and y U(s).

On the other hand, if y U(s), then by [5], there exists an optimal control u0 in
q/sT(y), the response Xo(t) of which, together with a suitable function p(t), satisfies
(9). In addition, p(T)satisfies the transversality condition (15). This proves y 7rx(L(s)).

Remark I. Since u, --> u0 in L2(s, T) we have

(24) lim CT(y, u,,) CT (y, Uo).

On the other hand, we have

CT(y, u0) lim y W,(s)y lim C,. (y, u.)

(25)
lim C (y, urn) + m IIDxm (T)IIz.
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From (24), (25) we obtain

or

lim m lIDx T)II o,

liDx(T)ll" o(m-1/2).
This gives an estimate for the deviation of the endpoint of the optimal trajectory of
the approximate unconstrained problem from the terminal set.

Remark 2. From 7rx(L(s)) U(s) it follows that the dimension of 7rx(L(s)) cannot
decrease with s decreasing. From [6] it follows that for A, B analytic it is constant
for s < T and equal to the dimension of the space Ker D + C, where C span {bi (T),
(sgbi)(T),..., (sg"-lb)(T)li 1,..., n}, where b are the column vectors of B and
sgf(t) =f(t)-Af(t) for a differentiable function f on [to, T].

Theorem 2 allows us to deal with the .problem (1)-(3) with additional constraints
and costs at intermediate points of the interval. We shall restrict ourselves to the case
of one intermediate point, the extension to the case of a higher number of points
being straightforward.

Let T1 (to, T), ql _-<n and let R1 _->0, D be n xn symmetric and ql xn with full
rank, respectively. Consider the problem given by the system (1), the initial point (2),
the cost function

(26) dr (y, u)= Cr(y, u)+x’(r)Rx(T),

the constraints (4) and

(27) Dlx(T1) =0.

Of course, for s (T1, T] the problem coincides with the problem (1)-(4).
Let U(t), W,(t) be defined as in Theorem 2. It is obvious that the optimal control

for the problem (1), (2), (26), (4), (27) for s T1 will be a concatenation of the optimal
control on Is, T1] for the problem (1), (2), the cost function

TI
c(t, x, u) dt +x’(T1)Rlx(T1)+ lim x’(T1)W,(T1)x(T1)

and the linear constraint

x(T1) U(T1)f-IKer D1,

and the optimal control for the problem (1), (3), (4), with initial point x(tl) on [h, T].

5. The infinite interval. Consider the unconstrained problem (1), (3) with R 0
and denote Wr the corresponding solution of (5), which is the solution satisfying
W7- (T) 0. For fixed s, y, denote u , x r the optimal control and trajectory respectively.
In [1], we have shown that limr_, Wr(s) exists and represents the optimal cost for
the infinite interval problem, provided for each s, y there exists a u such thatC (y, u)
limr_, Cff(y, u)< m. Like Theorem 2, the following theorem deals with problems
not satisfying this condition.

By U(s) we denote the set of those y e R for which there is a control u on
Is, c) such that C(y, u)< m. Further, we denote

V (s) { Y y’W <
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By L(s, ) we denote the space of functions u’[s, c) R which are square integrable
with weight M(t), i.e., J u’(t)M(t)u (t) dt <. L(s, ) is a Banach space.

THEOREM 3. We have U(s)= V(s) for every s >-_ to. For y U(s) we have

min C (y, u)= lim y’WT(s)y.
Tocx:

The optimal control u(t) and trajectory x(t) are given by

(28) u(t) lim uT(t) (in L(s, c)),
Too

(29) x(t) lim x7"(t)
To

(uniformly on each finite interval).
Let us note that in (28), (29) we understand u T, X7" to be extended to [s, ) by

having value 0 for > T.
Proof. Let y V(s), T2 T1 >= s. Denote WT" Wi, x T,

Xi, U 7"‘ U, 1, 2. By
computations similar to those leading to (20) we obtain

T

y’(WI(S)- We(s))y J [(Xl(t)-x2(t))’Q(t)(xl(t)-x2(t))

+ (u l(t)- u2(t))’M(t)(u l(t) u2(t))] dt

+ (x (T1) x2(T1)) Wl(T1)(x 1(T1) x2(

(30) + x2(TI)(W2(T1)- WI(T1))x2(T)

[(xl(t)-xz(t))’O(t)(xl(t)-x2(t))+(ul(t)

u2(t))’M(t)(u l(t)- uz(t))] dt

+ [x(t)’O(t)x(t)+u(t)M(t)u(2)]dt

>-_ (ul(t)-u2(t))’M(t)(ul(t)-u(t)) dr.

From the estimate (30) it follows that the family of functions {uT’lT >-s} is a Cauchy
family in L(s, ee). Since L(s, ee) is complete, it has a limit u e L(s, c). From the
variation of constants formula it follows immediately that the response x of u is a
pointwise limit of the functions x T’, the convergence being uniform on each finite
subinterval of [s, o).

For every fixed To >- s we have

C (y, u) lim C (y, u 7") lim C(y, u 7-) lim y’WT" (s)y,
Tc Tc Tc

) Ufrom which it follows that C (y, u is finite and, thus, that V(s)c (s) On the
other hand, we have for any control u,

(31) C (y, u) >- y’WT’(s)y.
From (30), (31) it follows that

) ,WCs (Y,U)=>C(y,u =lim y (s)y,

which implies that u is optimal.
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The inclusion U(s) V(s) follows immediately from (31).
Note added in proof. There is an overlap of our 4 and the paper of G. Chen

and W. Mills, Finite elements and terminal penalization ]:or quadratic cost optimal
control problems governed by ordinary differential equations, this Journal, 19 (1981),
pp. 744-764. In particular, the essential part of Theorem 3 or our paper is contained
in Theorem 2.2 of the quoted paper.
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GENERALIZED HERMITE MATRICES AND COMPLETE INVARIANTS
OF STRICT SYSTEM EQUIVALENCE*

D. HINRICHSEN- AND D. PRi,TZEL-WOLTERS"

Abstract. A complete list of invariants for reachable system matrices

E(s)=[P(s) -O(s)]
V(s) W(s)J

with respect to strict system equivalence (s.s.e.) is determined by polynomial methods. The polynomial
input-output pairs (u, y) for which there exists a polynomial vector z such that Pz Qu and y Vz + Wu
form a K[s]-module (E). It is shown that the unique basis matrix of ix(E) in Hermite form yields a
complete set of discrete ("Hermite indices") (resp. continuous) invariants of s.s.e. The Hermite invariants
are characterized in state space terms, and a realization of E(s) in Hermite canonical form is presented.
Nice orders and generalized Hermite forms are introduced in order to develop a framework that encompasses
Hermite invariants and Kronecker invariants. Hermite’s theorem is generalized to these matrices. Finally,
nice orders are used to single out unique representatives among all minimal bases of a given full submodule
M c K[s] and Forney’s echelon form is characterized in this framework.

Key words, invariants, canonical forms, system matrices, strict system equivalence, Hermite form,
canonical realization, Kronecker invariants, Hermite’s theorem, minimal basis, echelon form

1. Introduction. For linear systems in differential operator representation

(1.1a) P(-d-t) Z --ID /,

V
d

W
d

(1.1b, y= (-/)z+ (--/)u,
the concept of strict system equivalence (s.s.e.) as defined by Rosenbrock (1970) and
characterized by Fuhrmann (1977) has proven to be an adequate generalization of
the similarity relation between state space systems. In this paper we study polynomial
methods to determine complete lists of invariants for s.s.e., polynomial canonical
forms and canonical state space realizations for reachable systems of type (1.1).

To be more precise, let us recall the following terminology: If S is a set and
an equivalence relation on S then a family ([) of functions [ "S is called a
comp&te list of (numerical) invariants [or if

(1.2) sg[(s)=f(g) for all L

A mapping c’sc (s) from S into itself is called a canonical [orm on S with respect
to if c (s) s and for s, g S"

(1.3) s gc(s)=c(g).

For reachable linear state space systems various canonical forms (with respect to
similarity) have been proposed in the literature (e.g. Popov (1972), Mayne (1972),
Weinert and Anton (1972), Denham (1974), Rissanen (1974)). In particular it was
observed that most of the so-called standard or canonical forms presented in earlier
publications (Brunovsky (1966), Luenberger (1967), Rosenbrock (1970)) do not satisfy

* Received by the editors December 3, 1980, and in revised form October 30, 1981.
t Forschungsschwerpunkt Dynamische Systeme, Universitit Bremen, BibliothekstraJ3e, Postfach

330440, 2800 Bremen 33, West Germany.

289



290 D. HINRICHSEN AND D. PRTZEL-WOLTERS

the requirements of the above definition (cf. Popov (1972), Denham (1974)). From
a practical point of view the interest in canonical forms was mainly motivated by
problems of identification. The usefulness of canonical forms for identification is
discussedwpartly in comparison with other parametrization methods--by Mayne
(1972), Denham (1974) and Glover and Willems (1974). The theoretically very
interesting problem to find a complete list of invariants for general linear systems
(without the reachability assumption) still appears to be unsolved.

For reachable state space systems, two basic approaches can be discerned in the
literature. Some authors (e.g. Denham (1974)) reduce the set of all reachable pairs
(A, B) ("+") to the subset of all pairs for which the determinant of an arbitrarily
fixed "nice selection" Rv(A, B) of n column vectors of the reachability matrix

R(A,B)=[B AB AB A"-B]
is nonzero. It is easily verified that the mapping (A,B)-(R(A,B)-AR(A,B),
R(A,B)-B) defines a canonical form on with respect to similarity. However,
different subsets corresponding to different nice selections 3’ may overlap since 3’
is not uniquely determined for a given pair (A, B). Therefore the set of parameters
obtained by this method does not constitute a complete list of similarity invariants.
Rather, it should be viewed as a local coordinate system or chart on the quotient
space /--- of similarity classes. Hazewinkel and Kalman (1976) and Hazewinkel
(1977) used these charts in order to define a manifold structure on /. Analyzing
the manifold thus.defined, they were able to show that there does not exist a continuous
global canonical form on .

However, this result should not prejudice the investigation of global canonical
forms for linear systems. As the Jordan normal form for single matrices illustrates,
global canonical forms may be very useful without being continuous. This leads us to
a second approach to our problem which has been adopted in the papers of Popov,
Mayne and Weinert and Anton. The Jordan normal form is determined by a combina-
tion of discrete parameters specifying the sizes of the Jordan blocks and of continuous
prameters specifying the corresponding eigenvalues. Analogously, we shall describe
the classes of strictly system equivalent systems of type (1.1) by a family of discrete
indices (integers) and a set of continuous parameters whose number depends on the
list of indices of the system.

We proceed as follows. In 1 we introduce the module of return to zero/z (P, O)
associated with any system of the form (1.1) and characterize the relation of s.s.e, for
reachable systems via this module. This leads us to the problem of finding a parametriz-
ation procedure for all full submodules of the free module [s]" of vector polynomials
over a field 4. In 2 the Hermite basis and Hermite indices of/z (P, Q) are defined
from which a complete list of s.s.e, invariants can be derived. For any given list of
Hermite indices the associated number of "continuous" parameters is determined.
Subsequently we describe the Hermite basis in terms of a state space representation
of the system.

In 3 we present a general method for the generation of canonical forms with
respect to s.s.e. We define the concept of nice order and associate with it a generalized
Hermite form of which the Hermite form is a special case. For these generalized
Hermite forms, an existence and uniqueness theorem is proved which extends the
classical theorem of Hermite. It is shown that basis matrices of/z (P, Q) of generalized
Hermite form yield again complete lists of invariants for s.s.e. (under the assumption
of reachability).
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In 4 we consider the problem of singling out uniquely determined representatives
among all minimal bases of a given full submodule M c [s] (cf. Forney (1975,
p. 499)). We characterize those generalized Hermite matrices which are column proper
and determine those nice orders for which all generalized Hermite matrices are column
proper. Finally, we characterize Forney’s echelon form in terms of generalized Hermite
matrices and derive from it an analogue of Forney’s existence and uniqueness theorem
for basis matrices of full submodules M c [s] in echelon form.

2. strict system equivalence and the module of return to 0. We consider time-
invariant linear finite-dimensional control systems described by system-matrices

[P(s)(2.1) Z(S)=LV(s W(s)j
e [s]

where R or C. Throughout this paper we assume P(s) to be nonsingular, E(s)
to be reachable (i.e., P(s), Q(s) left coprime) and the transfer function

(2.2) a(s) V(s)e(s)-lO(s)+ W(s)

of E(s) to be proper rational. E(s) determines the following system equations:

(2.3a)

(2.3b)

u y

P(D)z =O(D)u,

y V(D)z + W(D)u,

where u is the control function, y the output function and z a vector of internal
variables of the system. In the continuous time case, u, z, y are functions on the time
domain [ with values in U ", Z r and Y P, respectively, and D d/dt is
the ordinary differential operator. In the discrete time case, u, z, y are functions on
the time domains 7/or N, and D has to be interpreted as the left shift operator defined
by (Dx)(k)= x(k + 1). In the sequel we analyze (2.3) in s-domain and use the discrete
time interpretation for the purpose of illustration.

Let us consider the following slightly modified version of Fuhrmann’s canonical
state space model for E(s) (Fuhrmann (1977)). As state space we choose the quotient
module

X := Z[s]/P(s)Z[s]

and define the state space model Estate-- (A, B, C, E) by

(2.4)

A X --> X, [z ]-> [sz ],

B U -X, v Tr,O(s)v,

C :X .--> Y, [z]-->(VP-Iz)_a,
E U Y, v ,-->(VP-aO + W)ov,

where "rrp’Z[s]-->Z[s]/P(s)Z[s] is the natural xprojection, [z]=cr,(z) denotes the
equivalence class of z eZ[s] mod P(s)Z[s], (VP- z)_ and (VP-aO + W)o denote the
coefficients of s-(resp, s) in the Laurent series representation of V(s)P(s )-z (s
(resp. V(s)P(s)-O(s) + W(s)).
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The reachability map of Y.,(s) is defined by

,o U[s]-,X, u(s)r.O(s)u(s).

Clearly w.o) is a [K[s]-module homomorphism associating with any polynomial
u(s) Yi--0 uis U[s] the state to which the discrete-time system "-state is steered by
the control sequence (Uk, Uk-1,’’’, U0) from the initial state 0. This justifies the
following"

DEFINITION 2.1. If E(S) is a system matrix of form (2.1) then the [s]-submodule
of U[s],

/x(P, O):= Ker 0w,o)={u m U[s];P(s)-IQ(s)u(s)eZ[s]},
is called its module o]: return to zero.

Obviously, the quotient module U[s]/t(P, Q) is isomorphic to the <[s]-module
X. Hence /x(P, O) is a (free) submodule of U[s] of full rank m. (cf. Rosenbrock
(1972), Hautus and Heymann (1978), Miinzner and Pritzel-Wolters (1979)).

It follows from the definition that for any polynomial system matrix Y-(s), the
module of return to zero can be described in terms of the canonical state space model
(2.4):

k k

(2.5) u(s)= E vis e/x(P, O): , AiBvi =0.
=0 =0

Another characterization of the elements of /x(P, Q) is obtained if we introduce
b := Bei, 1,. ., m, where (e,..., e,,) is the standard basis of U ". Then

(2.6) u(s)=(u(s), u,,(s)) 7" I(P, O): E ui(A)bi=O.
i=1

The following proposition which is a direct consequence of (Pritzel-Wolters
(1980, Cor. 3.14)) shows how the module Ix(P, Q) can be used to characterize strict
system equivalence of reachable systems.

PROPOSITION 2.2. Let ,(s), (s) be system matrices with transfer functions G(s)
(resp. (s)). Then the following two conditions are equivalent"

(i) ,(s) and ,(s) are s.s.e.,
(ii) Ix(P, Q)= tx(i6, 0) and G(u)= ((u) for all u /x(P, Q).
By definition, Gu (VP-Qu + Wu) Y[s for all u / (P, Q). Hence

(2.7) x () := u e x (P, O) ^ y Gu
Y

is a submodule of the (free) [s]-module U[s]x Y[s]. Evidently, condition (ii) in
Proposition 2.2 can be written equivalently as

(2.8) ix (E) ix ().
This shows that the class of strict system equivalence [Z(s)]... is completely deter-
mined by the module t (Z). It remains to parametrize the submodules of U[s] x Y[s].

3. Hermite indices and invariants for s.s.e. With every full submodule M [s]n
there is associated the set of basis matrices

(3.1) B(M) := {D(s)[s]’;D(s)[s] =M}.

If Do(s)mB(M) then

(3.2) B (M) {Do(s)U(s); U(s) [s]"’’ unimodular}.



GENERALIZED HERMITE MATRICES 293

By definition, every matrix in B (M) yields a complete description of M. In order to
obtain a suitable parametrization we have to pick out representatives of the sets B (M)
in a systematic way.

DEFINITION 3.1. A polynomial matrixD (s) [N[s]"" is called of (lower) Hermite
form if fori=l,...,m andf=l,...,m’

(i) di 0 if </’;
(ii) deg di < deg d, if > ];
(iii) dii is monic.
The following proposition is due to Hermite (cf. Newman (1972)).
PROPOSITION 3.2. For every matrix D(s)tN[s]"" of full rank rn there exists

exactly one matrix H(s) [s]"" in Hermite form which is right-equivalent to D(s),
i.e., H(s D (s U(s with U(s unimodular.

Nonsquare matrices

[Dl(s)] ]("+p)" (s) 0,(3.3) D(s)
l_D2(s)

[N[s det D1

are called of (lower) Hermite form if D(s) fulfills Definition 3.1. Let X(s) be a
polynomial system matrix. Then every matrix D(s) B (/x (X)) is of the form (3.3) with
DI(S)eB(I(P, O)). Therefore, by Propositions 3.2 and 2.2 we have:

PROPOSITION 3.3.
(i) For every system matrix X(s) there exists exactly one matrix H(X)B (t* (2,))
of Hermite form.

(ii) Two system matrices X(s ), ,(s) are s.s.e./f and only if H(X)=H(,).
H(X) can be written in the form

(3.4) n(X)
In2(s)

Now consider the system matrix

H1(s) [s]"" nonsingular.

=[H(s) I. ](3.5) EH I_H2(s) 0o"
e[s]("

Obviously

tx (H(s ), I,, H(s)[s]" I (P, O),

hence

(x) (x.).

As a corollary we obtain Rosenbrock’s existence and uniqueness theorem for his
standard form of polynomial system matrices.

COROLLARY 3.4 (Canonical polynomial form of reachable system matrices).
Every reachable system E(s) is s.s.e, to a uniquely determined system matrix of the
form (3.5) where H(s) is of Hermite form.

DEFINITION 3.5. For any system matrix X(s) the uniquely determined matrix

H(X)=(hi)B(lx(X)) of Hermite form is called the Hermite matrix of X(s) and the
family 8 (81,’’’, 8,,) defined by

8i deg hii, 1, ., m,
is called list of Hermite indices of (P, O).

It should be noted that the list is a family not a set: the ordering of the
1,..., m, is important.
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Let n be the dimension of the state space of E(s). Suppose that H(E) is written
in the form (3.4). Since

det H(s) h(s) h,,m(S)
and

deg det Hi(s) dim [s]m/H1(s)[s]m n,

it follows that

(3.6) Y 5g n.
i=1

In the following we investigate the question of how many scalar parameters are
needed in order to determine the Hermite matrix

H(Y_.)
I_H2(s)]

[s]"+"

of a system matrix E(s) () where (8, , 8) is any finite sequence of integers
i 0 with 81 +" "+8 n and (8) denotes the set of all reachable system matrices
with Hermite list 8.

Firstly, we will show that the parametrization of the output part H(s) can be
carried through independently ofH(s); in particular the number of scalar parameters
required for the description of H(s) is independent of .

The following lemma is easily proved.
LZMMA 3.6. Let D(s) [s]" be a column proper matrix with column degrees

v, v and L(s) e [s]. Then the following conditions are equivalent:
(i) L(s)D(s)- is proper rational;

[D (s ] has column degrees u, u.(ii)
[L(s) J

In general the Hermite matrixH(s) is not column proper and the column degrees
of H(s) are not necessarily bounded by ,. ., . Therefore the coefficients of the
polynomial entries in H2(s) are not suitable for the parametrization of the output
part: If H(s) is fixed these coefficients may not be varied independently without
eventually violating the condition that G (s) H2(s)Hx(s)- has to be proper rational.
Instead we have to consider the coefficients of the polynomial entries of L(s)=
H2(s)U(s) where U(s) is a unimodular matrix in [s] such that D(s) H(s)U(s)
is column proper. Since the column degrees of L(s) have to be smaller than or equal
to the column degrees Ul,." ’, u of D(s) (by the preceding lemma) and= ui n
we obtain a complete set of p. (n + m) independent parameters for the description
of H2(s) whenever H(s) is given.

Remark 3.7. The parametrization of the output part depends upon the choice
of U(s) which is not uniquely determined by the requirement that H(s)U(s)- be
column proper. In 5 we present another canonical basis matrix of (E) which exhibits
directly the free parameters of the output matrix.

Let us now determine a complete set of independent parameters for the input
part H(s). The entries h; of Hx(s) are of the form

i]hi a + a s +. + a ,s

where

ii i1 if]=i,
a,=]0 if]i.
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Therefore each entry of the ith row of Hi(s) is determined by 8i parameters (i
1, ., m). Hence the total number N(8) of free parameters of H1(s) for H() Y (8)
is

(3.7) N(8)= , iSi= E n- 8k =ran- E (m-i)6i.
i=1 k=l i=1

We next analyze the significance of the Hermite matrix (input part) for state
space systems and derive the corresponding canonical form of the input pair.

Let (A, B) be the input pair of a state space system E (8). Denote by Bj the
matrix [bj/l,’" ’, b"] of the last m-/" column vectors of B. Then the A-invariant
subspace (AIImBj) generated by bj/l,’’ ’, b,, is the set of all states which can be
reached from 0 by controlling the system only through the input channels/" + 1, .., m.
Put (A IIm B,,) := {0}. Denote by the linear mapX/(A IIm B) X/(A Jim B) induced
by A and write [x] := x + (AIIm B) for the elements of these quotient spaces (x
X;/" 1,..., m). Then the Hermite matrix Hi(E) can be characterized in terms of
the input pair (A, B) as follows.

PROPOSITION 3.8. Let 8 (81,’’’, 8,.) be a list of nonnegative integers with

Y.i= 6i n and E (6 a state space system with input pair (A, B) and Hermite matrix
H(E) (h). Then

(i) h is the minimal monic annihilating polynomial of [bj] X/(AIImB) with
respect to A, f 1,. ., m.

(ii) The vectors

(3 8) b Abl, Al-lb1, ., b,.,Ab,.,...,A’-I

form a basis of the state space X.
(iii) For 1,. , m, >, the coefficients a’ of the polynomials

hi(s) aid"-I-a 1S +" "+aai-ls
are uniquely determined as the coordinates of hj(A)b corresponding to the basis vectors
hi, Abe,. , A’S’-lbi"

(3.9) h(A)b E Y aAb.
i=1+1 k=0

Proof. Since the column vectors hj (0, .., O, h, , h,.)r of H() belong to

x (sL A, B) we have

(3.10) 2 h(A)b O.
i=j

Hence h(A) annihilates b modulo (AIIm B). This implies that in the sequence

$

no more than the first 6i vectors in each column/" m, m- 1,..., 1 are linearly
independent of the preceding vectors. However, since (AlIm B)=X and Y,i= 6j n,
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all these n vectors have to be linearly independent. This proves (ii) and also that hjj
is a minimal annihilating polynomial of bj mod (AIImBj) with respect to A for
/" 1,..., m, i.e., (i). Finally (iii) follows from (3.10) and (ii). [3

As an immediate consequence, we obtain the following realization of a given
system matrix E(s) in Hermite canonical state space form.

COROLLARY 3.9. (Hermite canonical form of reachable state space sys-
tems). Every system matrix E(s) Yt (6 is s.s.e, to a uniquely determined system , in
state space form with input pair (A, B) ,(n+,,) of the following structure:

(3.12) A (Ai)i.j=l.....,,

where
(a) for ] 1,..., m with t > 0:

I!Aq
0

/3 (b)=,...,,,

0 -a

0

a Ji I1 ,-U

Ai 0,, for <j,

[or >j,

j-1
1 /If =,=a &, + 1,

bi K’, bti 0 else;

(b) for i 1,. , m with 6i O:

bl arbitrary else.

Proof. Consider the state space model (2.4) and represent the linear operators
A, B by their matrices with respect to the basis (3.8) of X. Then A and B have the
required form. This proves the existence result. Conversely, let 2 be a state space
system which is strictly system equivalent to Y and whose input pair is of the above
form. It follows from Proposition 3.8 (ii), (iii) and (3.12) that the entries/0 of HI(:)
are given by

ij i] ij 8i, i] { 1 if]
h=0+ +’"+el a1S 8,S 8, 0 if] #

where the coefficients d i
k, 0 k < l are taken from ii, >_- ]. Because of H1(:) H1()

we conclude that fi A. Furthermore b. =/i for ] e {1,. , m} with 3j > 0 (by assump-
tion). Since the vectors A bi, 0,. , n 1, ] e {1, , m }, 6i > 0 span X it follows
from the similarity of (A, B) and (fi,/) that B =/.

Remark 3.10. The preceding results have been obtained starting from the lower
Hermite form. In an analogous way, the upper Hermite form leads to a selection
procedure which starts with b instead of b,,. The corresponding state space canonical
form coincides with Luenberger’s first canonical form (Luenberger [1967]).

4. Dependence indices and generalized Hermite forms. Let m, n s N, m, n >= 1,
_m ={1,...,m}, n ={0, 1,. .,n}.
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DEFINITION 4.1. A relation of total order < on g x m is called nice if

(4.1) <-_ k =), (i, j) < (k, j) for/e _m,

(4.2) (k, l) (i, j) (k + 1, l) (i + 1, j) for k, < n.

A nice order can be represented graphically by a nice path through an (n + 1) x m
array of points (Fig. 4.1).

-j

-* r* -*
,-.

*

-**
-*

(a) nice (b) not nice

(c) (left) Hermite path (d) (left) Kronecker path

(e) nice

FIG. 4.1

Remark 4.2. The properties (4.1), (4.2) imply that two nice orders on ri x _m with
the same starting point (0,/’1) coincide if each point (0, k) has the same predecessor
(ik,/’k) with respect to both order relations (k _m, k fl).

Proceeding conversely to 2 we associate with every nice order a modified
Rosenbrock deleting procedure for reachable pairs (A,B)eNn("+’) in state space
form and derive from it a uniquely determined basis of the module of return to zero
Ix(sIn -A, B).

Delete in the family (Aibj)(i.ja_ ordered by every vector Abj which is
(4.3)

linearly dependent upon its predecessors.

By (4.1) and the theorem of Cayley-Hamilton all vectors A nb,/’ _m are deleted.
By (4.2) the deletion of A ibi implies the deletion of Ag/bi for k _-> 0. Therefore the
result of the deletion procedure is a nice selection in the sense of Hazewinkel and
Kalman (1976), i.e., the vectors remaining after the deleting process form a set of the
form

(4.4) {A b.; f _m, < 8j}

where the integers 6i _-> 0 satisfy

Z
/=1

because (A, B) is reachable.
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The list 6(A,e)=(61,"’ ", 6m) is called a list of dependence indices of the pair
(A, B) with respect to the nice order <. The vectors A’bi can be expressed as linear
combinations of the Akb with k < 6i and (k, i) < (6i,/’). Hence there exist polynomials
hi [s] such that for ] "
(4.5) hi(a)bg=O,

i=1

(4.6a) hii monic with degree 6i for ] ,
(4.6b) deg hi < deg h for all , # ],

(4.6c) (deg hgi, i) (deg hii, ]) for i, ] ,
where we define" (deg 0, ])< (i, k) W, k and i a. Since the vectors (4.4) are
linearly independent the polynomials hi satisfying (4.5) and (4.6) are uniquely deter-
mined. Define <HA,n) := (hi)i,i).

LEMMA 4.3. The columns ofH,n) form a basis of the module (sI.-A, B). Two
pairs (A, B) and (, ) of dimension n (n + m) are similar if and only if H,n)
H(A,).

Proof. Because of (4.5) and (2.6), the columns of H,s) belong to (sI.-A,B)
and because of (4.6) we have deg det H(A,B) n. Thus Ha,n is.a basis matrix for
(sI. -A,B). Ha,n) =HA.) implies (sI.-A,B) (sI.-A, B), i.e., similarity of
the two reachable pairs. Conversely, if TAT-a, TB with T nonsingular, then
i TAbi for all i , f . Applying T to (4.5) we conclude that H,s

If is the Hermite order (c), then H,n) is just of Hermite form. This justifies
the ollowing

DEVINTON 4.4. Let be a nice order on a x O and 6 =(Sx,"’,6),
=a 6 n A matrix H [s] is called a generalized Hermite matrix of index list

6 with respect to (H <(6)) if (4.6) holds.
The following result extends Hermite’s theorem to generalized Hermite matrices.

Although its content is purely algebraic, we use system theoretic tools for its proof.
THEOREM 4.5. Let be a nice order on x . For every nonsingular matrix

D(s) [s] with deg det D(s) n there exist a unique index list 6 (6, ., 8)
with = 6 n and a unique generalized Hermite matrix H(s) <(6) such that

D (s) is right-equivalent to H(s).
Proof. Let U(s) be a unimodular matrix such that O(s)- := U(s)-D(s)- is

strictly proper and let (A, B, C) be a minimal realization of G(s) := O(s)-a. Then the
system matrices

are s.s.e., hence (sI A, B ( (s ), Ira) (s )N[s ]m D (s)N[s] by Proposition
2.2. Define H := H(,. Since the columns of H(s) form a basis of (sI-A,B) H(s)
is right-equivalent to D (s). Since det H(s) const det D (s) and det D (s) 0, we have
=degh0 and 2=l=n. Because of Lemma 4.3 H(s) and 8 are uniquely
determined by (A, B), hence by D(s).

As an application of this theorem we derive new complete lists of invariants for
system matrices with respect to s.s.e. Let be a given nice order on g x . For every
reachable system matrix

e(s -O(s]
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of order n there exist a unique list (1, ’, ;,) N" with =1 ;i n and a unique
basis matrix HP,o <(8) of/x (P, Q) by Theorem 4.5. For a fixed list denote by
<(8) the set of all polynomial input pairs (P, Q)[s]r(r/"), r>=l, with Hp,o

PROPOSITION 4.6. (i) Two reachable system matrices ,, , of order n with transfer
functions G (s ), (s) respectively and with input space " are s.s.e./f and only if

HP,O H,O and G(s)Hp,o )H,o.

(ii) ’ () (8) (P, Q)HP,o

is sur]ective, hence induces a bi]ection

Proof. (i) follows from Lemma 4.3 and Proposition 2.2.
(ii) Let H(s)<() and define (P, Q)=(H,I,). Then (P, Q)=H[s]" and

y(P, Q))=H.
Proceeding as in 3 (cf. Corollary 3.4, Corollary 3.9), canonical forms for system

matrices and for state space systems can be derived in a straightforward way from
this proposition. Thus we can associate with each nice order on ri _m a different
generalized Hermite canonical form.

Example 4.7. Let

s s+l s s 2

3 ..l_ $2 3 2 2 3 _t..S 2

D(s)=

s2

-s s +2s-s s s s ]44
0 2s 1

R[s

-2s -s2-3s-1 7s2-s+3 -s2+s
We obtain as associated generalized Hermite matrices:

a) the index list (0, 2, 0, 2) and the Hermite matrix

1 0 0 0
2s-s 0 0

1
0 1 0
-s 2s S2-

for the (left) Hermite order on 4 x 4_;
b) the index list (1, 1, 1, 1) and the Kronecker-matrix

-1 1 0 0
0 s 0 0

0 0 s

s1 -1 -2

for the (left) Kronecker order on 4 x 4_;
c) the index list (3, 1, 0, 0) and the -matrix

3_s2_s_1 s -2s2+2s
0 s 0
0 0 1
0 0 0

S

0
0

1

for the nice order on 4 x 4_ corresponding to Fig. 4.1 (a).
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5. Nice minimal bases. A basis da,’’’, dk of a submodule M [s] is called
minimal (of minimal degree) if

Y. deg di <- Y, deg d for all bases (d,. ., d) of M.
i=1 i=1

It is well known that the set of degrees Pi deg di, k_ is independent of the particular
minimal basis of M and that a basis da,’’ ", d of M is minimal if and only if the
associated basis matrix D (da, ",d) is column proper.

Minimal bases of submodules in N[s] play an important role in the analysis of
those structural properties of linear systems which are based on the degree structure
of tz() (resp. ix(P, O)) (cf. Mfinzner and Pr/itzel-Wolters (1979)). In particular, we
have seen in 3 that column properness of the basis matrix Ha(E) is desirable if we
want to determine the number of free parameters of the output part of E (Lemma 3.6).

For a given submoduleM c N[s]" there exist many different column proper basis
matrices, in general. In the following we show how special nice orders can be used
to single out uniquely determined representatives among all minimal bases of a full
submodule M. These minimal bases are called nice.

By definition, every generalized Hermite matrix H(s)sN[s]"" is row proper
with leading row coefficient matrix [H] I,,, but in general is not column proper. In
the following we characterize those nice orders which lead to column proper generalized
Hermite matrices.

A nice order < with the property

(5.1) (i,f)<(i+l,k) forisn-1, j, ksm_

is called a Kronecker order. Notice that a Kronecker order is completely determined
by the ordering of the pairs (0,/’),/" s _m. The Kronecker order (cf. Fig. 4.1(d)) with
the additional property

(5.2) (i,i)>.(i,]+l) forier, ]em-1

is called a left Kronecker order and the associated matrices are called left Kronecker-
Hermite matrices.

PROPOSrrION 5.1. (i) A matrix D(s) [s]mm is a leftKronecker-Hermite matrix

if and only if

(5.3) [D(s)]=I, and [D(s)]=

1 0 0

where [D(s)] is the leading column coefficient matrix.
(ii) For every nonsingular matrix M(s) [s]m" there exists a uniquely determined

matrix D(s) with the properties (5.3) which is right-equivalent to M(s).
Proof. (i) Suppose that D(s) is a left Kronecker-Hermite matrix with index list

6. Then [D(s)]= I,, (5.1) and (5.2) together with (4.6c) imply

deg dii < deg dii for i, ] _m, <j,
(5.4)

degdii<=degdii fori,/s_m, i=>/".

Hence [D(s)] is of lower triangular form and we obtain (5.3) because of (4.6a).
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Conversely, suppose (5.3) and let < denote the left Kronecker order. Then
[D(s)]= I,, implies (4.6a) and (4.6b). If deg d <deg d then

(5.5) (deg d,, i) < (deg d, ])

by (5.1). On the other hand, if deg d =>deg d it follows from (5.3) that deg d deg d
and i->/’. Hence again (5.5) because of (5.2). This shows that condition (4.6c) is
satisfied, i.e., D (s) is a generalized Hermite matrix with respect to the left Kronecker
order <.

(ii) follows immediately from (i) and Theorem 4.5.
By the preceding proposition, every left Kronecker-Hermite matrix is column proper.
We will show that this property characterizes the Kronecker-Hermite matrices, i.e.,
those matrices which are generalized Hermite matrices with respect to a suitable
Kronecker order on t x _m. Note that to any nice order < there corresponds a unique
Kronecker order < such that

(5.6) (0,/’) < (0, k)<=> (0,/’) < (0, k).

PROPOSITION 5.2. Let be a nice order on x m_ and H(s) W<(8) where 8 is
any index list. Then the ]’ollowing conditions are equivalent:

(i) H(s is column proper.
(ii) There exists an m x m-permutation matrix II such that HTH(s)II is a left
Kronecker-Hermite matrix.

(iii) H(s) is a Kronecker-Hermite matrix (with respect to :).
(iv) 8 is the ]-th column degree o]’H(s), ] m_
Proof. Let us first note that

(5.7) (O,])>(O,k)degh <degh for/’,k _m.

Indeed if (0, ]) > (0, k) then deg h >_- degh would imply (deg h, ])
(deg h, k) which contradicts (3.6c).

(i) => (ii)" Suppose that H(s) is column proper. Let r’_m _m be the permutation
k ], where

(0, ’) > (0, ’) >... > (0, ’)

and II the corresponding permutation matrix. Then/-(s) IITH(s)II has the entries

h’ii h(i)(i) and the leading column coefficient matrix/- IITH 17. By (5.7)

/" < k => (0, rr(]))> (0, rr (k)) => deg h’. < deg/ 8.
Therefore/- is a lower triangular matrix. Since H is nonsingular by assumption,
so is/- hence all the diagonal entries of/- are different from zero and 8 is the
degree of the/’th column of/-(s). This together with (4.6a,b) implies that/- satisfies
(5.3) and therefore H(s) is a left Kronecker-Hermite matrix by Proposition 5.1.

(ii) => (iii)" Suppose (ii). Then 8 deg h. is the degree of the/’th column of H(s).
We have to show that

(deg h,/’) < (deg h, k) for ], k _m.

If (0,/’)>(0, k) this follows from (5.7) and (5.1). If (0,/’)<(0, k) this follows from
deg h <_-deg h.

(iii)=> (iv)" Suppose that < is a Kronecker order. (5.1) and (4.6c) imply

(5.8) deg h _-< degh for ], k _m,

hence (iv).
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(iv)::> (i)" Suppose (iv) and define II and H as above. Because of (iv) and (4.6a),
the lower triangular matrix/- IIT"H II has all diagonal entries equal to 1. Hence
H is nonsingular.

As a corollary of Proposition 5.2 we obtain the following characterization of nice
minimal basis matrices, i.e., minimal basis matrices which are in generalized Hermite
form for some nice order <.

COROLLARY 5.3. A minimal basis matrix H(s) of a full submodule M of
is nice if and only if there exists an m m-permutation matrix H such that 1-IT"H(s)II
is a left Kronecker-Hermite matrix.

In Proposition 5.2 we have seen that all generalized Hermite matrices correspond-
ing to Kronecker orders are column proper. This property characterizes the Kronecker
orders if n > 1.

PROPOSITION 5.4. Let n > 1. A nice order < on x m_ is a Kronecker order if and
only if all generalized Hermite matrices with respect to < are column proper.

We omit the easy proof and briefly return to the problem of output parameters.
In 3 it has been noted that the (classical) Hermite matrix H(E) associated with a
reachable system matrix E(s) does not exhibit the parameters of the output part of
E(s) mod s.s.e, since H(E) is not necessarily column proper. Now we see that this
difficulty is avoided if we employ Kronecker orders instead of Hermite orders. For
example, if we select the left Kronecker-Hermite basis matrix of tx (P, Q) instead of
Ha(E), we obtain a column proper basis matrix

K(X)
LK2(s)

of/x () (cf. 3). The indices , , , ofK() coincide with the reachability indices
of the pair (P, Q). Fixing (P, Q), hence K, every reachable system matrix X(s) with
input part (P, Q) and proper rational transfer function G (s) is s.s.e, to a unique system
matrix in polynomial left Kronecker canonical form

where the/’th column degree of K(s)= G(s)K(s) is bounded by ,/" e _m (Lemma
3.6). Counting the number of coefficients of the polynomial entries of K.(s), we obtain
a complete set of Y’. ( + 1)p (n + m)p invariants for the output part.

We conclude the paper with a discussion of Forney’s echelon form". In his
article about minimal bases of rational vector spaces (Forney (1975)) he exposed
several basic concepts and results which proved to be very fruitful for a systematic
analysis of degree structures in linear system theory. In particular, he emphasized the
importance of a unique minimal basis for linear subspaces of N(s)", and proposed
the matrices in echelon form for this purpose (cf. also Eckberg (1974), Dickinson,
Morf and Kailath (1974)). Since his definition is intricate and since the details will
become important in the following, we recall Forney’s original definition (in column
form").

DvyIWOy 5.5 (Forney). (i) LetD (s) [s]’" be column proper with ordered
column indices u ... u. The ith pivot index of D(s) is the least integer such
that the matrix Dg formed by the intersection of rows ya,. ., y with the columns of
D(s) of index u has leading column coefficient matrix [Di]7 of rank i.

A different type of uniquely determined column proper basis matrices D(s) [s] had already
been proposed by V. M. Popov (1970).
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(ii) A column proper matrix D(s) [s]"" is said to be in echelon form if

(5.9) u -<’’ "<_-u..

(5.10) d/ii is monic of degree

(5.11) degda<ui foranyi and/’,//" s.t.

This definition requires a slight modification. Indeed, the following exaxnple shows
that there are submodules M c [s]" of full rank m for which there does not exist a
basis matrix in echelon form, according to the above formulation.

EXAMFLE 5.6. Let

D(s) s 3

s

The pivot indices of D (s) are 3’1 1, y2 2 and 3/3 3. If E(s) D (s) U(s), U(s)
unimodular, is any other column proper basis matrix of the module M D(s)[s]3

with ordered column degrees ul -< u2 <- u3, then necessarily ul 3, u2 3, v3 4. There-
fore the first column E1 of E(s) is a linear combination of (s, 1, s3)r and (1, s 3, s)r

with coefficients a 1, a2 , a 0 or a2 0. It follows that the first pivot index of
E(s) is yl 1 and deg evil <= 1 <3 ul, which contradicts (5.10), hence E(s) is not in
echelon form.

The existence of basis matrices in echelon form can be maintained for every
submodule M c [s]" if the definition of pivot indices in Definition 5.5 is modified
as follows:

DEFINITION 5.5(i’). The ith pivot index y is defined to be the least integer such
that the coefficient matrix D formed by the intersection of rows yl, ’, y of [D(s)]
with the columns of [D(s)] corresponding to indices <-u has full rank i.

It appears that Forney assumed this version to be equivalent to Definition 5.5(i).
However, if we apply the modified definition to Example 5.6, we obtain the new pivot
indices y 2, 3’2 3 and y3 1, and it is easily verified that the (modified) echelon
form is obtained by permuting the first two columns of D (s).

From now on we suppose pivot indices to be defined by the revised version, Definition
5.50’).

PROPOSITION 5.7. A matrix D(s)[s]"" with ordered column degrees vl <-
<-v,. is of echelon form if and only if

(5.12) [D(s)]=P and [D(s)]=

where P is a permutation matrix ofsize m m with entries 1 at (/j,/’) such thatfor k, /
_

(5.13) k </" and r, v::> <.
Proof. Suppose that D(s) is in echelon form and has pivot indices 3’1,"" ", 3’,,.

We will show that D(s) satisfies (5.12) and (5.13) with/i 3"i. Consider the 3"jth row,
] _m. dvji is monic of degree vi. (5.9) and (5.11) imply deg djk < vi for k =/+ 1, ., m.
If k < ], Vk < vi, then deg dvk < vj is a consequence of deg dvk <= Vk. If k </’, Vk vi, then
again (5.11) implies degdvk <vi. This shows that P := [D(s)] has entries Pi= 1,

_m, and Pii 0 elsewhere. Since {3"1, , 3",.} _m, P is a permutation matrix. Now
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consider the jth column of D(s), _m. dvi is monic of degree ,j. By (5.11)

(5.14) deg drj < i --< ’j for </’.

Let Di be the submatrix of [D(s)] consisting of all the columns k corresponding to
indices ’k <- ui. By (5.14) the 3"kth row has zero entries in the ]th column for k <j.
Suppose deg dij >_- ui. Then the rows 3’1, , 3"i-1, of Dj are linearly independent. By
definition of 3" we conclude that >= 3"j. Hence

degdii<ui fori=l,...,3"i-1,

i.e., [D(s)]P-1 has lower triangular form.
Finally, if Uk ’i and k </’, then Dk Dj and 3’k is the first row of this matrix

which is linearly independent of the rows 3’1, , 3"-1, while 3’i is the first row of D.
which is linearly independent of the rows 3’1, , 3", ’, 3"i-1 (cf. 5.5(i’)). This proves
(5.13) for fl 3"j,/" _m.

Conversely, assume (5.12) together with (5.13). Then D(s) is column proper and
satisfies (5.9) by assumption. Furthermore, the second equality of (5.12) implies that

di is monic of degree ,i for/" _m, and it follows from the first equality that

(5.15) deg di < ,i for all k _m, k f.
It only remains to prove (by induction) that/3k is the kth pivot index of D (s) for

k _m. Suppose this has been shown for k 1,...,/’-1,/" _m. Define D. as above
and let/’1, respectively/’2, be the first, respectively last, integer such that v. ,i ’2.
By assumption of induction, the rows/3,.. ,/3i-1 are linearly independent. Applying
(5.15) we conclude that all rows /31,"’,/3i-1 of Di have zeros in the columns/’,
/’ + 1,...,/’2. It follows that the/3ith row of Di is linearly independent of the rows
/3,...,/3j-1 and that every row of Di which is linearly independent of the rows
/31, ’,/3i-1 necessarily has some nonzero entries in the columns f, ., f2. This implies
by (5.12) that ->/3 for some r e {/’,. , 2}, hence ->/3i because of (5.13). Altogether,
we see that /3. is the first row of Dj which is linearly independent of the rows
/31," ’,/3.-1, i.e., /3j is the/’th pivot index of D(s). This completes the proof by
induction.

Proposition 5.7 yields a characterization of the echelon form in terms of leading
coefficient matrices. This criterion is easier to verify and to handle than Forney’s
original definition based on the concept of pivot indices. Nevertheless, comparing
(5.12) and (5.13) with (5.3), we see that the analogous characterization of left
Kronecker-Hermite matrices is definitely simpler. From this point of view the left
Kronecker-Hermite form seems to be preferable to the echelon form.

Corollary 5.8, below specifies the relationship between both forms. Corollary 5.9
is the module theoretic analogue of Forney’s existence and uniqueness result (cf.
Forney [1975, p. 500]) for echelon bases of rational vector spaces.

COROLLARY 5.8. (i) IfD(s) [s]" is in echelon form, then there exist a unique
left Kronecker-Hermite matrix H(s and a unique permutation matrix P of size m m
satisfying (5.13) such that D HP.

(ii) IfH(s) [s]"" is a left Kronecker-Hermite matrix, then there exists a unique
permutation matrix P such that HP is in echelon form.

COROLLARY 5.9. Every full submodule M of [s]" has a unique minimal basis
in echelon form.

The concept of the Kronecker-Hermite matrix can be generalized to rectangular
matrices. By applying this concept, the above corollary can be deduced for arbitrary
submodulesM [s] (Hinrichsen, M/inzner and Pritzel-Wolters, (1981, Thm. 3.1)).
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LINEAR NEUTRAL SYSTEMS*

DANIEL A. O’CONNOR" AND T. J. TARNS"

Abstract. A criterion is derived for approximate controllability of linear autonomous neutral functional
differential equations in the Sobolev space W21[-h, 0" :n]. Controllability conditions are based on an

abstract evolution equation representation of the system. An abstract criterion applicable to a general class
of neutral systems is obtained and for the special case of matrix systems of the form

d
--7-(x(t)-Alx(t- h )) Eox(t) +Ex(t- h) + Bu (t)
clt

this abstract criterion leads to an algebraic criterion.

Key words, linear neutral system, boundary control system, approximate controllability, spectral
completeness

1. Introduction. In this paper we derive a criterion for approximate controllability
of linear autonomous neutral functional differential equations in the Sobolev space
W21 I-h, 0" IEn]. Our approach is based on an abstract evolution equation representa-
tion of the system in the state space. We first obtain an abstract controllability criterion
for a very general class of neutral systems and then obtain a more specific, easier to
use, algebraic controllability criterion for the class of matrix neutral systems of the form

d
(x (t) A ix (t h)) Eox (t) + Elx (t h) +Bu (t)(1.1) d--

where h is a positive constant, A 1, Eo, E1 are n n matrices and B is an n m matrix.
The main result of this paper is the boundary control model of a neutral system

in . This model admits an abstract variation of constants formula for the state of
the neutral system. In 4 we obtain abstract controllability conditions directly from
this representation of the state. For matrix systems of the form (1.1) we are able to
sharpen these conditions and obtain the following result: System (1.1) is approximately
controllable in W21 I-h, 0" :n] if and only if

(1.2) a) rankc [AIA +El, B] n,

(1.3) b) rank [A(A), B] n, for all h C,

where h(h) is the characteristic matrix of (1.1).
The techniques for converting the abstract controllability conditions to conditions

(1.2)-(1.3) were developed by Manitius and Triggiani in [11] and Manitius in [14].
In these papers, the authors use an abstract representation of the state to develop
conditions for approximate controllability of retarded functional differential equations
in the state space R" LE[-h, 0: R’]. Our work extends some results of [11], [14] to
systems of neutral type.

The first investigations of state controllability for neutral systems in
W(El[-h, 0’ n] are detailed in the series of papers [2], [8], [18]. In this work, a
criterion for exact controllability is obtained for systems of type (1.1) using techniques

* Received by the editors March 3, 1981, and in final revised form March 5, 1982. This research was
supported in part by the National Science Foundation under grant nos. ECS-8017184, ENG 79-08090
and INT 7902976.

5- Department of Electrical Engineering, Clarkson College of Technology, Potsdam, New York 13676.
Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 63130.
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of the operational calculus. Although in our work we focus on approximate controlla-
bility, our results compliment and extend some results of [2], [8], [18]. Specifically,
our Corollary 5.8 extends the exact controllability condition of [8], [18] to multi-input
systems. Furthermore, for system (1.1), the relationship between the three conceptsm
spectral controllability, approximate controllability and exact controllabilitymis made
clear. The weakest concept of the three, spectral controllability, is known to hold if
and only if (1.3) holds [16]. Condition (1.2) applied to an already spectrally controllable
system yields a necessary and sufficient condition for approximate controllability. The
strongest concept, exact controllability, holds if and only if condition (1.3) holds and

n-1Brank [B, A 1B, , A n.

Notation. We take E to be the real line, C the comiglex plane and :n the space
of complex column n-vectors with norm Ix (2 TX)I/2 and inner product (x, y)= 2 Ty,
where x 7- denotes transpose and 2 denotes complex conjugate.

L2[a, b :n] is the Lebesgue space of :"-valued functions on [a, b] with norm
Ilfll=,t , a-(L If( )l= Loc[0, " _n] is the space of :"-valued functions on [0, )
whose restrictions to finite intervals are square integrable. W) [a, b’ "] is the Sobolev
space of E"-valued absolutely continuous functions on [a, b] with square integrable

/,(k)kth derivatives on [a, b]. Wk) a Wk)[_h, 0: :"], k 1 2 2.1oc[0, (:X3 is the
space of 0:n-valued absolutely continuous functions on [0, co) whose k th derivatives
are square integrable on all finite subintervals of [0, oo). Mz[-h, 0" :"] is the product
space :n L2[-h, 0" :" ].

We will denote the derivative of a function y by and the formal operation of
differentiation by D, thus for functions in W1) I-h, 0’ :n]

[Do](0) (0), e I-h, o]

and for functions f in W1) [a, b’="]

[Dtf](t) ](t), te[a,b].

We use the inner product (. 1.) in W1)

0

(1) =<(o), (0))+
3_h

and we define the norm I111 (&l&)1/.
We let L(X, Y) represent the set of all linear operators (not necessarily bounded)

mapping the Banach space X into the Banach space Y. For any operator A L(X, Y)
with domain (A)_ X, A* is its adjoint and N(A) and Im (A) are its null space and
image, respectively. For any subspace M_X, M represents its orthogonal com-
pliment.

For matrices P[A whose elements are polynomials in A, rankc P[A denotes the
rank of P[A ] as a matrix over the ring of polynomials. For matrices R (A) whose
elements are analytic functions in A, R(A.) A (dkR/dA )(A)[=., k 1, 2, ..

2. Preliminaries. Throughout most of this paper we shall consider a system of
linear neutral functional differential equations of the form

(2.1)’

N Nd
(x(t)- Agx(t-h)) , Ekx(t h)+ E(e)x(t+e) de +Bu(t),

dt =1 =o h

x(t)=&(t), e I-h, 0].
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In the above N is a positive integer, h is a fixed finite delay, 0 < h < 0, h hN >
hN-1 >’’’ > h > h0 0. The Ai’s and Ei’s are real n x n matrices, B is a real n x m
matrix and E(.) is a real n x n matrix-valued square integrable function.

The initial data & (.) is an element in W1 and the control term u (.) is an element
in L12oc[0, oo:

For compactness in notation we may rewrite (2.1)’ in terms of Stieltjes integrals
o o

d(x(t)-I_ dtz(O)x(t+O))=I_ drl(O)x(t+O)+Bu(t),
dt h h

(2.)
x(t)=4(t), I-h, 0],

where tx (’), r (.) are n n matrix functions of bounded variation, continuous from
the left, defined by

ix(0)=- AX(O), r/(0)=- E E,g(O)+ E() d,
k= k=0 h

where Xk (") is the characteristic function of the interval (-oo,-h ].
Given any initial data &, an element in W(2} and control u(.), an element in

Ll2oc[0, co: :"], a solution of system (2.1) is a locally absolutely continuous function
x(t; &, u) on I-h, oo) which satisfies (2.1) almost everywhere on [0, oo) and x(t; &, u)
& (t) for -h -< <- 0.

The solutions of (2.1) can also be viewed as W(2 -valued functions. We define
the function xt(’; O, u) on [-h, 0], called the state of system (2.1) at time =>0 as,

xt(’;,u)(O)=x(t+O;&,u), 0 [-h, 0].

The existence and uniqueness of solutions of (2.1) with initial data in W was
studied in [7]. There it was shown that under the above conditions (2.1) has a unique
solution, for all >-O, xt(’; , u) is in W, and there exist positive constants M and
K depending only on the coefficient matrices such that for ->_ 0

(2.2) Ilx,(" ;4,, u)l[ <--M{II4II + [u()l d e K’.

It was further demonstrated in [7] that if we define the solution operator T(t) by

T(t)& xt(" ;49, 0), & W(2
then’

1) The family of operators {T(t), =>0} is a strongly continuous semigroup of
bounded linear operators on W(2.

2) The infinitesimal generator A of {T(t), => 0} is given by
o o

(X’--{I/t W(21’1 W(21,, !(0)- I_ dl&(O)l/l(O’nt-I_
h h

and

AO 6 for O e @ (/[).
3) The spectrum of/[, o-(), is countably infinite and coincides with the roots

of the characteristic equation, det A(1)= 0, where the characteristic matrix A(h) is
defined by

o 0

A(A,=--A(I-I_ dtz(O, eX)-I_ drl(O,e x.
h h
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4) For all h not in the spectrum o-(A) the resolvent of A, (hi _,,)-a, is a bounded
linear operator in W(a) characterized by

x(-)(2.3) ((M-A)-a6)(O) eXA-a(h)b + e () d on I-h, 0],

where

b 4,(0) d/x (O)p (0) + h dtz (0) e () d
-h h

0 0

In the next section we will make use of the following lemma which characterizes
some smooth solutions of (2.1).

TI/(1)LEMMA 2.1 I the orcing uncion u is an element in , a.lo[0, m" ] and che
initial data is an element in W with

o o

h h

then the following remarks hold"
a) xt(" , u) is an element in W2 ]’or each >0;
b) the W2a)-valued function, xt(" &, u), is strongly continuously differentiable

on (0, c) and for > O,

d
(2.4) -7-:xt(" , u)= Dox,(" &, u).

ag

Proof. a) For 0-< t-<ha, (ha is the shortest delay), the hypotheses on u and
imply that x(t; &, u) is in W2)[-h, ha :n]. By a straightforward application of the
method of steps, (e.g. [3, Thm. 5.1]), the solution can be continued indefinitely and

iz(2) znx(t; , u) is in 2.1oc[-h, c: ].
By the definition of state, it follows that for all > 0, x,(.; , u) is in W2) and

furthermore

[Dox,(’; , u)](O)=2(t +0; &, u), 0 el-h, 0].

b) Since the En-valued function, 2(t; , u), is absolutely continuous one can
easily show that the Wa) -valued function, Doxt(" , u) is continuous in Wa) norm.

To verify statement (2.4), we show that for all > 0

(2.5) lim llX’+(" 4’ u)-xt(" ’t" U)-Dx’(" 4"
r

Expanding the square of the above norm we obtain

[Ix,+(" , u)-xt(" , U)_Dox,(. , u)[[T

[x(t +’; , u)-x(t; &, u)_A(t; , u)

If I2(t+r+O’4,u)-2(t+O’O, u)q_
h ’I"

-’(t+o;,u)
2
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The first term on the right tends to zero as -0 since x(t; 4), u) is continuously
differentiable. Moreover, since 2(t; b, u) is absolutely continuous with 2"(t; 4, u) in
L2oc[0, co. :"], we have

2I [Yc(t+’+O;’u)-Yc(t+O;&’u)-c’(t+O;qb, u)] dO
h

--I- ]Io (t+O+"g)’u)-k’(t+O;g)’U)d’l dO
h 7"

li(t +0 +’; 4, u)-i(t +0; , utl dO d

0, as z 0, for almost all t.

In the last step, we have used the fact that the expression in brackets is an
integrable function of on any finite interval.

Therefore, the limit (2.5) and hence (2.4) hold for almost all >0. Since
Dox(.; 4, u) is continuous, (2.4) must in fact hold for all > 0.

3. The abstract boundary control system and a variation o constants or-
mula. System (2.1) can be associated with the following abstract boundary control
system on W’

d
-;Tz(t) =Az(t), t>0, z(0)--b,
at

..z (t) Bu (t), >= O,

where A e L(W(21, W(2 is a closed linear operator defined by

htO Dog/, for all 0 (A) W(22)"

..L(W(2), .n), is a linear operator defined by
o 0

..0=(0)-f_ dlz(O)(O)-I_ d(O)O(O), for all 0(..) W(22).
h h

B is an n x m real matrix, the control term u(. is an element in L12oc[0, oo. n:"] and
the initial data &(. is an element in W(2).

System (3.1) is a special case of the general abstract boundary control system
defined in [5]. Equations of this form were originally used to study controllability and
optimal control problems for systems of partial differential equations with control on
the boundary, (e.g., [1], [21], [20]). We will show that solutions of (2.1) are also
solutions of the abstract boundary control problem. The state of system (2.1) will be
represented by a variation of constants formula for solutions of (3.1).

The association of control problems for functional differential equations with
problems of boundary control for partial differential equations has been known for
some time, [22]. In the case of retarded functional differential equations and some
parabolic partial differential equations with boundary control, the state evolution can
be expressed on a product space. Specifically, it is well known, [4], that for retarded
systems the semigroup (T(t), _->0), can be extended to the space M2[-h, 0" z-] and
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the evolution of the system state ;(t) expressed by the "distributed control" equation

d.
(3.2) -Tx (t) a7(t) +/u (t),

where is the infinitesimal generator of a strongly continuous semigroup, and/ is
a bounded linear operator.

Since we choose to work with neutral systems in the space Wz1) it is not possible
to write state evolution equations in the distributed control form since there is no
well-defined operator / with range in Wz1) which characterizes the effect of the
control action on the system. Thus we consider abstract evolution equations of
boundary control type.

DEFINrrION 3.1. A strong solution of the abstract boundary control system (3.1)
in _>-0 is a W1) -valued continuously differentiable function z (t) defined in -> 0 such
that z(t)e W22 for =>0, z(0) =b and (3.1) holds everywhere.

THEOREM 3.2. ff the assumptions of Lemma 2.1 are satisfied the state function
x,(. ;ok, u) is a strong solution of system (3.1).

Proof. Under the assumptions of Lemma 2.1 we have shown the function
xt(’; b, u) is strongly continuously ditterentiable and clearly x0(’; b, u)= b.

Moreover, for each > 0, x,(.; b, u) is in W2) and

d
-xt(" ;b, u)= Dox,(’ ;&, u)= Ax,(" ;b, u).

Therefore the first equation in (3.1) is satisfied. Next consider the boundary equation.
Since x(t; oh, u) is a solution of (2.1),

o o

h h

Bu(t) for almost all > 0.

This equation also holds at 0 since, by hypothesis,
0 0

h h

thus for almost all _-> 0

(3.3) Z[x,(. ;, u)] 8u(t).

However it follows from the smoothness assumptions that both sides of (3.3) are
continuous and therefore (3.3) holds for all _-> 0. All requirements of a strong solution
being met, the theorem is proved.

Given that under smoothness assumptions x(.; b, u) is a solution to (3.1) we will
now construct a representation of x(. ;qg, u) in terms of the semigroup {T(t), _->0}.
To this end we make the following definition.

DEFINITION 3.3. The auxiliary boundary operator B, associated with system (3.1)
is a bounded linear mapping from :" into Wa) defined by

(au)(O)=eXA-(h)Bu, 0 e[-h, 0],

where h is in the resolvent of A, p (A) C- r(A) and h(h) is the characteristic matrix
of (2.1).
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LEMMA 3.4. The range oflx lies in W(22) and for all

.,(/x) B.

Proof. It is obvious that t, is in W) for all u e". That (t,)= Bt, can be
shown by straightforward calculation.

THEOREM 3.5. Let the control u (.) be twice continuously differentiaSle, the initial
data (. be an element in Vifl2) and

o

h h

Then the state xt(" , u) is given by the following variation of constants formula"

(3.4) x(. ;4,, u)= r(t) +(I-) r(t-,)u(,) d,.

Pro@ First we shall construct a solution for the abstract boundary control system
(3.1). Assume that the solution z(t) can be expressed by

z (t) v (t) +/,u (t), ->_ 0

where u (.) is the control term and v (.) is some W(z -valued continuously differentiable
function with v(t) W(22 for each t.

Then the following equations must be satisfied:

d
-[v (t) +:u (t)] A[v (t) +:,u (t)],

(3.5) [v (t) +/xu (t)] Bu (t),

v(O)+Bxu(O) =0.
It follows from Lemma 3.4 that equations (3.5) are equivalent to the following system
of equations for v (.)"

d-V(t) Av(t)+ Alu(t)-l-u(t)
(3.6) ..v(t) =0,

v(0) 4, -Bu(0).
Since the infinitesimal generator A of the semigroup (T(t), _->0) is characterized by

fi,O DoO for e W(22) such that ..0 0,

(3.6) is equivalent to

d---v(t) v(t) + A:xu(t)-Bx-u(t)
(3.7)

v(0) -u(0).

By Lemma 3.3 the range of/x is contained in the domain of A, hence by the
closed graph theorem A/x is a bounded linear operator, in fact for all v e =’

A/u /.
By our smoothness hypothesis on u (.) both A/xu (’) and/x du (.)/dt are continuously
differentiable.
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System (3.7) is a well-posed ordinary differential equation in W(z1) with con-
tinuously differentiable forcing term and, moreover, the initial data u(0) is an element
in @ (fi), since by hypothesis

-/,u(O) W:z) and ..[b-/,u(O)]= b-Bu(O)=O.
Under these assumptions it is well known [17], that (3.7) admits a unique

continuously differentiable solution which is expressed by the following variation of
constants formula:

Io (v(t)= T(t)[4)-/xu(0)]+ T(t-s) A/xu() XdscU() d.

Therefore a solution of system (3.1) is given by

(3.8) z(t) T(t)[ -/xu(0)]+ T(t-) ,/xu()-/x--u(sc) de +BaH(t).

The derivative term in the integrand of (3.8) may be eliminated by the abstract
integration by parts formula [9]. Therefore under the hypothesis that u is twice
continuously differentiable (3.8) may be rewritten,

z(t) T(t)4) +(AI-) f T(t-)Ju(lj) dlj.
o

Under the stated assumptions on u and b, an application of Theorem 3.2 shows
that the state x,(.; d, u) of system (2.1) satisfies the abstract boundary control problem
and therefore can be represented by (3.4).

The representation of xt(" ;4), u) has so far been valid only under smoothness
assumptions on u(.) and 4)(’). However, the variation of constants formula (3.4) is
well defined for all 4 in W() and all u in Loc[0, c. :’] if we interpret the integral
on the right as a Bochner integral. In the following theorem we prove that (3.4) is
indeed a valid representation of xt(.; b, u) for all b in W and u in L2o[0, " :’].

THEOREM 3.6. For all u Ll2oc[0, : :"*] and c W2

xt(" &, u)= T(t)& +(hi-A) Io T(t-se)’u() d, >-0.

Proofi By linearity, it is sutticient to show that for all u

x(. O, u)=(AI-A) Io T(t-)lxu(j) d, >-O.

For any fixed >- 0, with u an element in Loc[0, c: E’], we can find a sequence
of twice continuously differentiable Em-valued functions with compact support on [0, t]
such that as k --),

By Theorem 3.5, for each k >= 0

(3.9) x,(. ;0, Yk)= (hi-fi.) T(t- :)/xyk (s) d.

Since h O(fi-), we can operate on both sides of (3.9) to obtain

(hI-A)-lxt( ;0, yk)= T(t- sc)/xy(sc) dsC.
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The mapping u(.) ito T(t-$)Jxu()d, which takes Le[0, t" :’] into W(21), is easily
shown to be continuous and hence

On the other hand the mapping of L2[O, t’ IFm] into W(z1) defined by

u(. )-, x,(. O, u)

is continuous by (2.2). Therefore since Yk ’’)

lim xt(’; 0, Yk)=Xt(’; 0, U).

By continuity of (M-A)-, this implies,

T(t- :)/xu (5) dsc (AI-A)-x,(’ 0, u),

hence

T(t-)xu() d

and

xt(" , u)= (hi-fi,) Io T(t-)xu() d,

as required.

Remarks on the variation of constants formula (3.4). (i) The variation of con-
stants formula (3.4) is independent of the choice of h e O (A).

(ii) We cannot differentiate (3.4) to obtain an abstract differential equation for
the state xt(" ;, u) since an unbounded operator (hI-) operates on the integral
term. However we can associate the state xt(’; 4, u) with the differential equation in
w

d
__d--Y (t)=Ay(t)+Bxu(t), >0,

(3.10)
y (0) (-/i)-

and the output equation xt(.;c[,u)=(hI-)y(t). That is, if we define y(t)---
(xt-i)-x,( ;6, u),

(3.11) y(t)= T(t)(hI-)-4 + T(t-)xu() d

then if the control term u(.) is sufficiently smo6lh, (3.11) can be differentiated to

yield (3.10).
(iii) In the retarded case, (A 0, k 1,..., N), it is well known, [4], that the

state x(’;4,u) can be represented by an element (t) of the product space
M2[-h, O: n] [F X L2[-h, O: IF],

2(t) (x(t; b, u), xt(’; 6, u)).



CON"[’ROLLABILITY OF LINEAR NEUTRAL SYSTEMS 315

Moreover (t) satisfies the variation of constants formula in M2[-h, O: [E

(3.12) Z(t)= (t)((0), )+ Io (t-)u() d,

where {(t), t_->O} is the semigroup extension of {T(t), t->O} on M2[-h, O"
The infinitesimal generator , of {f’(t), _-> O} is defined by

A(4, 0) ( Eg(-h,)+ E(O)O(O)dO,(O(
k=0 h

for all elements in (A)={(0, 4,)eMd-h, 0:"]10e w), 0x(0)=0}. B is the
bounded linear operation from :m into M2[-h, 0: :"] defined by

u (Uu, o1.
The formula (3.12) can be seen to be the extension of (3.4) to the space

Mz[-h, 0: z]. Indeed, let i be the canonical injection of W2a into mz[-h, O" [E"],

i() ( (0), (.)).

Then it is easy to show that

(3.13) r(t)i() i(T(t)&)

(3.14)

(3.15) (XI-fi.)-l/u i(xu)
Recall that the state xt(’; 0, u) in W(21) satisfies,

for e W(21),
for e (A),
for u

xt(" ;, u)= T(t) + (,I-d) Io T(t-)xu() d.

If we embed xt(’; &, u) into M2[-h, 0: ="] using (3.13), (3.14) we obtain,

(t)=(x,(.;,u))=(T(t)g,)+((x-) T(t-)B,u()a

(t)i(O)+(hI-A) o (t-)i(au()) d.

Since by (3.15) i(hu()) is in the domain of the term (hI-) can be brought
inside the integral to yield

(t)= (t)i()+ o (hI-)(t-)i(u()) d.

Since a semigroup commutes with its generator and by (3.15) we obtain

;(t) (t)(6)+ (t-)u().
Thus, in the retarded case, the variation of constants formula (3.4) is a restriction

of the well-known variation of constants formula (3.12) for retarded systems in
M2[-h, 0:

4. Abstract operator conditions tor state controllability. We now apply the results
of the previous sections to the function space controllability problem in W) for the
linear neutral control system (2.1).
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DEFINITION 4.1. System (2.1) is said to be approximately controllable if and only
if for every , in W(21) and all e > 0, there exists a time tl > 0 (t possibly depending
on , 4, e), and a control u (.) an element in LEl0, l: [Em], such that

As usual we can restate this definition in terms of properties of attainable states.
DEFINITION 4.2. The attainable states at time of system (2.1) is the linear

manifold Kt in W(2) defined by

Kt {x,(" ;0, u)[u LZ[0, t: :’]}.

By (3.4) we can express Kt as

Io
It is easily seen that K,, = K, if t2 > tl and we define

Koo=UK.
t>o

A simple argument shows that system (2.1) is approximately controllable if and only
if Koo is dense in W(2). Necessary and sufficient conditions for density of K can now
be found by applying a general characterization ofK for boundary control systems
found in [5]. We thus obtain the following result.

THEOREM 4.1. System (2.1) is approximately controllable if and only if for all

(4.1) 4(0) + A e (0) dO A-(A)B 0, for all
h

implies =- O.
Proof. Koo is dense in W(21) if and only if the orthogonal complementK is the

trivial subspace {0}. A function inK is characterized by

( (h -fi) T(t-$)yxu() d =0

for all >0 and all infinitely differentiable E"-valued functions u(.) on [0, t] with
u(0) 0.

For >0, let f()a__ u(t-), tj [0, t]. Using the abstract integration by parts
formula [9], the above condition can be replaced by the following condition: is in
K- if and only if

for all > 0 and all infinitely ditterentiable functions f on [0, t] such that f(t) O.
Another integration by parts allows us to write (4.2) in the form,

(4.3)
I0’ ({/*T*(t)-/x* I: T*(r)dr-*}b/(,)) d,

+ (4110’ T()dMxf(t)+/xf(t)) 0.
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Expression (4.3) can hold for all >0, all infinitely differentiable f(.) on [0, t] such
that f(t)= 0 if and only if for all => 0

(4.4) {/*T*()-X/* r*(rlr-* =0.

If we take the Laplace transform of (4.4) we obtain

(4.5) {(I-*)-- (I-*)-+} =0

for all with suciently large real part, and by analytic continuation we can extend
(4.5) to all p().

On the other hand (4.5) implies (4.3) by the uniqueness of the Laplace transform;
thus is an element inK if and only if (4.5) is satisfied.

A straightforward calculation (see Appendix) shows that

( )(M )- .
Taking adjoints, this implies that

(. v,.)* (wz -:i*)- B -*.

Thus for all A p (A), (4.5) can be rewritten

for all tz p (,).

The operator/ is characterized by (see Appendix)
0

/$ BTA-r(t){$(O) + I_
h

Therefore K if and only if

B rA-r() 4,(0) + e (0) dO 0
h

for all ix e O (A).

Since approximate controllability will hold if and only if K is the trivial subspace
and taking transposes, the theorem is proved.

Remarks on Condition (4.1).
(1) Approximate controllability condition (4.1) is similar to a condition derived

in [11] for retarded systems in the space M2[-h, 0: E"]. Moreover, it can be shown
[15], that for retarded systems, approximate controllability in the state spaces W(21)
and M2[-h, 0: :"] are equivalent.

(2) If in addition to approximate controllability, the attainable set Koo is closed
in W2) the system is said to be exactly controllable. That is, any state in W21 can
be reached exactly from the zero state in finite time. For neutral systems of the
following type:

(4.6)
d
-;7Ix (t) A ix (t h)] Eox (t) +Elx (t h) +Bu (t),

closedness of the attainable set and exact controllability in W(21) has been studied [2],
[8], [18]. It is shown in [8], that system (4.6) has a closed attainable set if the pair
(A 1, B) is controllable and that (A 1, B) being controllable is a necessary condition
for exact controllability in W(21). Therefore necessary and sufficient conditions for (4.6)
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to be exactly controllable are
i) (A 1, B) is a controllable pair,
ii) (4.6) is approximately controllable.
(3) Conditions similar to (4.1) for approximate controllability of neutral systems

with delay in control can be obtained [15].
(4) Our interest lies in systems with real coefficients. However, since we must

make extensive use of the spectrum and resolvent which are complex-valued, we
developed our results in the complex space W(21) I-h, 0: :"] rather than in the corre-
sponding real space. This in no way limits the applicability of our results to real
systems. Indeed the following corollary is an obvious consequence of Theorem 4.1.

COROLLARY 4.2. System (2.1) is approximately controllable (with L2oc[0,
controls) in the real linear space W(21) [-h, O" "] ifand only iffor all in W(2
(4.1) implies O.

5. Algebraic conditions for approximate controllability. In this section we will
limit our attention to neutral systems with a single point delay in the state:

d
dt
--(x (t) A ix (t h )) Eox (t) +Elx (t h) +Bu (t),

x (t) (t), e I-h, 0].

We will develop necessary and sufficient conditions for approximate controllability of
(5.1) based on the abstract controllability condition (4.1). This will extend the results
of [11], [14] for retarded systems to systems of neutral type.

From (4.1) we have that (5.1) is approximately controllable if and only if there
is no nonzero e W(1 such that

/(0)+h e (0) dO A-(A)B =0 for all h p(A),
h

where

A(A hi -A1h e -xa -Eo-E1 e -xa.
It is convenient to express this condition in the well-known notation of [11]. First

we define

FLT [0, h ] {q (h)lq (h) is an n 1 entire function which is the
finite Laplace transform of an L2[0, h" 1"] function}.

Then system (5.1) is approximately controllable if and only if for x :", q FLT [0, h

[x + aq(a)]+/--(,) 0

for all h e p (A) implies x O, q- O.
Equivalently, approximate controllability holds if and only if for x e:", q e

FLT [0, h]

Ix + hq(a)]T adj A(A)B 0

for all h C implies x O, q =-O.
It is convenient to expand adj A(A)B in powers of e -xh,

.-1

adj A(A )B Y. P(A )(e-X)B.
k=O
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Here, Pk ()t) are n x n matrix polynomials of degree at most (n 1). We can also write,

adj A(A)B P[A ]V(e-Xh),
where P[A [P0(A)B, , P,_I(A)B] is an n x mn polynomial matrix and g(e -xh) is
the mn x m matrix

V(e -xh) (Ira, Ime -xh, ,Im e-(n-1)hh)r Im= m x m identity.

Adopting this further notation, we see that system (5.1) is approximately controllable
if and only if for all x :n, q FLT [0, h

(5.2) [x +Aq(A)]rP[A]V(e-;th)----O for all eC

implies x 0, q --0.
The matrix P[A plays an important role in determining the structural properties

of system (5.1). Properties of P[A] determine the following necessary conditions for
approximate controllability.

PROPOSITION 5.1. A necessary condition for approximate controllability is that
rankc P[A n.

This result is proved in [11] for retarded systems and using (5.2) the result is
easily extended to neutral systems. Next we will state two conditions for rankc P[A n
which are straightforward generalizations of [11, Thm. 3.4 and Thm. 3.6] to (5.1).

PROPOSITION 5.2. i) rankc P[A n is equivalent to

rank [(h 11 -Eo)-IB, ((h I -Eo)-a(Ex + hA 1))(hI -Eo)-B, ,
((h 1I- E0)-X(E1 + h 1A 1))"-1 (h 1I- E0)-IB n

for some A not an eigenvalue of Eo.
ii) A necessary condition for rankc P[A n is that rankc [hA +E, B n.
Finding easily computable sufficient conditions for approximate controllability

based on criterion (5.2) seems to be a difficult problem. In order to obtain a sufficient
condition we will not work with (5.2) but consider a related concept of controllability.

We say that system (5.1) is spectrally controllable if and only if for each A tr(A)
the projection of (5.1) onto the generalized eigenspace of A, /, (e.g., [6]), is a
completely controllable finite dimensional system. As is well known [16],’(5.1) will
be spectrally controllable if and only if for each

(5.3) rank [A(A), B] n.

Spectral controllability is in general a weaker concept than approximate controllability.
However the two concepts are equivalent in the case where the system of eigen-
projections associated with (5.1) is complete in W(2x).

DEFINITION 5.3. System (5.1) is spectrally complete in Wa) if

span {:/x IA e tr(A)} is a dense subset of W(21),

where A/x U,_>_0 N[(A -)n] is the generalized eigenspace of A.
Since spectral controllability implies that every element in span {///x IA e tr (A)} can

be reached, spectral controllability and spectral completeness imply that the set of
attainable states is dense in W(2x), hence the system is approximately controllable.

Conditions for spectral completeness of retarded systems in various spaces have
been obtained in [10], [12], [13]. We now give some conditions for spectral complete-
ness of neutral systems in W(2).
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THEOREM 5.4. System (2.1) is spectrally complete if and only if there is no 4 in
W2*), qb 0 such that

0 T

is entire.

Pro@ The set (A) is a countable set o points whose only limit point is at m.
We can order the elements o () to obtain a sequence {1}e. Each eigenvalue
is a root o det ()= 0 o order m.

We will now prove the theorem in two steps.
Step 1. System (2.1) is spectrally complete if and only if

(6Ok)=O fork=l, 2,...

implies & 0, where 0 is an element of the generalized eigenspace of Xk,.
The elements Ok are characterized by

Okml(o ),

T Twhere (, ,. .,) isanelementofN(), andH isthe (nm x nine)matrix

() (() (-()
(m -1)

0 (
0 0 ..

0 ()

See or example [6, Chapt. 7].
If we define the I x n vector F(1),

F(1)= (0)+ I e (0) dO
h

then it is easy to show that for all k

Therefore system (2.1) is spectrally complete if and only if

(5.4) "’ ()(),+, 0 fo, ,, 2,...
replies @ 0.

Writing (5.4) in matrix form, we have

[ 1 F(-(I)] and 0 =0.O F(I),F((),
(m- 1)

Since can be any element in N(), system (2.1) is spectrally complete if and only
if there is no nonzero in W such that the sequence of (nm x 1) vectors {0}e
satisfies

(5.5 0 e (N(/I or , ,....
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Step 2. We will show that (5.5) holds if and only if F(A)A-I(A) is entire.
If F(A)A-I(A) is entire, then there exists a 1 n vector function G(A), whose

elements are entire functions and

(5.6) for all X e C.

If we evaluate the first mk coefficients of the Taylor series expansion of (5.6) about
h hk we obtain for/’ 1, 2,. ., m, k 1, 2,.

I. i--o j-i)!G(i-i(h) . )

hence for k 1, 2,...

el= [G(X), G((X), 1 G(._ (X)]/_)(m 1)!

Therefore

O[ e Im (/-kT) (N(/-)k)) +/- for k 1, 2,. ..
Alternatively, suppose (5.5) holds; we will show that F(A)A-I(A) is entire. We

know that F(A)A-I(h) is a lxn vector-valued function on C whose elements are
analytic in p(A) and have a possibly infinite number of poles at h h, k 1, 2,....
We claim that if (5.5) holds, the zeros of F(A) will cancel the poles of A-(A) and
therefore F(h)A-(A) will be entire. More precisely, for each k we will show that if
the Laurent expansion of A-(A) at h hk is given by

where rk - ink, Ui, Qi are n x n constant matrices, then

(5.7) F(h)[U(h hk)rk-1 + U2(A h)rk-2 +... + Ur] (h hk)rQ (h),

where Q(A) is a 1 x n vector-valued function whose elements are all entire.
Clearly the entire function

(5.8) F(A)[UI(A -h)-+ Uz(h -hk)r-z +’’ + Ur,,]

will satisfy (5.7) if the first r coefficients in the Taylor series expansion of (5.8) are
zero. That is if for ] 1, 2,. , r 1

1 d
(5.9) . dhi[F(h)(U(h --hk)- +’’ "+ U)]

Expression (5.9) may be written as the matrix equation,

(5.o) o[0 =o,
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where
nrk

U U_ U-r
0 U U

0 0 U
0 0 0

0 0 0
n(mt, --rk)

B,y ,repeated differentiation of the identity, A(A)A(A)-I=L it is easily seen that
HkQk 0, k 1, 2, . Therefore,

Im ((k) cN(/-k) and (Im ((k))- = (N(/-k))-.
By the assumption (5.5),

0k e (N(/-k)) +/- c (Im ((k)) +/- for k 1, 2,...
therefore

TOkQky=O for allyErk

and thus (5.10) holds and F(A)A-I(A) is entire; the theorem is proved.
THEOREM 5.5. System (5.1) is spectrally complete if and only if det (AA1 + El) is

not identically zero.

Proof. First, suppose that det (AAI+E1) is not identically zero and G(A)=
[dp(O)+;hAeX(b(O)dO]rA-l(X) is entire. We will show that &---0; therefore by
Theorem 5.4 the system is spectrally complete.

Let F()t) [(0) +0h 1 eA((O) dolT; we denote the elements of G(A) and F(A)
by g.(A) and f.(A), respectively. Let c be a real number such that the set, {A Idet (I-
A e -xh) 0}, lies in the open half plane Re A < a (for example, let a > 1/h In (IA *(A 1)1),
where A *(A 1) is the eigenvalue of A with largest modulus).

Next, we obtain growth estimates on G and F. Let A o + ioo, where o and o) are
real numbers.

(1) Estimate on F.
(la) For o) 0, o > 0, o large

(lb) For o a, ]o91 large

[/,(, / i-,)1- o([ [)
(lc) For o) 0, o > 0, o large

If,. (-o)1 .o (,.,

(2) Estimate on G:
(2a) For o) 0, o > 0, o large

as ooo.

(5.11)

ohe as ooo.
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Since (A(v)/v)+I as v +oo, then [A(v)/v]-1 is bounded as v oo. The estimate (la)
and (5.11) give the estimate

[gi(o)[ 0(0 -1/2) as o oo.

(2b) For -a, ]wl large

(5.12) G(a + iw)=
I_ -}g a + io

One has that

A(a +ioo)_(i_A e_(a+io)h)...), 0 as
a+iw

Since det (I-A e -(+g’)) is uniformly bounded away from zero for
det [(a +ioo)/(a +iw)] is bounded away from zero as [wl+. The elements of
A(a+ioo)/(a+iw) are bounded for large [wl, therefore [A(a +iw)/(a+ioo)]-1 is
bounded as ]o] +c. The estimate (lb) and (5.12) yield the estimate

Igi(a+iw)[=O(1) as w oo.

(2c) For co 0, o > 0, o large

(5.13) G(-o) e-hF( -oho)[e A(-o)]-

Since det (A lh + El) is not identically zero we can write
-oh -ohe A(-o) (oA1-E1)[I-(oA1-E1)-I(oI +Eo) e ].

The elements of (oA1-El)- are rational functions so the last term in the expression
tends to zero as o oo. Hence, the inverse of the bracketed expression is bounded.
The inverse of (oA-E1) is O(e) for all e >0 and in view of the estimate (lc) and
(5.13) we obtain

Igi(-o)l-O(e) for all e >0, as o

We define the function G,, G(A)= G(A +a), for all A C. Let gj(A) denote an
element of G (A).

Clearly, G (A) is entire and satisfies the estimates (2a), (2c) and
(2b)’ For o 0, Io 1 large

]g,(,o)l o(1) as

The estimates, (2a), (2b)’, (2c) and an application o the Phragmen-Lindelof
theorem, [10], [19], imply that G(a) is uniformly bounded in C. Since, by hypothesis,
G is entire, it ollows from Liouville’s theorem that G is a constant. Moreover, since
each element in G, (a) satisfies the estimate (2a), this constant must be zero.

Thus, for a e C,

4, (0) + he (O)dO X-(h) G(A) G(h -a) 0.
h

This implies, that for all h 6 p (A),

(5.14) 4(0)+ , e (0) dO =0,
h

and by analytic continuation (5.14) can be shown to hold for all , e {2.
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Uniqueness of the Laplace transform and (5.14) imply that 4 0.
On the other hand, suppose that det (AA + El)--0. Then there exists an n x 1

polynomial vector p(A), not identically zero, such that,

(5.15) pr(X)(AX +E)---- 0.

Let qr (A)__apr(A)(AI-Eo). We can find a function 41 in W1}, b not identically
zero, such that,

4(0) + e"d(O) dO q(h , e (0) dO,
h h

where g is an element in L2[-h, 0: :]. This follows from [11, Lemma 3.3] by taking
4(0) 0 with playing the role of [11, p. 609].

If Re A > 3, for some 3 > 0 sufficiently large, we can write

A-(, (,I-Eo)-[I-(A I, +E)(,I-Eo)- e-Xh]-1.
In fact, picking 3 such that,

and

we can write

det [hi Eo] 0 for Re h _>-/3,

I(AA +E)(hI-Eo)-e-Xh]<l for Reh _->fl,

A-l(,)= (hI-Eo)- E [(Ah +E)(hI-Eo)- e-Xh]
i=0

for Re , >= 3.
Therefore, in the half plane Re -> 3

(0)+ X e ,(0) dO A-*(X)
h

(5.16) I e (0) d p (I) 2 [(AI +E)(M-Eo)- e
h i=0

=(I;,leXg(O’ d4pr(A,,
where in the last step we used (5.15).

To conclude the argument we extend the identity

(5.17) (0) + I e (0) dO -(I) I eXg(0) d pr(A),
h

to all of C.
Each element of the 1 x n function

T 0

[ xd dO] (i e (O)dO)p (A)(1)d(h) (0)+ h e (0) h XOg r

h h

is entire, and in view of (5.16), each element is zero in the half plane Re h >. Since
a nonzero entire function can have only isolated zeros this implies that d(h) 0. Post
multiplying d(h) by -(h) implies that (5.17) holds for all h p() and by analytic
continuation we can extend (5.17) to all of C.
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Identity (5.17) and Theorem 5.4 imply that the system is not spectrally complete.
COROLLARY 5.6. A sufficient condition for approximate controllability of system

(5.1) is
(a) det (hA +El) is not identically zero,
(b) rank (A(A), B] n, for all h tr().
Proof. The corollary follows immediately from Theorem 5.5 and the remarks

following Proposition 5.2.
The requirements of Corollary 5.6 are quite restrictive since many systems of

interest are not spectrally complete. Moreover, it is not required that a system be
spectrally complete for spectral controllability and approximate controllability to be
equivalent.

In his theory of controllability for retarded systems in ME[-h, 0: :n] Manitius
[14] showed that under certain reasonable conditions a system that is not spectrally
complete may be related by feedback to a spectrally complete system. Moreover, he
demonstrated that both spectral controllability and approximate controllability are
invariant under feedback. Adopting these ideas to system (5.1) we obtain the following
necessary and sufficient conditions for approximate controllability.

THEOREM 5.7. System (5.1) is approximately controllable if and only if
(a) rankc [Ah +E, B n,
(b) rank [A(A), B n, for all h tr().
Proof. Sufficiency. First we show there is a m n matrix K such that

rankc [A h +E +BK n.

To see this, suppose there is no m n matrix K such that (5.18) holds. Then we
can find an n 1 vector p (h) whose elements are polynomials p (h) # 0 and for all h C

pT(A)[A xX +E +BK] 0

for any m x n matrix K. In particular if K 0,n,

(5.19) pT(h)[Ah +El]=0 for all h C.

Therefore, for all m x n matrices K,

pr (A )BK 0 for all h e C.

Let B [bl, b2, bm] where bj are the column vectors of B and for/" 1, 2, ., m

Then forf- 1, 2,..., m,

0 0 0-

0 0 0
1 1 1
0 0 0

0 0 0

]th row.

P
r(A)BKi 0 for all h e C;

(5.20) hence,
P
r(A)B 0 for all h e C.

But conditions (5.19), (5.20), imply rankc [hA + EI, B] < rt, contradicting hypothesis
(a).
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Next, let K be an m n matrix such that (5.18) holds. Consider the neutral system

(t)=Al(t-h)+Eox(t)+(E1 +BK)x(t-h)+Bv(t).

In view of (5.18), system (5.21) is spectrally complete and. hence approximately
controllable if

rank [A(A -BK e -xh, B] n

for all
However it is easy to see that (5.22) holds if and only if

rank [A(h), B] n

for all tr(A). Thus, in view of hypothesis (b), system (5.21) is approximately
controllable.

Finally, we show that approximate controllability of (5.21) implies approximate
2controllability of (5.1). Indeed, let x, (.; , u), xt (’; , u) be the state trajectories of

systems (5.1) and (5.21), respectively. For any W(21) and e >0, there is a time
> 0 and control w L210, t" :"] such that

(. ;0,

But if we define the function u

then

u(t) Kx2(t h; O, u) + w(t), t>=O

xl(t; O, u) x2(t; O, w) and [Ix, (. O, u)-tPll<e,

therefore system (5.1) is approximately controllable.
Necessity. Approximate controllability is a stronger concept than spectral con-

trollability [16], therefore (b) is clearly necessary. Propositions 5.1 and 5.2 imply that
(a) is also a necessary condition.

COROLLARY 5.8. System (5.1) is exactly controllable if and only if
(a) rank [B, AB,. ., A7-1B n,
(b) rank [A(A), B ] n, for all h
Proof. Sufficiency. By [8, Lemma 4.1] condition (a) implies rankc P[A n. Thus,

by our Proposition 5.2, the conditions of Theorem 5.7 are satisfied and hence, the
system is approximately controllable. By Remark (2) after Theorem 4.1, the system
is exactly controllable.

Necessity. Clearly (b) is necessary for exact controllability. The necessity of (a)
was demonstrated in [8, Proposition 2.2].

6. Examples. We will now illustrate the controllability criteria with the following
examples.

(i) Consider the scalar neutral system

(6.1)
d d d
dtT, x(t)= bi-x(t-h)+ ai--x(t)+u(t),=0 =0
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where ai, bi are real constants. The system can be put in matrix form (5.1) with

-o o o

A1 Eo
0 0 0 1

ao al an-1

0 0

0!El= B=
0 0

o bl bn-1

It is easy to check that rank IX(h), B n for all X C. Therefore the system is spectrally
controllable. However, when we compute the matrix P[X ],

1 0 0

X 0 0

X "-2 0 0

X "- 0 0

we see that rankc P[X < n for n > 1 and thus, by Proposition 5.1, the system is not
approximately controllable.

(ii) Consider the matrix neutral system

2(t)= 0 0 2(t-h)+ 1 x(t)+ 1 0 1 x(t-h)+ u(t).
0 0 0 0 1 1

If we compute the matrix P[X

0 0 (X + 1)( 1) 0 -( + 1) ( + 1)-|
P[X (X 1)2 0 0 (X + 1)(X 1) 1 (X + 1) ,

0 (X 1)2 (X 1) (X 1) 1 -(X + 1)

then since the 3 3 minor

o +
(X -1)2 (X -1) 1

has determinant

(X + 1)2(X 1) # 0,

rankc P[X 3 and the necessary condition for approximate controllability is met.
By Proposition 5.2 and Theorem 5.7 a sufficient condition for approximate

controllability is that

X+e-x-I -e -xh(x+l) 0 0 01
rank --e -xh X 1 --e -xh (x + 1) 1 Ol 3

0 --e-Xh --e-Xh--1 0 1

for all X C.
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By checking the 3 x 3 minors we see that rank [A(A *), B < 3 for some , * C if
and only if

A*+e-X*"-l=0 and A*+I=0.

This pair of equations has a solution only if h In 2. Thus, if the delay h is equal to
In 2 the system is not approximately controllable (or spectrally controllable). On the
other hand, if h # In 2 the system is approximately controllable. In fact since

rank [B, A1B, AB 3,

it follows from Corollary 5.8 that the system is exactly controllable.

Appendix. We state below the pro.ofs of results used in Theorem 4.1
(A1) (tx-A)(hI-.)-,=a-Be.
For any u e :",/xu -/u is in (A). We can therefore write,

x
Operating on both sides of the above expression with the resolvent (AI-)- yields
the identity (A1).

(A2) The ad]oint of1. Let u z-,, 0 e Wx) and consider
0

([/xu) (0(0)’ A-x(A)Bu)+ I_ ((0(0), eXA-X(X)Bu) dO
h

< I___ eXb >nrA-7"(X)0(0)+ BT"A-T(X)X (O) dO, u
h

Thus

/*0 =BT"A-r(.) (0)+ . e (0) dO
h
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DISCRETE-TIME OBSERVERS AND PARAMETER DETERMINATION
FOR DISTRIBUTED PARAMETER SYSTEMS

WITH DISCRETE-TIME INPUT-OUTPUT DATA*

TOSHIHIRO KOBAYASHI"

Abstract. The aim of this paper is to study the estimation of unknown states and unknown input
distribution functions for distributed parameter systems with discrete-time input-output data. First we
construct finite dimensional discrete-time state observers to estimate unknown states and give the error
estimates for distributed parameter systems with unknown inputs. Next we consider the determination of
unknown input distribution functions using these estimated states. We discuss the relationship between
observability and identifiability. The problem of determination of unknown functions is not well posed in
general even if the distributed parameter systems are identifiable. We present and discuss a feasible
approximation method by regularization which gives a constructive procedure to obtain approximately a
true input distribution function. We also investigate limit properties of approximate solutions as the number
of sampling periods tends to +o.

Key words, distributed parameter system, discrete-time observer, parameter determination, identifiabil-
ity, well-posed approximation method

1. Introduction. The construction of a mathematical model for a system using
input-output data is a very important problem from a theoretical and practical point
of view. Even if system equations have been postulated, there still remains an equally
important problem of determining initial states and system parameters from the
input-output data.

Many control components deliver their outputs in discrete, or sampled-data, form.
Whenever a digital computer constitutes a part of a control system, the continuous
signal must be discretized in order to be digestible by the computer. Discrete-time
control theory is of great interest because of its application in computer control. Thus
it is very important to determine system states and system parameters from discrete-
time input-output data. These problems are closely related to system observability
and parameter identifiability. Discrete-time observability and discrete-time
identifiability are investigated in [4], [5] for a class of distributed parameter systems.

In [6] the authors study the estimation of unknown states and unknown parameters
for distributed parameter systems with continuous-time input-output data. They
construct finite dimensional continuous-time observers to estimate unknown states
and present a feasible approximation method by regularization to determine unknown
input distribution functions. The theory presented in this paper parallels the theory
of [6]. In continuous-time observer theory we cannot construct a finite-time settling
observer, because it is impossible to set any characteristic value of the observer -c.
In discrete-time observer theory, however, we can construct a finite-time settling
observer by setting all the characteristic values of the observer 0. This is an essential
difference between a continuous-time observer and a discrete-time observer.

The problem of continuous-time identification of parameters can be formulated
as that of minimizing a functional on a finite time interval. A discrete-time distributed
parameter system is never identifiable from only finitely many observations. Thus the
problem of discrete-time identifications of parameters must be formulated as that of
minimizing a functional on an infinite time interval. This imposes several restrictions
on system operators. From a practical point of view, we should determine parameters

* Received by the editors November 25, 1980, and in revised form January 26, 1982.
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from only finitely many observations. Therefore, in the case of discrete-time
identification of parameters, it is important to discuss limit properties of approximate
solutions as the number of sampling periods tends to +oo.

In this paper we consider distributed parameter systems with unknown initial
states and unknown functions in the case of discrete-time observations. An initial
state as well as an unknown function cannot be determined uniquely from the
input-output data. Therefore we first construct finite-dimensional discrete-time observ-
ers using only discrete-time measurement data to estimate the system states at
sampling times for the distributed parameter systems with unknown input sources.
Next we consider the determination of unknown input distribution functions using
these estimated states. We investigate the relationship between observability and
identifiability for a more general class of systems than the system treated in [5]. We
present and discuss a feasible approximation method to determine approximately
unknown functions using discrete-time input-output data. We also investigate limit
properties of approximate solutions as a number of intervals tends to +oo.

2. System description. We consider the system described by the first-order
evolution equation on a Hilbert space H

du(t)
=Au(t)+F(t), t>0,

(2.1) dt

u(0) uo,

where u(t) is the system state vector and F e LI(0, oo; H) is the unknown input vector.
The operator A is the infinitesimal generator of a strongly continuous semigroup U(t)
on H. The unknown initial state u0 is assumed to be in H. Then there exists the unique
mild solution u(t) of the system (2.1) such that

(2.2) u(t)= U(t)Uo+ U(t-s)F(s) ds

and u C(0, ; H) ([1, p. 31]).
We consider the following discrete-time outputs

(2.3) z =Mu(kT), k =0, 1,. .,
where T is a sampling period and M is a bounded linear operator from H to the
observation space E (E being a Hilbert space). To assume M to be bounded may be
restrictive, because the boundary or point observations in H are not bounded in
general. However using the abstract formulation ([1, Chap. 8]) the theory stated here
can be generalized to include such cases. From (2.2) we obtain

kT

(2.4) u(kT)= U(kT)uo+ J0 U(kT-s)F(s) ds, k 1, 2,....

Since U(t) is a strongly continuous semigroup on H, we can transform the right-hand
side of (2.4) as follows

(k-1)T

u(kT)= U(T)U(k 1T)uo+ U(T) ], U(k 1T-s)F(s) ds

kT

+ I( U(kT-s)F(s) ds
k-1)T

kT

U(T)u(k 1T)+ | U(kT-s)F(s) ds.
k -1)T
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Putting
(k+l)T

(2.5) Fk | U(k + 1T s)F(s) ds, k 1, 0,.
3kT

we have the discrete-time system

u(k + 1T)= U(T)u(kT)+Fk, k --0, 1,...,
(2.6)

u(0) Uo.

In 4 we consider the input to a continuous system (2.1) as a sequence of constants

f.. That is, F(t) gf.,/’T <- < (i + 1)T,/" 0, 1,.... Then F(t) is also written

(2.7) F(t) g Y. f.(Y(t-iT)- Y(t-i + 1T)),
/’=0

where g H is the unknown input distribution function and {f.} 12 is an input signal.
Y(t) is the heaviside function and [. is the Gauss bracket. In this case F also belongs
to Lz(O, o; H) and F becomes

T

(2.8) F=Jo U(T-s)gds fk V(T)gfg, k=0, 1,’".

Here V(T) (H:H) is defined by
T

(2.9) V(T)g J0 U(T-s)g ds for g H.

Now let us assume that the operator A in (2.1) satisfies the spectrum decomposi-
tion assumption ([1, p. 75], [3, p. 171]), then there exists the orthogonal projection P
such that

H =PH +QH, Q =I-P,

and PH, QH form A invariant subspaces of H. From the viewpoints of system analysis
and synthesis, it is practical and interesting to take PH as a finite dimensional space.
We shall assume henceforth that PH is an n dimensional subspace. Let Ap and Ao
be the restrictions of A on PH and QH, respectively. We also denote by Up(t) and
Uo(t) the strongly continuous semigroups on PH and QH generated by Ap and Ao.
Actually Ap is bounded onPH and Up(t) is a uniformly continuous analytic semigroup.

In this case we have from (2.1)

(2.10)
dPu (t)) ApPu (t) + PF(t),

dt

(2.11)
dQu (t__._) AoQu (t) + QF(t),

dt

u(t)=Pu(t)+Qu(t),

(2.12) Ilu(t)ll-llPu(t)ll+llQu(t)ll.

The solutions Pu (t) and Qu (t) are given by

(2.13)

(2.14)

Pu(O)=Puo,

Ou (0) Ouo,

Pu(t) Up(t)Puo + Io Up(t-s)PF(s) ds,

Ou(t)= Uo(t)Ouo+ Io Uo(t-s)OF(s) ds.
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(2.16)

(2.17)

where

The outputs zk are written as

(2.15) Zk MPu (kT) +MQu (kT),

Moreover (2.6) becomes

Pu(k / 1T)= Up(T)Pu(kT)+PFk,

Qu(k + 1T)= Uo(T)Qu(kT)+QFk,

k-0,1,....

k-0,1,...,

Ilu(t)ull y u z,. exp (2hint) < exp (2h t)llull.
m=l

If hi -<_0, Ilu(t)ull<-Ilull, that is, [[U(t)]l < 1(=L1), t_>-0.
Next the orthogonal projections P and Q are defined by

Pu umO,,, ifuH, Ou ,
m=l re=n+1

ifu H.

and

A,, h,,,,, rn 1,2,...,

for every vector u in H has a unique representation

u= Z u.O.., u.,=(u, 4,.,),-,.
m=l

The semigroup U(t) is given by

U(t)u Y u,, exp (h,,t)O,, if u H.
m=l

Then

(k+l)T

PFk | Up(k + 1T-s)PF(s) ds,
T

(2.18) k=O, 1,....
(k+l)T

QF | Uo(k + 1T-s)QF(s) ds,
akT

We refer to the state Pu(kT) governed by the n-dimensional system (2.16) as
the estimated modes of the system (2.6) and the state Qu(kT) governed by the infinite
dimensional system (2.17) as the residual (or unestimated)modes of the system (2.6).

We assume that the semigroup U(t) is uniformly bounded, that is,

(2.19) [IU(t)[[<-L, >0

and also assume that the semigroup Uo(T) satisfies the condition

(2.20) r(Uo(T)) < l,

where r(Uo(T)) is the spectral radius of Uo(T).
Remark 1. If A is a symmetric operator with compact resolvent and lower

semibounded spectrum, then there exists a sequence {h,,, O,; m 1, 2,...} of
eigenvalues and corresponding orthonormal eigenfunctions such that for a constant c

C >"/ > h z > h,,, =>" lim h
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Then Uo(T) is given by

Uo(T)Ou Z (Ou, O,,) exp (AmT)Om ifu H.
m=n+l

The eigenvalues of Uo(T) are exp(A,+xT), exp(A,+zT),.... Thus if I,+1<0,
r(Uo(T)) < 1. In this case we have also IIUo(T)[l< 1.

Under the assumption (2.19) we can show the following lemmas.
LEMMA 1. IfFbelongs to Lx(O, ; H), then {Fk}_-o belongs to Ix(H).
Proof. From (2.5) we obtain

k=O akT
IIU(k + 1T-s)ll. IIF(s)ll ds

ffk+l)T_-<L Y IIF(s)ll ds
k=O T

L fo IIF(s)ll ds < oo.

LEMMA 2. IfFbelongs to Lx(O, oo; H), then {Fk}k=O belongs to/2(H).
Proof. From (2.5) we obtain

II{ftll = liE,,=m 2 =- 2
k =0 k =0

(k+l)T

f
(k+l)T

k =0 OkT

2

Ilu(k + 1T-s)ll.llF(s)ll ds)
ik+l)

T

<-L E (
T

IIF (s)ll as)

L IIF(s)ll ds < oo.

Moreover under the assumption (2.20), we can obtain the following lemmas.
LEMMA 3. If {Fk}k=0 belongs to Ix(H), then {Qu(kT)}k=o also belongs to Ix(H).
Proof. From (2.17) we get

(2.21)
k-1

Ou(kT)= Uo(T)OUo+ 2 Uo(T)-i-xPF.
i=0

By means of (2.20) we have

2 Ilgo(T)"Ouoll E Ilgo(T)"ll.llOuo[l--IlOuoll E Ilgo(T)ll <oo,
k =0 K =0 k =0
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which means that {Uo(T)kQuo}k=o/I(H). Further we get

k=l i=0 k=l i=0

(and reversing the order of summation)

2 E
k=l i=0

=0 k =i+1

<= E IIUo(r)’ll E
=0 k =o

which implies that {yk-li=o Uo(T)-i-IPF}=Iell(H). Consequently we obtain
{Qu(kT)}k=O/I(H).

LFMMA 4. If {F}g-_o belongs to/2(H), then {Ou(kT)}=o also belongs to/2(H).
Proof. From (2.21) we get

Ilou (k T)II < IlPr-111 + uo (T)II" IIPF-II /’"
/ uo(T)-ill. IlProll + uo (T)kl[ [IOu o11,

where V-1 0. Hence we may write

(llOu (o)11, IlOu (T)ll, .) <= (1, IIUo(T)II, IIUo(T)II ")

*(llOu0[[, I[PFoll, [[PFxII, ")

where denotes the convolution transform. Using the Young’s inequality ([2, p. 951])
we have

which implies that {Ou(kT)}=o belongs to/2(H).

3, Finite dimensional discrete-time observers. In this section we construct finite
dimensional discrete-time observers to approximate the estimated modes Pu (kT) of
the system (2.1) with unknown input F(t). For the system (2.16), we introduce a
discrete-time state observer on the n -dimensional subspace PH ([7, p. 525], [8, p. 308])

(3.1) w(k +l)=Dw(k)+Bz, k =0, 1,..., w(0)=0,

where D is a bounded linear operator on PH and B is a bounded linear operator
from E to PH. We assume that D satisfies the identity observer condition

(3.2) D Up(T)-BM.

From (2.16), (3.1) and (3.2) we have

(3.3) Pu(k + 1T)-w(k + 1)=D(Pu(kT)-w(k))+PF-BMQu(kT),

(3.4) Pu(O)-w(O)=Puo.
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The solution of this error equation is given by
k-1

(3.5) Pu(kT)-w(k)=Deuo+ E Dk-i-I[PFi-BMQu(iT)], k=l, 2,....
i=0

If the estimated modes Pu are observable, there exists a unique output feedback
operator B such that all the eigenvalues of D can be arbitrarily assigned. If all the
eigenvalues of D are less than 1 in their absolute values, the error system (3.3) is
asymptotically stable. Moreover, in the case of discrete-time systems, it is interesting
and practical to make all the eigenvalues of D be 0 from the viewpoint of finite time
setting. In this special case, (3.5) becomes for k n, n + 1,

k-1

(3.6) Pu(kT)-w(k)= Y D--[PF-BMQu(iT)].
i=k-n

If r(D)< 1 and {Fk}go/I(H) (or/2(H)), it follows from Lemma 3 (or Lemma
4) that {Qu(kT)}g=o l(H) (or/2(H)). Moreover using the same arguments as in the
proof of Lemma 3 (or Lemma 4) we can show from (3.5) that {Pu(kT)-w(k)}=o
l(H) (or/2(H)). Therefore we have

(3.7) lim IIPu(kT)- w(k)l[ 0.

Now if we estimate the state u (kT) of the system (2.1) by

(3.8) a(kT) w(k),

the estimation error u(kT)-t(kT) is given by

u (kT) a (kT) (eu (kT) a (kT)) + Ou (kT).

Then

Ilu (kT)- t (kT)II--< IIPu (kT)- t (kZ)ll / IlOu (kT)II

<= IIPu (kT)- w (k )ll / IlOu (k

Since from Lemma 3 (or Lemma 4), {Ou(kT)}k=ol(H) (or /2(H)),
limk_,oo IIQu(kT)ll=O. From this and (3.7), we obtain the following result.

THEOREM 1. ff the unknown input F belongs to LI(0, oo; H) and r(D)< 1,

lim Ilu(kT)-a(kT)ll O.
keo

This theorem implies that we can construct the finite dimensional discrete-time
observer (3.1) for the system (2.1) with the unknown input F(t) in the case of
discrete-time observation. We can estimate the state u(kT) at the kth sampling time
of the system (2.1) by w (k) for some large k.

Moreover in order to obtain explicit error estimates, let us assume that

(3.9) IlUo(T)ll <- q < 1,

(3.10) IIDII<-La , a < 1,

(3.) IIF(t)ll<-t exp (-/t), / >0, >0,

where liD is the Euclidean norm of the matrixD and L2, L3, a, q and/ are constants.
Remark 2. The assumption (3.9) was discussed in Remark 1. The assumption

(3.10) says that all the eigenvalues of D are less than 1 in their absolute values. Let
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us illustrate this by an example and consider the case ofD having n distinct eigenvalues
yl,’", 3’, and corresponding orthonormal eigenvectors 0,’", 0,. Then for any
n-dimensional vector w

Dw =’ywO + +’Y,w,O,, W (W, O)R, l, n

holds. From this we have

IIowll--< Ivw,I. Ile,ll+"’’ + Iv.w.I Ile.II
=lwl+ +1nW.

k k 1/2

-< (m/ax lYil) . ]wil <- x/(m/ax I’il) ( w/2)
i=1

Thus if we take L n and a max I’/1, then the assumption (3.10) holds.
First let us estimate I11. From (2.5) we have

]lfll- Ia. U(k + 1T-slF(s) ds

(k+l)T

--< [ IIg(// T-s)ll.llf(s)llds
dkT

(3.12)
(k+l)T

_-< LL3 f exp (-fls) ds
akT

_-LL3 (1-exp (-fiT)) exp (-kT)=L4b k,

where
L1L3

L4 (1 b), b exp (-fiT).

For example, when a <q <b, we can obtain an explicit error estimate as follows.
From (2.21) we get

k-1

IlOu (kT)ll--< Ilgo(kT)ll" IlOuoll / E IIg-’- II, IlPf/ll
i=0

(3.13)

where

k-1

qllOuo[l+ E qt’-i-lL4bi
i=0

--< q lluoll +L4b k b
k -qk<--glb k,
b-q

1
b-q

Moreover we have

IlPu (kT) w (k

II"Pu011/ "--[Pf,-BMOu(iT)]

(3.14)

k-1

<: L:allPuoll / E La k-i-1 (IIPF, / IIBMII" IlOu (iT)[l)
i=0

k-1

<= La [luoll + L2 .. a k-i-1 (Lb + IIBMIIKxb i)
i--:O
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k-1

--Lzlluolla +Lz(L4+IIBMllK) E a-’-lb
i=0

L=lluolla +La(L + IIBMllK)
b k mak

<Kab k

b-a

where

Z2(t4 -t-IIBMIIK)
Kz=LllUoll+ b-a

In the special case of r(D)= 0, for k->n we can estimate IIPu(kr)-w(k)ll as
follows

k-1

IIPu(kT)-w(k)ll<= E
=k-n

liD-’-

k-1

i=k-n

k-i-1a (L4b ’[-IIBMIIKb

k-1

=L(L4+IIBMIIKO Y ak-i-lbi
=k-n

t2(t4+l[BMllgl)b-a (1- ())b =Kb,
where

Consequently we have an explicit error estimate

(3.16)
Ilu (kT)- t/(kT)II--< IIPu (kT)- w (k )ll + [IOu (kT)II

<-- (K1 +K2)b k.
We can similarly obtain explicit error estimates when 0 < a, b, q < 1.

THEOREM 2. When Uo(T),D andF(t) satisfy (3.9), (3.10) and (3.11), respectively,
the explicit error estimate is given by

(3.17) [[u(kT)_ti(kT)[[<_Const. pk, k 1, 2,’",

where p max (a, b, q).
Before ending this section we shall give a simple example to illustrate the presented

theory.
Example 1. Let us consider the system

Ou(t,x) Oau(t,x)
=0.1------0.1u(t,x)+r(t)g(x), x (0, 1), t>O,

Ot Ox

Ou(t, O) Ou(t, 1)
c3x c3x

=0,

u (0, x) uo(x),

where the input r(t), the input distribution function g(x) and the initial state Uo(X)
are unknown.
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For this example, we take H =L2(0, 1) and Au =0.1Au-0.1u. Here A is the
Laplacian with Neumann conditions at x 0, 1. The eigenfunctions are

1(x) 1, ,,(x) 4 cos (m 1)Trx, m 2, 3,...,

which constitute an orthonormal basis for L2(0, 1) and the eigenvalues ,m
-0.1(m 1)2zr2-0.1, m 1, 2,. .. The output of the system is given by

Ioz h(x)u(kT, x) dx F. hmum(kT), heL(0,1), k=O, 1,...,
m---1

where h, o h(x)d(x) dx, u,(kT)= u(kT, x)d,(x) dx, m 1, 2,.... If h, O,
m 1,..., n, the first n modes are observable [4].

Using eigenfunctions expansion, we obtain the discrete-time systems

u,,(k + 1T) exp (h,,T)u,,(kT)+g,r,k,

corresponding to (2.16) and

u(k + 1T) exp (,,T)u,(kT)+ g,r,,k, m =n +l,n +2,...,

corresponding to (2.17), where g g(x)qb,(x) dx, m 1, 2,.. , and r,
f(k+l)T
T exp (h,,(k + lT-s))r(s) ds, m 1, 2,..., k =0, 1,.... From Remark 1 we
find L1 1 in (2.19).

Taking n 5, we construct a 5-dimensional discrete-time observer

w(k + 1)=Dw(k)+Bz, w(0)=0, =0,,...,

where D is a 5 x 5 matrix and B is a 5-dimensional feedback vector which satisfies
the identity observer condition

exp (h T)

0
[h"

exp (h sT)

If the first 5 modes u x," ", us are observable, we can determine uniquely a feedback
vector B such that the matrix D has specified eigenvalues. If all the eigenvalues of
D are less than 1 in their absolute values, the error system

-w(k + 1)=D -w(k) + Y h,u,(kT)
m=6

us(k + 1T) 5(kT)A t-g5 5-

is asymptotically stable and then

lim w (k) O.
-oo u(’kT)l

In the case of r(t)=exp (-t) and D having eigenvalues 0.02, 0.01, 0, -0.01, -0.02
we have q =exp(,T)=exp(-(2.Srr +0.1)T), L-4-, a--0.02, L=
(i g2(x) dx)/2, fl 1 and b exp (-T).

4. Determination of unknown input distribution functions. In this section we
consider the problem of determining unknown input distribution functions for the
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systems with discrete-time input-output data such that

(4.1) du(t---)=Au(t)+g , L.(Y(t-iT)- Y(t-i + 1T)),
dt =o

(4.2)
u (0) uo,

Zk Mu (kT), k O, 1, ,
where g eH is the unknown input distribution function to be determined. The input
function {f}o belongs to lz and is known. Though the initial state u0 is unknown,
we can estimate the system state u (NT) at time NT by constructing a finite dimensional
discrete-time observer such as (3.1), where we can especially choose fj =0, ]
0, 1,...,N-1.

We denote by J(g) a functional which measures the distance between the observa-
tion z ={zk}+ and the output {Ma(kT)}+l computed for each g from the system
(4.1) with the initial state u(NT)= a(NT) estimated by (3.8). We take the functional
J(g) to be

(4.3) J(g) E Ilz -Mt7 (kT)ll.
k =N+I

Here

a(kT)=U,(kT-NT)a(NT)+ U(kT-s) g E L.[Y(s-IT)-Y(s-I+T)] ds
j=N

Up(T)-Na(NT)+ U(kT-s)g dsf.
j=N ajT

(using V(T) defined by (2.9))

k-1

(4.4) U,(T)-Nt(NT)+ Y. U(T)k-i-l V(T)gfi
I=N

for k =>N + 1.

Moreover we can write

(4.5) zg =Ma(kT)+M(U(T)k-Nu(NT)-Up(T)-Na(NT)) for k_->N+l.

The second term on the right-hand side seems to be an observation error. The problem
of unknown function determination can be formulated as that of minimizing J(g) with
respect to g under the constraint (4.1). If the system (4.1) and (4.2) is identifiable,
the solution of this problem is unique as shown later.

First we investigate the relationship between observability and identifiability of
the system (4.1) and (4.2). The system (4.1) and (4.2) is said to be observable (N-step
observable) if the knowledge of the input {g/} and the observation {Zk}({Zk}) implies
that the initial state u (0) is uniquely determined. The system is said to be identifiable
(N-step identifiable) if the knowledge of the initial state u(0), {f.} and {Zg}({Zk})
implies that g is uniquely determined.

From the definitions and the linearity, the system (4.1) and (4.2) is observable
(N-step observable) if and only if MU(T)kuo O, k 1, 2, (k 1, ., N) implies
that Uo 0. The system (4.1) and (4.2) is identifiable (N-step identifiable) if and only
if k-1

M Y. U(T)--V(T)gf. O, k 1, 2,"" (k 1,.’., N),
i=0

implies that g 0.
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Let us consider whether or not the system (4.1) and (4.2) can be N-step observable.
Define an operator W by

WUo={MU(T)t’Uo}=x, uoeH.

W is the bounded linear operator from H to/2(trN; E), where trN {1, , N}. If the
observation space E is finite dimensional, the space/2(trN; E) is also finite dimensional.
W is the bounded linear operator from the infinite dimensional space to the finite
dimensional space. The operator W can never be injective. Thus the condition for
N-step observability is never met for any finite N. In the similar way it is shown that
the system (4.1) and (4.2) is never N-step identifiable for any finite N.

Remark 3. Since the system (4.1) and (4.2) is never N-step identifiable for any
finite N, the functional J(g) in (4.3) must be defined on an infinite time interval. In
the continuous-time case, J(g) can be defined on a finite-time interval [6]. This is an
essential difference between the problem of continuous-time identification of para-
meters and the problem of discrete-time identification of parameters.

Moreover we can show the following theorem.
THEOREM 3. Let f ={f.,] =0, 1,...}0 and the nullspace of V(T) be {0}. Then

the system (4.1) and (4.2) is identifiable if and only if the system (4.1) and (4.2) is
observable.

Proof. To prove the sufficiency, we suppose that

k-1

(4.6) M Y U(T)k-i-1V(T)gf. O, k 1, 2,....
i=0

Applying the z-transformation to this equation, we have

MF(z )Z[U(T)iV(T)g] 0

for any ]z] > max (:, rt), where and rt are the convergence coordinates ofF(z) Z[f.]
and Z[U(T)JV(T)g], respectively. From the assumption we get F(z) 0 for almost
every z such that Izl> . Thus we obtain

Z[U(T)JV(T)g]=O.

Since the inverse z-transform of 0 is 0, we get

U(T)V(T)g =0, /’=1,2,....

From the observability of the system, it follows that V(T)g 0. Since the nullspace
of V(T) is {0}, g 0. Thus the system is identifiable.

To prove the necessity, suppose that the system (4.1) and (4.2) is not observable.
Then (4.6) has a nonzero solution g in H. Therefore the system is not identifiable.

Remark 4. Theorem 3 is given in [5] in the case of A being a symmetric operator
with compact resolvent and lower semibounded spectrum. In this case we can show
that the nullspace of V(T) is {0}. From Remark 1 we have

U(t)g g exp (Xr,t),, if g H.
m=l

Moreover we get
T exp (A.,T)- 1

V(T)g U(T-t)gdt Y g. . if g ell,
m-- ,krn
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where for Am 0 (exp (A,,T)- 1)/Am must be replaced by T. In order to show that the
nullspace of V(T) is {0} suppose that

exp (A,,T)- 1
Eg =0.

Taking the inner product with and using the orthonormality of {}, we obtain

exp (XT)- 1
g=0, m 1, 2,

h

which implies g 0, m 1, 2,..., that is, g 0. Thus the nullspace of V(T) is {0}.
Now let us define a linear operator S"H/(; E) ( {N + 1, N + 2,...}) by

(4.7) Sg= M 2 U(T)--V(T ifgeH.
i=N k

Then we have
LEMMh 5. If r(U(T)) < 1, then S is bounded.
Proof. From (4.7) we have

II(sg) IIMV )g-11 + IIMU()V()g-[l +"" + [IMU(V) --V(V)g&

[11" V(V)gll’ I-1 + llMiI, V(V)gll" llU(V)li.

_
+...

+ 111" V(V)g I1" U(V)--11" I1.
Hence we may write

([l(Sg)N+X[[, [[(Sg)+2]],’’ ") (1, I[u(r)ll, ]]U(T)2II, ’)

where denotes the convolution transform. Using Young’s inequality we have
2

)[[/2(;U) E II(sg)ll= JIg(T) M]I2"[[V(T)gII f
k =N+I k 0 k

2

Since

E IIU(T)[[<+oo, E f <+ and [[V(T)[[<+,
k =0 k =0

$ is bounded.
The system (4.1) and (4.2) is identifiable with f =0, 0<-_/" <_-N-1 if and only if

the nullspace of 6: is {0}, that is, S*S is positive on H. Here (.)* denotes the adjoint
operator of an operator (.). Henceforth we assume that the system (4.1) and (4.2) is
identifiable with f. 0, 0 =</" =<N 1.

Back to the problem of minimizing the functional J(g), we get

J(g)- Ily Sgl[ 2/2(o’;E)
where y (Yk)k, Yk Zk -MUp(T)-Cd(NT). Since the operator S is continuous, the
functional J(g) is Fr6chet differentiable and convex. Hence the necessary condition
for optimality is

J’(g)h 0 for any h H.
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From this the minimizing solution g0 of J(g) must satisfy

(4.8) S*Sg =S*y.

Since the system (4.1) and (4.2) is identifiable with f. =0, 0-<_f _-<N-1, the optimal
solution go is uniquely determined by

(4.9) go=(S*S)-lS*y.
However a positive self-adjoint operator S*S on H has its bounded inverse

(S’S)-1 if and only if it is positive definite. Unless S*y e Dom ((S’S)-1), go will not
belong to H.

Remark 5. Let us consider the case that the operator A is symmetric and has
compact resolvent and lower semibounded spectrum. From Remark 1 we have

U(t)g Y g. exp (A.t). if g ell,
n=l

where gn (g, Cn)H, F/ 1, 2,.... In this case we get
T exp (hnT)- 1

V(T)g- U(T-t)gdt= gn Cn ifgH.
n= An

Moreover we obtain

k-1

(Sg)=M , U(T)--IV(T)gf
I=N

k- exp (AnT) 1
=ME Eg

=N An
exp ((k -f- 1)AnT)nf.,

k =N+I,N+2,....

Let

s inf
(S*Sg, g)H

(g, g)u

and then show s 0. Taking g Cn, we have

(S*Sg, g)= E II(S&n)kll2
(g, g) ---N+

since I1,11 1. For some large n, ,, < 0. Then we find

[1(S,)11 _<exp (A,T)- 1
iiMqbnll(ifk_x +exp (Z,,T)lfk-2] +’’’

+exp ((k -N-

Using the Young’s inequality we have

(]l(S&,)kll2__<
exp (ANT)- 1. IIM&,I exp (kAnT) . f.

k=N+l ,n k 0 k=N

The right-hand side tends to 0 as n - oe. Thus S*S is not positive definite.
Thus even if the system (4.1) and (4.2) is identifiable with f. =0, 0<_-]_-<N-I,

the inverse (S’S)- is not bounded in general. The solution go does not necessarily
depend continuously on y and go does not belong to H unless S*y Dom ((S*S)-).
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From a numerical calculations point of view, the algorithms which seek go from (4.9)
are ill-conditioned in general.

It is not practical to use (4.9) to seek the input distribution functions from the
measurement data. Thus we must consider a feasible approximation method which
gives a constructive procedure to present approximately the true input distribution
functions. We apply a feasible approximation method by regularization [9], [10].

Let us introduce a regularizing functional J (g) corresponding to J (g)

(4.10) J (g) (g)/ Ilgll=,
where e is a positive regularizing parameter. Then the unique minimizing solution g
of J (g) is determined by

(4.11) (S*S +eI)g =S’y,

that is,

(4.12) g (S*S + eI)-S*y.
Since the operator G. S*S + el is positive-definite on H, its inverse G- is bounded.
The g belongs to H and depends continuously on y (or z).

Here if we define m {m} by

m M(U(T)k-u(NT)- U(T)k-r(NT)) for k_->N,

then we find from (4.4) and (4.5)

Yk Zk --MUp(T)-N(NT) Ma (kT) +mk --MUp(T)k-N (NT)
(Sg*)g+m fork_->N,

where g* H is the true input distribution function. Thus m seems to be observation
errors and the solutions go and g depend on m.

We can show the following theorem.
THEOREM 4. Suppose that the system (4.1) and (4.2) is identifiable with f. =0,

0 <- <-_N 1. Then we have

lim IIg, g*ll,-, o,
e,8O

provided that 8/x/-- 0 as e 0, where m satisfies Ilmllt2(;e)<-_8 2.
Proof. We first show that
(i) lim_o IIGg -Ggo[ln O, where G S*S.
From (4.8) and (4.11) we have

O=(G(Ggo-S*y),h)

(4.13) (G(Ggo-Gg -eg), h)

(G(Ggo-Gg), h)-e(Gg, h) for any h H.

Taking h -Ggo-Gg in (4.13), we have

(G(Ggo-Gg), Ggo-Gg)-e(Gg,Ggo-Gg) O.

From this we get

(4.14) (Gg, Gg) <- (Gg, Ggo),

which implies that [[Ggi[<-IIGgoil. Thus from every sequence of e 0 we can extract
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a subsequence r such that Gg, w weakly in H. As r/ 0, (4.13) becomes

(G(Ggo-w),h)=O.

Here taking h Gg0- w, we obtain

(G(Ggo- w), Ggo- w) O.

From the positiveness of G, we have w Ggo. Here {Gg,} is an arbitrary, weakly
convergent subsequence and its weak limit Ggo does not depend on the subsequence.
Thus the extraction of a subsequence is unnecessary and Gg Ggo weakly in H.

Moreover from (4.14) we get

which implies that

(G& Ggo, Gg Ggo) <- -(Ggo, Gg Ggo),

lim IIGg -GgollH O.
eO

Next let us note that the true input distribution function g* satisfies

Gg* S*(y m ).

Define g* by

(4.15) Gg* =S*(y -m).

Then both g* and g* belong to H. Now we have

For the seond term on the right-hand side, we can show in a similar way

lim IIg * g*[I O,

replacing Gg, Ggo and y by g*, g* and y -m, respectively, in the proof of (i).
Next as for the first term, we have

(G(g-g*)-S*m,h).--O for any h H

from (4.11) and (4.15). This implies that the element g -g* realizes the lower bound
of the functional

Then

From this we obtain

That is,

I(g) =lira Sg[I 2,=<;+ellgll=, e>O.

I(g g*) < I(0) =llmll = <a=12(tr ;E)

We have proved the theorem.
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Theorem 4 shows that we can use g as an approximate input distribution function.
From a practical point of view, we cannot use an infinite number of input-output
data. We must determine the input distribution function g from a finite number of
input-output data. Therefore for L sufficiently large we can only determine

* S*(4.16) gL (SS+ el)- y,

where

(4.17)

k =N+I, ,N+L,
k =N+L+I,N+L+2,

(&g)
0,

k =N+I,... ,N+L,
k =N+L+I,N+L+2,...

The element gL is the minimizing solution of the functional

(4.18) S 2.JL(g) [[y- ,gllt=(,,+ellgl[2,

where rc {N + 1, N + 2, , N +L}.
Before showing that for fixed e > 0 g strongly converges to g as L tends to m,

we give the following lemmas.
LEMMA 6. Ifr(U(T))< 1, then limc_ [[S-&[l= 0.
Proof. From (4.17) we find

0,
(sg-&g)

(Sg),
k =N+I,... ,N+L,
k =N+L+I,N+L+2,...

Let us decompose (Sg)k such that

where

(sg) (sg)’i+ + (sg)[-, k =N+L+I,N+L+2,’. ,

(Sg)+= MV(T)gfk_l +.’’ +MU(T)’-N-L-1V(T)gf+t,
(Sg)- =MU(T)k-C-tV(T)gfu+t_I +"" +MU(T)--V(T)gfN.

For (Sg)/ we have the following estimate

(4.19) Z
k =N+L+I

)[[(Sg)+[[u__< ][U(T)k[] [[MI[[[V(T)[ y. f [[g[12.
k =N+L

For (Sg)- we obtain

k =N+L+I
II(sg)-II E E MU(T)-i- V(T)gf.

k =N+L+I =N

(4.20)
E E MU(T)m+N+t-iV(T
=0 =N

2

11 11, .
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Consequently we get from (4.19) and (4.20)

II&-&gll2
/2(or ;E)- E

k =N+L+I

L+II2_-<2 E II(sg) ,,+2 E II(Sg)-ll2
k =N+L+I k =N+L+I

<=21IMItIIV(T)II{(EIIU(T)’II) E fi
k =0 k =N+L

(N+L--1 N+L-k 2]nt-(k=oIIU(T)kl[2)\k___N IIV(T) fk[[) IIg[I2"

-vv+c- [IU(T)N+C-fII}’=I e 12, we getSince r(U(T))< 1 {f}e l() and tZ, k=N

N+L-1

lim F, fi=0 and lim 2 IIg(T)+L-kfll=O"
L-o k=N+L Leo k=N

Thus we obtain limL_, IIS- &ll- 0,

LEMMA 7. If r(U(T)) < 1, the operator S is a completely continuous operator from
H to/2(tr; E).

Pro@ The operator SL is completely continuous for each L, since it is a bounded
linear operator whose range is a finite dimensional subspace of/2(tr; E). From Lemma
6, a sequence {So} converges uniformly to the operator S. This implies that S is also
a completely continuous operator.

By virtue of Lemmas 6 and 7 we can show the following theorem.
THEOREM 5. If r(U(T))< 1, then for fixed e >0, gc converges strongly to g as

L tends to

Proof. From the optimality we have

(4.21) JL (g) -<- JL (g) for any g e H.

Moreover from the definitions of Jc (g) and J (g) we get

(4.22) JL (g) <--J (g) for any g e H.

It follows from (4.21) and (4.22) that

J(gc) =<J (g),

that is,

(4.23)

This implies that

[[Yz. SLgL 2 + e Ilg. =< [ly Sg 2 + e [Ig .
IIgll Const.

Thus from every sequence of L o we can extract a subsequence r/such that g. - w
weakly in H. Since

I(S.g., h) (Sw, h)l I((S. S)g., h) + (S(g. w), h)l
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and limn_. IIS- SnI[ 0, S,g, weakly converges to Sw. As r/, (4.23) becomes

Ily Sw + [Iw = lira (lly. S,g = + IIg. It)

-< Ily Sg = / IIg =,
Since the optimal solution of J (g) is unique, we get w g. Here {g, } is an arbitrary,
weakly convergent subsequence and its weak limit g does not depend on the sub-
sequence. Thus the extraction of a subsequence is unnecessary and gL g weakly in
H. Then we have

(4.24) lim IIgll IIgll,
L-

Moreover from (4.21) we obtain

(4.25) Ily Sg = / IIg, = --< Ily,-Sg 2 + IIg 2.
It follows from (4.24) and (4.25) that for L sufficiently large

We have

<-II&g Sg / [ISg Sg / IlSg &g

--< IIs,.- sll" Ilg / IlSg, sg / IIs &ll" IIg II.
By virtue of Lemmas 6 and 7 we get

(4.26) lim [lYL Sg lim IlY S,g [[- [lY Sg II.
Lc Lcx3

As L , (4.25) becomes

e lim IIg = IIg ,
Loo

which implies that

(4.27) IIg 1 IIg II.
L-oo

From (4.24) and (4.27) we obtain

lim IIg [I- IIg

which implies that g g strongly in H.
Theorem 4 and Theorem 5 show that we can use g as an approximate input

distribution function.
Before ending this section, we shall give a simple example to illustrate the

presented theory.
Example 2. Let us consider the same system as discussed in Example 1"

Ou(t,x) 02u(t,x) [’]

=0.1 2 -O.lu(t,x)+g E f.(Y(t-iT)-Y(t-i+lT)),
Ot Ox i=o

Ou (t, O) Ou (t, 1)
Ox Ox

O, u (0, x) Uo(X),
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where g e L2(0, 1) is the unknown input distribution function. The output of the system
is given by

Iozk h(x)u(kT, x) dx Y h,um(kT), k =0, 1,....
m=l

From Theorem 3 and Remark 4, the system is identifiable if {f}0 and hm # 0,
m 1, 2,.’.. From Remark 5 we find

k- exp (AT)- 1
(Sg) E . g,hm exp ((k -j- 1)hmT)f.

i=N m=l

where

E gmh.pm,
m=l

k =N+I,N+2,...

exp (A,T)- 1
Pink exp ((k -f- 1)AmT)f., m 1, 2,’"

i=N Am
The adjoint operator S* is defined by (S’z, g)q (z, Sg)t2(,), where

(S’z, g)= Y. (S’z,
m=l

(z, Sg) t() E zk(Sg)k E E hmp.,kzgm.
k=N+l m=l k=N+l

We obtain

(S’z,) hmPmtcZk, m 1, 2,’’.
k =N+I

from which we get

S’z= E E
m=l k=N+l

h,p,zkckm if 2" /2(0").

Moreover we have

S*Sg Y
k =N+I

Therefore the equation

becomes

=E E E
m=l i=1 k=N+l

hmhip,pig4.

(S*S + eI)g S*y

m=l j=l k=N+l m=l m=l k=N+l

Taking the inner product with 4,. and using the orthonormality of {4m}, we obtain
the infinite number of linear equations for gm

egm + , h,,hp,kpkg , hmPmkYk, m 1, 2,...
j=l k=N+l k=N+l
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where

Yk Zk hi exp ((k -N)AiT)ti(NT).

In the case of numerical calculations, we may solve a set of linear equations for
gel," ,geM,

M L L

ege, + hhip,,,kpikge , h,,P,,,kYk, m 1, ,M
/=1 k=N+l k=N+l

for L sufficiently large (L >-N +M) and an appropriate small e > 0.

5. Conclusion. In this paper we have investigated the problems estimating the
system states and the input distribution functions from discrete-time input-output
data for distributed parameter systems. First we have constructed finite dimensional
discrete-time observers to estimate the system states at sampling periods in the case
where the systems have unknown input sources. We have evaluated the estimation
errors. Next we have considered the problem of determining input distribution func-
tions using the estimated system states and discrete-time input-output data. Since the
systems are never identifiable in a finite number of steps, the problem has been
formulated as that of minimizing the functionals on the infinite time interval. This
problem is not necessarily well posed even if the systems are identifiable. Thus we
have presented a feasible approximation method by regularization and discussed the
limit properties of the approximate solutions under the assumption that the systems
are identifiable. Moreover we have shown that we can determine a practicable
approximate input distribution function which is synthesized from a sufficiently large
number of observations.
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ROBUST STABILIZATION OF UNCERTAIN SYSTEMS*

JACQUES L. WILLEMSt AND JAN C. WILLEMS

Abstract. In this paper we consider the systems described by

dx Ax dt + Bu dt + triFix di or .i Ax +Bu + YBiFi(x, t)Cix,

and we will derive conditions under which there exists a feedback control law u Kx such that the closed
loop system is stable for all tri or (smooth) nonlinearities Fi. The nonlinearities Fi and the noisy gains tr
are unknown uncertainties in the system, and the problem considered is to obtain a control law which is
robust against these uncertainties, as far as stability is concerned.

Key words, robustness, feedback stabilization, invariant subspaces, stochastic stabilizability

1. Introduction. Robustness is a very important feature of control system design;
it deals with the question whether some relevant qualitative properties, such as stability,
are preserved if unknown perturbations are present in the dynamic system. This
property is also often called structural stability. Consequently, it is of interest to
incorporate this property as a feature of control system synthesis.

We consider the following system"

(1) (t) Ax(t)+Bu(t)+ Y. BiFi(x, t)Cix(t).
i!

In this equation the last terms represent nonlinear and/or time-varying unknown
(deterministic) perturbations. In this paper we will be concerned with the question
whether there exists a linear stationary feedback control law u(t)= Kx(t), such that
the dynamic system described by (1) remains stable for all Fi(x, t) satisfying only a
Lipschitz or some smoothness condition. A similar question is analysed for the
stochastic system described by the Ito equation

(2) dx(t) =Ax(t) dt +Bu(t) dt + Y. criFix(t) dill(t)
i!

where the processes /3i are standard Wiener processes. Intuitively (2) should be
regarded as the equation

(t)= [A +,Fif(t)]x(t)+Bu(t)
where the processes f(t) are stationary white noise stochastic processes.

There has been some previous work on these stabilizability problems. In [1]
conditions have been derived in terms of the solution of an algebraic Riccati equation.
In 2 of the present paper the same question will be reexamined; it is shown that
concise stabilizability criteria can be developed by means of geometrical techniques
using the concepts of (A,B)-invariant subspaces [2] and almost (A,B)-invariant
subspaces [3], [4]. In 3 the robust stabilization of the deterministic system (1) is
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discussed; using techniques similar to those used for the Ito equation (2), criteria for
robust stabilization are derived. It is shown that the model and also the results are
more general than in Molander’s thesis [5], which contains a rather general discussion
of the robust stabilization question. A related reference is [6] where the importance
of the problem considered here is argued. Finally, a recent special issue of the IEEE
Transactions on Automatic Control (February (1981)) demonstrates a great deal of
interest in robustness questions from the point of view of control system design.

A few words on the notation used in this paper" 1 denotes the reals, C the
complex plane, Cg := {s CIRe (s) < 0}, and g := {s CIRe (s) _-< 0}. If q is a positive
integer, then q := {1, 2,. ., q}. Script capitals are used for vector spaces and subspaces.
If A is linear andAc, then AI and A(mod) are the maps defined by
the commutative diagram

injection
A

cannical 1 1projection
A(mod

(YClA) is the largest A-invariant subspace in a given subspace {. g(A) denotes the
A-invariant subspace spanned by the eigenspaces of A corresponding to its eigenvalues
in Cg; (A) is similarly defined with respect to Cg. tr(A) is the spectrum of A and
O’g(A) := o’(A) f’) Cg. The kernel (null space) is denoted by Ker and the image (range
space) by im.

Finally, for the linear system k Ax +Bu, y Cx, with state space T, we use
(A lim B) for the reachable subspace, i.e. the smallest A-invariant subspace containiflg
imB, and (Ker CIA) for the nonobservable subspace, i.e. the largest A-invariant
subspace contained in Ker C. Finally we will be considering (almost) (A, B)-invariant
and controllability subspaces [2], [3], [4] freely; the relevant facts and results are
summarized in Appendix D. For a subspace of , *(6e), 7/’* (), ’() denote
respectively the supremal (A, B)-invariant, -almost-(A, B)-invariant, and
almost-invariant subspace contained in , while *(), *(), (S) denote the
similarly defined (almost) controllability subspaces. The subspace g*() is the
supremal stabilizable (relative Cg) subspace contained in 6e, i.e.

7/’g* (6) sup {7/" c 6el=lK such that (A +BK)V c 7/’, r(A +BK) Cg}.

g*-(6e) is similarly defined relative g.
2. Robust stabilization of stochastic systems.
2.1. Problem statement. Consider the system described by the Ito stochastic

differential equation (2) where, without loss of generality, the Brownian motions/i
are assumed to be zero mean and independent:

E[d[3,(t)] 0 Vt, Vi 1,

E[d[3,(t)2] dt Vi 1,

E[dfl,(t)dfl(t)] O
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In other words,/3i is a standard Wiener process. In (2) x R" denotes the state,
u q/= R" denotes the control input. The constant matrices A, B, F/have appropriate
dimensions. The positive factors tri indicate the intensities of the disturbances. The
symbol E denotes expectation.

We will consider the stabilizability of (2) by means of a time-invariant memoryless
state feedback law

(3) u(t) =Kx(t)

with K a constant matrix of appropriate dimension. Then (2) reduces to

(4) dx(t) (A +BK)x(t) dt + tr,F,x(t) d[3,(t).

For this closed loop system, the mean square asymptotic stability property expressed
by the definition below, will be analysed"

DEFINrrION 1. System (4) is said to be mean square asymptotically stable if for
all initial states x (0)

lim E[x (t)x (t)T] O.

This leads to the following stabilizability definitions"
DEFINrrION 2. System (2) is said to be perfectly robustly stabilizable if there exists

a feedback control (3) such that (4) is mean square asymptotically stable for all noise
intensities

DEFINrrION 3. System (2) is said to be robustly stabilizable for all noise intensities
if for all bounds {sl,’’’, Sk}, there exists a feedback control (3) such that (4) is mean
square asymptotically stable for all noise intensities satisfying

O’i Si (i 1).

The property expressed by Definition 3 is somewhat weaker than the property
expressed by Definition 2 in that the feedback matrix K may depend on the bounds
si; some entries of K may increase without bound as some of these bounds si tend to
infinity.

2.2. Stability of uncontrolled systems with state-dependent noise. In order to
derive stabilizability conditions for (2), we first discuss criteria for mean square
asymptotic stability of the stochastic system described by the Ito differential equation

(5) dx (t) Ax (t) dt + , o’iFix (t) d[3i(t).

This system is autonomous (in the sense that there are no exogenous inputs), but it
contains a state-dependent noise term. The second moment matrix

M(t) := E[x(t)x(t)T]
satisfies the matrix differential equation

(6) /I)/(t) AM(t) +M(t)Ar + , tr2F,M(t)FS

which evolves in the cone of nonnegative definite symmetric (n n) matrices. The
mean square stability properties of (5) hence depend on the eigenvalues of the linear
mapping L on the linear space of symmetric (n x n) matrices, defined by

(7) L(M):=AM+MAr + y,. tr2iFMFf.
/el
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The problem considered here is the asymptotic stability of (7) for all noise intensities
tri. This may be resolved by introducing the subspaces o//, defined recursively by the
following algorithm"

o := {0),

i!

i.e. 1. is the maximal A-invariant subspace contained in nF-_. It is easily seen
by induction that the subspaces . are nested, i.e., ?,V.+ 7.. Hence

exists and satisfies

This limit is obtained monotonically in a finite number of steps
"THEOREM 1. The following conditions are equivalent"

(i) /oo ,T and tr(A) c Cg.
(ii) System (5) is mean square asymptotically stable for all {tri}, 1.
(iii) In a suitable basis the matrices A andF (i 1) take the block triangular form"

All A12 Alq

A= 0 A3q Fi

0 Aoo
and o’(Aii) Cg for q.

0 V/12 ,q]0 Fi,2c
0 F3qjo

(iv) The Lie algebra generated by the set of matrices {A, F; 1} (i.e. the smallest
Lie algebra containing this set) is solvable [7]; the matrices Fi are nilpotent, and
o-(A) c Cg.

Proof. The equivalence of (ii), (iii), and (iv) has been shown in [1]. The elegant
and computationally feasible geometrical condition (i) is proved in Appendix A. [3

The geometrical criterion (i) turns out to be very well suited to attacking the
stabilizability problem of system (2). This is the subject of the next section. The
possibility of writing {A, F;i i} in block triangular form is related to the Jordan-
H61der theorem and has been studied in the context of constructing canonical forms
for bilinear systems [8]. In fact, through condition (i) Theorem 1 yields a simple test
for generalization of the question when a family of nilpotent matrices can be simul-
taneously triangularized. The solution of this problem is known as Engel’s theorem
[15]. It is concerned with a basic problem in the theory of Lie algebras, and it has
implications in the theory of associative algebras and quivers.

The condition of the above theorem can be simplified if there is only one stochastic
element (1 1) with the corresponding F1 of rank one: F1 --bc, where b is a column
vector and c a row vector; in this case (5) becomes:

dx(t)=Ax(t) dt +trlbcxx(t) d(t).
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The condition for mean square asymptotic stability for all rl is that the matrix A be
Hurwitz (i.e. r(A)c Cg) and

or equivalently

im b C (Ker c IA).
This condition is equivalent to

c exp (At)b 0

or

Vt E[,

c(Is-A)-lbz=O VsEC.

This decoupling condition [2] is an obvious sufficient condition also for FI =BC of
any rank. However, if the rank of F is larger than one, then the decoupling condition
is in general much too strong.

2.3. Feedback stabilizability of stochastic systems. The results of 2.2 will now
be used to analyse the perfect robust stabilizability of (2). This system is perfectly
robustly stabilizable if and only if there exists a matrix K such that the matrices
{A +BK, Fg;i 1} satisfy the conditions of Theorem 1. This condition can be made
explicit by means of the concept of (A, B)-invariant subspaces and stabilizability
subspaces (see Appendix D). To derive the criterion the following definition is required:

DEFINITION 4. Consider the subspace *7/’g,o defined by the following recursive
algorithm"

,0 := {0},

g, := lim 7/" g,.

As was the case for o/,, this limit is attained monotonically in a finite number of steps.
THEOREM 2. System (2) is perfectly robustly stabilizable if and only if *7/’g, g.
Proof. (i) The condition is necessary. Suppose there exists a feedback matrix K

such that the conditions of Theorem 1 are satisfied with respect to the system

dx(t) (A +BK)x(t) dt + , oiFgx(t) d[3i(t).
il

Then

i!

yields g’ . Moreover, o-(A +BK)c Cg. We claim that g*,. Cj. This is easily
proved by induction. It is obviously true for ] O. Moreover

7/’g, ./C W, which proves the necessity of theyields the inductive step. Hence *
condition.
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(ii) The condition is sufficient. To prove the sufficiency of the condition by means
of Theorem 1, we need to show that there exists a single feedback matrix K such
that for all/’ the (A, B)-invariant subspaces 7/*g,j become (A + BK)-invariant subspaces
with the properties required by Theorem 1, in particular stabilizability and inclusion
of *,. in iF *7/g,.-1. This is not trivial, since we have no guarantee that the
(A, B)-invariant subspaces can be made (A+BK)-invariant by means of the same
matrix K (independent of f). This feature is called compatibility of the (A, B)-invariant
subspaces 7g,. (see Appendix D). In general, compatibility is difficult to analyse. It
is not hard to show that the (A,B)-invariant subspaces *.i are compatible as
(A,B)-invariant subspaces, because they are nested (7/g*,i c 7/’g*,.+1). However, here
we have to prove in addition that they are also compatible with respect to the
stabilizability and inclusion properties. Let the state space be partitioned as

where p is the integer such that 7/g*,, W, *g,,-1 # T, and where the subspaces . are
chosen in such a way that for all f p,

(8)

If the conditions of the theorem hold, then for all f p there exists a feedback matrix

K. such that tr(A +BKi) Cg, and

l/’g*,i ( (3 FT * ]A +BKi}
iei

Let K. be defined by

where xi is the component of x in i. Then we check that the feedback law
2 pK*x Klx -1" K2x2 +" +Kpxp

makes the subspaces //’g*,i (A + BK*)-invariant, and such that 7/’g*.i = fq,F-a *g,j--1.
In a basis compatible with the above partitioning of the state space, A* := A +BK*
and F have hence the form:

0

A2o 0
A* A22

Fi

L 0 A,o 0

Then there exists a transformation of the input and of the state, which does not change
the structure of A* and Fg (by redefining 2, ’, , such that (8) remains true), but
which transforms the input matrix B into the form [9, pp. 543-544]:

B1 0 0
o

0

B2

0 B

Since g*,l is a stabilizable (A, B)-invariant subspace, the pair (All, B) is stabilizable;
there hence exists a partial feedback of the state KlX such that tr(A11+BK) Cg.
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Also ///’g2 is a stabilizable (A, B)-invariant subspace. Hence the pair

A22 B2
is stabilizable. This, however, implies the stabilizability of the pair (A22, BE). Therefore
a feedback KEX2 exists such that o’(AEE+BEK2) CA. Proceeding in this fashion all
subspaces gi are stabilized without altering the structure of A* or F.

From the definition of *g, it is immediately clear that an equivalent statement
to the criterion of Theorem 2 is as follows"

COROLLARY 1. System (2) is perfectly robustly stabilizable if and only iffor some
finite integer k

(9)

Proof. Condition (9) implies

and hence

Y. im Fi 7/’g,k.

/el

Here also the condition can be simplified if there is only one stochastic element
and the corresponding matrix F1 has rank one"

(10) dx(t)=[Ax(t)+Bu(t)]dt+trlblclx(t)d[31(t).

Then the stabilizability condition becomes

*,2
or

im Fx im b //’gX Og (Ker c 1).

This condition implies the existence of a feedback matrix K such that A +BK is
Hurwitz and c(Is-A-BK)-lbl vanishes identically. The condition of Theorem 2 is
then equivalent to the criterion for disturbance decoupling with stability from the
disturbance input imF or im b to the output with KerF or Ker c. In general,
however, the condition of Theorem 2 is much weaker than the disturbance decoupling
requirement.

We notice that the criteria of Theorem 2 or Corollary 1 are also sufficient for
feedback stabilizability in cases where:

(i) the stochastic disturbances are zero-mean but not necessarily white, provided
they have finite second order moments which are uniformly bounded in time,

(ii) stabilizability with respect to other moments than the second moment is
considered.

2.4. High-gain stabilizability of stochastic systems. In this section it is investigated
to what extent the criterion of 2.3 can be relaxed if only stabilizability of system (4)
is required for all o-; this means that for any {cri} a stabilizing feedback matrix K must
exist, such that

(11) 2(A +BK)M +M(A +BK)’ + , O" FiMFi
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is asymptotically stable in the cone of nonnegative definite (n x n) matrices. Since the
matrix K may depend on the noise intensities cri, some elements may go to infinity
as the noise intensities increase without bound. Then there does not exist a single
feedback matrix which stabilizes (4) in the mean square for all noise intensities.
Considering the criterion derived in 2.3, one might be tempted to conjecture that
for this type of stabilizability the conditions of Theorem 2 may be relaxed by replacing

(A, B)-invariant subspaces by almost (A, B)-invariant subspaces [4],
Cg by Cg.

The notions of almost invariant subspaces have been introduced in [3] and
further worked out in [4]. The relevant facts from that reference are summarized in
Appendix D.

It is unlikely that the above conjecture is correct because of the high gains involved
in the transfer function which results when the gains o-i --> o. The criterion of Theorem
3 below is not as strong as the above conjecture, but nevertheless it yields a useful
relaxation of the conditions of Theorem 2; indeed in the last step (A, B)-invariance
may be replaced by almost (A, B)-invariance and Cg by Cg.

THEOREM 3. Let the subspaces 7/’g*,i be as defined in 2.3. Let ’ (5) be as

defined above. Then system (2) is robustly stabilizable for all noise intensities if the pair
(A, B) is stabilizable and

(12) imFi //’(n F)--lCg*.o)+t(N F-lT/’g*,oo).
ii i! ii

Proof. From the definition of the subspaces 7/’g*,i, it follows that there exists a
constant feedback matrix K such that in an appropriate basis and with the control

u(t)=Kx(t)+v(t)

the system representation (2) takes the form

A1,1 A1,2 Alq+l

dx(t) i A2,2 A2’q+l.. x(t) dt+ v(t) dt

0 Aq+lq+

B1

0 0
fi, l,q fi, l,q +

Fi,2,q Fi,2,q +

0 0 0 fi,q,q+
_0 0 0 F.o+,q+_

x (t) dfli(t)

o//.g, The conditions of the theorem implywith o’(Ai,i) (Jig for s q, and with
, o//,g,q.,

that the pair (Aq/l,q/l, Bq/l) is stabilizable and that

Y’. imFi,q+l,q+l //"ff (i Ker Fi,q+l,q+l) +l(il Ker Fi,q+l,q+l)
ii

where and 7/’ are taken relative to (Aq+I,+I, Bq+I). Corollary B.2 and Lemma
A.3 from the appendices then show that the reduced order system

(13) dxq+l(t) =Ao+l,q+lxo+l(t) dt +Bq+lV(t) dt + , triFi,+l,o+xq+l(t) di(t)
i!
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is robustly stabilizable for all noise intensities. The remainder of the proof of the
theorem now easily follows from the triangular structure of the system equation.

Theorem 3 is particularly interesting in the special case considered in (10), where
there is only one stochastic element and the corresponding matrix F1 has rank one.
Then the criterion for robust stabilizability can be derived from the criterion for
perfect robust stabilizability from 2.3 by just replacing (A, B)-invariance by almost
(A,B)-invariance and Cg by Cg" system (10) is robustly stabilizable for all noise
intensities if and only if (A, B) is stabilizable and

im b 7/’ (Ker c 1) -- (Ker c 1).

Suppose in addition that there is only one input: B is a column vector which is denoted
by b. Then the perfect robust stabilizability and the high-gain stabilizability conditions
for system (10) can be expressed in terms of the transfer function

F(s) := Cl(IS -A)-lbl
Cl(IS -A)-lb

We assume that (A, Cl) is a detectable pair [2]; this entails no loss of generality, since
the stabilizability of the pair (A, b) implies that there exists a feedback vector k such
that (A + bk, c 1) is detectable. System. (10) is perfectly robustly stabilizable if and only
if (A, b) is stabilizable, F(s) is strictly proper, and, after cancellation of common
factors, F(s) has no poles with nonnegative real parts. System (10) is robustly stabiliz-
able for all noise intensities if and only if (A, b) is stabilizable and, after cancellation
of common factors, F(s) has no poles with positive real parts.

3. Robust stabilization of uncertain deterministic systems.
3.1. Problem formulation. In this section we consider the deterministic counter-

part of the problem analysed in 2. Here the question is: When can a system with
an unknown nonlinear and/or time-varying elementcan be stabilized bymeans of a linear
state feedback regulator? In 1 we introduced the class of systems (1) which we have
in mind. However, this equation may be written in the following form, which makes
it more alike to the systein considered in 2"

(14) 2(t)=Ax(t)+Bu(t)+ E fi(x(t), t)Fix(t).
i!

This formulation has (1) as a special case. To see this write the nonlinear term in (1)
as

BiFi(x, t)Ci E [Fi(x, t)]r,s[Bi]r[Ci]s

where [Be]r denotes the rth column, [Ce]s denotes the sth row, and [Fe(x, t)]r,s denotes
the (r, s) entry of Be, Ce and Fi(x, t), respectively. The system formulation (14) also
has as a special case the system

(15) 2(t) =nx(t)+Bu(t)+ E E BiiFi(x(t), t)Ciix(t),
ik i!

which is perhaps the most logical starting point for the class of robustness problems
considered here.

DEFINITION 5. We say that (14) is perfectly robustly stabilizable if there exists a
feedback law (3) such that the null solution of

(16) 2 (t) (A +BK)x(t) + E fi(x(t), t)Fix(t)
ii
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is asymptotically stable in the large for all bounded nonlinear and/or time-varying
gains fi(x, t). We assume throughout that the gains fi(x, t) are sufficiently smooth, e.g.
Lipschitz, such that the existence and the uniqueness of the solution of (1) is ensured.
We say that (14) is robustly stabilizable for all uncertain gains if for any set {mi; 1},
there exists a control law (3) such that the null solution of (16) is asymptotically stable
in the large for all fi(X, t) satisfying Ifi(x, t)l < mi.

Note again that in the second formulation K may depend on the bounds mi,

while in the first formulation this is not possible. The results which will be obtained,
actuallyimply the stabilizability of the system with the structure of (14) in which the
nonlinearity fi is any 2-input/output stable operator. The robust stabilizability prob-
lem for the related but more restricted class of systems

(15’) 2(t)=Ax(t)+Bu(t)+Gf(Hx, t)

has been studied previously by Molander [5] in essentially the same setting. Without
actually introducing ahnost invariant subspaces he does obtain results which are
important special cases of ours. Specifically he shows that (15’) is robustly stabilizable
if the system (A, B, G, H) may be stably almost disturbance decoupled in the 5fa-sense.
This result is a special case of our Theorem 6; it requires that

im Gc 7/’g* (Ker H) + (Ker H).

A similar result has been obtained independently in [4, Thm. 17].

3.2. Criterion for perfect robustness. In order to derive a criterion for robust
stabilizability we first consider the uncontrolled system

(17) 2(t)=Ax(t)+ _, fi(x(t), t)Fix(t)
i!

and investigate when the null solution of this system is asymptotically stable in the
large for all bounded functions fi(x, t). Our sufficient conditions are:

(i) the matrix A is Hurwitz;
(ii) the matrices Fi are nilpotent;
(iii) the matrices {A, Fi, l} can be transformed to upper block triangular form

by means of the same similarity transformation.
Expressed geometrically this yields"

THEOREM 4. The null solution of (17) is asymptotically stable in the large for all
bounded gains fi(x, t), if the matrix A is Hurwitz, and 14/’ g, with 74/’ defined
preceding Theorem 1.

This result follows immediately from Theorem 1. By means of Theorem 4 and
the ideas used in proving Theorem 2 from Theorem 1, we obtain"

THEOREM 5. Let *Ug, be as in Definition 4. Then (14) is perfectly robustly
stabilizable if *

The condition of Theorem 5 is of course equivalent to Yii im Fi c g*,q for some
integer q. The criteria of Theorems 4 and 5 can be simplified in the cases

(18) (t) =Ax(t)+Bu(t)+B1Fl(X(t), t)Cx(t),

in which case the criterion requires that the system

2 (t) Ax (t) +Bu (t) +Bld (t), z (t) C1x (t)

should be disturbance decouplable with internal stability by state feedback [2]. In the
more general situation

2(t)=Ax(t)+Bu(t)+ E BiFi(x(t), t)Cix(t),
i!
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the criterion requires that the system

A(t)=Ax(t)+Bu(t)+ Bdg(t), zi(t)=Cx(t), el,
il

should be strictly triangularly disturbance decouplable with internal stability in the
sense that there should exist a feedback K with r(A +BK)c Cg such that in the
closed loop system

(t) (A +BK)x(t)+ Y Bidi(t), zi(t)=Cx(t), el,

there should exist a permutation of such that the resulting transfer function
(dl, d2, ", dk)+-(zl, z2, , zk) is strictly upper block triangular.

3.3. Criterion for robustness for all uncertain gains. As in 2.4, it is tempting
to conjecture from Theorem 5 that robustness for all uncertain gains would be
achievable under the conditions of Theorem 5, but with almost (A, B)-invariance
replacing (A, B)-invariance and Cg replacing Cg. However, since the stabilizability
condition in this case comes down to impulse response quenching in the -sense, it
is not possible to replace Cg by Cg (see the example at the end of Appendix C).
Nevertheless it is possible to use almost (A, B)-invariant subspaces in the last step of
the algorithm of Theorem 5.

THEOREM6. Let the subspace 7/’g.oo* be as defined in 2.3 and let
(ff]ieFY [/’g, be as definedpreceding Theorem 3. Then (14)isrobustly stabilizable

for all uncertain gains if (A, B) is stabilizable and

(19) Y imF c 7/’g, + (q F-l//’g*,oo
i! i!

Proof. The proof of this theorem follows exactly the same route as the proof of
Theorem 3 except where Lemma A.3 of Appendix A was used. Here instead Proposi-
tion C.1 of Appendix C yields the result.

Note that condition (19) could equivalently be expressed as

(20) Y im F/c 7/" fq F [/’g, + 1"] F YAg*,
i! \/el i!

This shows more clearly the relationship between Theorems 3 and 6.
It is straightforward to specialize the result of Theorem 6 to the case where, as

in equation (10) for the stochastic case, there is only one nonlinear term; the corres-
ponding matrix F1 has rank one, and there is only one input:

(21) (t) Ax (t) + bu (t) +f(x (t), t)bac lx (t)

where the same notation as in (10) is used, and b is a column vector. Suppose (A, cl)
detectable and (A, b) stabilizable. This system is perfectly robustly stabilizable if the
transfer function F(s), defined in {} 2.4, (i) is strictly proper and (ii), after cancellation
of common factors, has only poles with negative real parts. It is robustly stabilizable
for all uncertain gains if (ii) holds.

The conditions of Theorem 3 are in general not sufficient to guarantee robust
stabilizability for all uncertain gains in the deterministic case. This distinction is an
intrinsic one and may be illustrated by means of (21) and

(22) dx(t) =Ax(t) dt +bu(t) dt +o’lbClX(t) dl(t).
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Robust stabilizability of (22) for all noise intensities requires for any e > 0 the existence
of a feedback vector k such that r(A + bk) c Cg and

w(t)2 dt

where

w t++Cl exp [(A +bk)t]bl,

H: s ++cl(Is-A-bk)-lbl.
On the other hand, robust stabilizability of (21) for all uncertain gains requires

I0 Iw(t)l or supdt<=e [H(]’)I <_- .
Take for example

1’ bl= 0’ Cl----[0 1].

Then system (22) is stabilizable for any noise intensity. However, (21) is not perfectly
robustly stabilizable. Even for linear time-invariant gains f(x, t)= k, there does not
exist a feedback strategy which stabilizes the system at the same time for all gains
satisfying [k[< kmax if kmax > 1. This is in agreement with the above reasoning. Indeed,
taking

u (t) kx (t) [-a -fl ]x (t)

yields the closed loop transfer function

H(s)=
s +(l+a +/3)s +a

The condition r(A + bk) c Cg requires a > 0, 1 + a +/ > 0. Now ]H(0)[ 1 cannot be
influenced by a and/, whereas

1
IH0"o)l &o =2(1 +a +/3)2rr

can indeed be made arbitrarily small.

4, Discrete-time systems. A similar analysis can be performed on the stabilizabil-
ity of the discrete-time stochastic system

(23) Xt+l Ax, + But + Y o’iFixtfit
i!

where the scalar processes fit are zero mean uncorrelated normalized white noise
processes, and with respect to the robustness of the nonlinear discrete-time determinis-
tic system

(24) Xt+l Axt +But + fi(xt, t)Fixt.
i!

It follows from Appendix A that the criteria for perfect robust stabilizability of
(23) and of (24) are exactly the same as in the continuous-time case, provided of
course Re (s) < 0 is replaced by [z[< 1. However for robust stabilizability of (23) for
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all noise intensities or robust stabilizability of (24) for all uncertain gains, it is not
possible to relax the conditions as much as in the continuous-time cases. For (24) in
fact no relaxation has been obtained. For robust stabilizability for all noise intensities
of (23) it is possible to replace the condition Iz l< 1 by Iz I<= 1 in the last step.

The distinction between discrete-time and continuous-time systems can be seen
as follows. The feedback strategy u (t) Kx (t) stabilizes the stochastic continuous-time
system (2) if and only if the linear mapping

(25) M+--L(M) := (A +BK)M+M(A +BK)7" + E rF,MF
il

has only eigenvalues with negative real parts. The feedback strategy ut Kxt stabilizes
the stochastic discrete-time system (23) if and only if the linear mapping

(26) M+-L(M) := (A +BK)M(A +BK)T + E riF,MF
il

has only eigenvalues with magnitude smaller than 1. The eigenvalues of Ld(M) are
larger than the eigenvalues of the mappings

2 TM-Lg(M) := o’gFgMFg.

The eigenvalues of Li(M) are rh(F)h(Fi), where h(Fi) and h(Fi) are arbitrary
eigenvalues of F. Hence the existence of a stabilizing feedback for all noise intensities
requires that the matricesF have only zero eigenvalues. This is also true if the feedback
matrix K is allowed to depend on the noise intensities {rg}, hence for the property of
robust stabilizability for all noise intensities. A similar conclusion is not valid however
for continuous-time systems.. ExamlMe. In this section the application of the criteria developed in 2, 3,
and 4, is illustrated on the example [2] of a second-order system with the data:

A=
0

b= F=bc, b= c=[a 1].

The continuous-time and discrete-time, stochastic and deterministic, cases will be
examined"

(27)

(28)

(29)

(30)

dx(t) =Ax(t) dt +bu(t) dt +rxFxx(t) da(t),

A(t) Ax(t) + bu(t) +fl(X(t), t)FlX(t),

Xt+l =Axt + but +o’lFlXtflt,

Xt+l Axt + but +f(xt, t)FlXt.

For the continuous-time case we obtain"

(i) a < 0: * * */’g, {0}, /’g (F-1,) ={o},

(ii) a 0:

(iii) a>0, a#.5"

(F-1 *7/’g,) im b,

, , , [1]V’g, {0}, 7/’r (F-1g,) im
__0

b* (F]-lg,) im b,

g, im ’(F-g, o) im b,
--a

(iv) a 5" *"--. c/’ g,
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For the discrete-time case the results are:

(i) a =.5’

(ii) lal< 1,

(iii) [al 1"

(iv) [a[>l’

Hence the stabilizability criteria are derived
(i) The stochastic continuous-time system (27) is perfectly robustly stabilizable

if a .5. It is robustly stabilizable for all noise intensities if a _-> 0.
(ii) The deterministic continuous-time system (28) is perfectly robustly stabiliz-

able if a .5. It is robustly stabilizable for all uncertain gains if a > 0.
(iii) The stochastic discrete-time system (29) is perfectly robustly stabilizable if

a .5. The same condition holds for robust stabilizability for all noise intensities.
(iv) The deterministic discrete-time system (30) is perfectly robustly stabilizable

if a .5. No relaxation of this condition is obtained for robust stabilizability for all
uncertain gains.

Appendix A. The first part of this appendix is relevant to the proof of Theorem
1. We consider the following linear mappings in the space of (n xn) symmetric
matrices:

(A.1) M>LI(M) :=AM+MAT + Z o’iFiMFi
i=l

(A.2) M ++L2(M):= o’2Fi exp (Ar)M exp (A) dr FL

(A.3) M+--L3(M):=AMA T + o’iFiMFi
i=1

(A.4) M+-+L4(M):= Y o’Fi E AiMAriF,
i=1

where L2 is only defined if A is a Hurwitz matrix, i.e. r(A)c Cg, and where L4 is
only defined if A has only eigenvalues smaller than 1 in modulus. Since L2 and L4
map the cone of nonnegative definite matrices into itself, it follows that the largest
eigenvalue of L2 and L4 is real and positive, and that it increases with increasing
0"17 0"27 O’l.

LEMMA A.1. (i) The linear mapping L has all its eigenvalues in Cg if and only
if the matrix A is a Hurwitz matrix and the mapping L2 has only eigenvalues with
modulus smaller than 1.

(ii) The linear mapping L3 has all its eigenvalues inside the open unit disk of the
complex plane if and only if all eigenvalues of the matrix A and of the mapping L4 are
smaller than 1 in modulus.

Part (ii) follows from an earlier paper [10]; part (i) is proved in a similar fashion
and is left to the reader. The lemma can also be obtained using the analysis of [11].
Lemma A. 1 yields the following theorem"
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THEOREM A.1. (i) The mapping L1 has all its eigenvalues in Cg for all {eri; e !}
if and only if the eigenvalues of the mapping L2 vanish for some nonzero values of
erl, , err. In this case all eigenvalues ofL2 vanish for all {eri; e l}, i.e. La is nilpotent;
moreover, the eigenvalues ofL are independent of {ere; e l}.

(ii) The mapping L3 has all its eigenvalues in the open unit disk g :={z e CI]zl < 1}
for all {eri; e l} if and only if the eigenvalues of the mapping L4 vanish for some
nonzero values of er, , erl. In this case all eigenvalues ofL4 vanish for all {eri; e l},
i.e., L4 is nilpotent; moreover, the eigenvalues ofL3 are independent of

Let the subspaces o/. and 74+ be defined as in 2.2, preceding Theorem 1.
LEMMA A.2. The following statements are equivalent:

(i) 4/’+ ,
(ii) La is nilpotent,
(iii) L4 is nilpotent.
Proof. Only (i):>(ii) is proven; (i) => (iii) is completely similar. We need to prove

that L(M) 0 for allM =Mr and m >=n(n + 1)/2.
(i) The condition is sufficient. Let x e /4/). Compute Lz(xxT). Because of the

definition of 74#., we have

and

exp (At)x e

Fi exp A x e lI/’. (Vi el).

Hence

L2(xxT) ’. yky [
k

with all yk e 74._1. Repeatedly applying L2 yields

L(xx T) =0
for a _->f. This proves the sufficiency of the condition since any symmetric matrix can
be expressed as the linear combination of dyads of the form xx 7".

(ii) The condition is necessary. If 7g’+ # W, then

kl/’+=-(i,Fl[+lA)
Let x*e and x* 7g+. Consider La(x*x*); from the above property of /’+ it
follows that Fi exp (At)x* e tt/’+ cannot be true for all and all t. Hence

TL2(x*x*’r) ytyt,
k

where at least one of the vectors yg 7///’+. Repeatedly applying L2 yields that L2(x *x .T)
cannot vanish for any integer c.

The second part of this appendix is relevant to the proof of Theorem 3.
LEMMA A.3. For all {F e l} and {Ki <; e l} there exist bounds {aij > 0; i, ] e I}

such that system (5) is mean square asymptotically stable for all noise intensities
{erileri <-Ki} and all system matrices A such that er(A) c Cg and

Io llFi exp (At)F.II2 dt < ii (i,] el).
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Proof. The largest eigenvector A* of the mapping L2, defined by (A.2), corres-
ponds to a nonnegative definite eigenvector M* which, for nonzero A *, is of the form

M*= E FNr.
jel

Let M. denote F.N.Ff. We have/V. _-> 0, M. _-> 0,/" e 1. The eigenvalue equation

A’M* i o’iFi exp (A’)F.N.JZ exp(ATr)d,rFT

leads to

---i! Io + T +T TA’M* o’Fi exp (Ar)F./F.N.F F exp (A) drF/

whereF[ denotes the generalized inverse [12, pp. 142-144] of the matrix F.. This yields

A’M* 2 o’/Fi f0 exp (A-)F..F+M..F+rFT,.. ,.i exp (ATr) drF
i!
jei

and

Il IIM*I[- E tr/2F[ 2 f life exp (A)F.II= d IIM.II,
ii

The matrix M* can be taken to be of unit norm; since M*=M. and since the
matrices M. are symmetric and nonnegative definite, then ]]MII--< 1, ] 1. Hence the
eigenvalues of the mapping L2 are smaller than 1 in modulus if the constants cq are
sufficiently small.

Appendix B. In this appendix the following problem is investigated" let A, B,
G, H, respectively, be (n xn), (n xm), (n xq), (p xn) matrices; we want to state
conditions on these matrices such that for all e > 0 there exists an (mx n) feedback
matrix K such that

(i) r(A +BK) = C,

(ii) Io IIw(t)ll= dt <= e

where

WK" R + +--H exp [(A + BK)t]G.

This property is called impulse response quenching in the L2-sense with internal
asymptotic stability. It is well known that a constant K exists such that (i) is true and
WK 0 if and only if

im G c ?/’* (Ker H).
If it is only required that (ii) hold, i.e., that WK can be made arbitrarily small in the
Sf2-sense, then one could expect two refinements"

(i) 7/’*g(Ker H) may be replaced by 7/’ff (Ker H) since by a small feedback the
eigenvalues can be shifted from the imaginary axis into the left half plane.
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(ii) im G may be allowed to have a component in Y * (Ker H), since in that space
it is possible to make WK arbitrarily small by high gain feedback [4].

The following result is indeed obtained.
THEOREM B.1. Impulse response quenching in the 2-sense with internal

asymptotic stability is possible if
(i) (A, B)is stabilizable (relative Cg),

(ii) im G = Y * (Ker H) +V (Ker H).
The proof of this theorem proceeds via a number of propositions and lemmas"
PROPOSITION B.1. Assume that (A,B) is stabilizable (relative Cg) and that

Xo F (Ker H). Consider now

J(xo):=inf f [ly(t)ll dt
Jo

subfect to: Ax +Bu, y Hx, x (0)= Xo, u 2(0, oo), x 2(0, oo). Then J(Xo)= O.
In order to prove this proposition, we start with a lemma.
LEMMA B.1. Assume (A, B) controllable and o.(A) {s CIRe (s) 0}. Then

where

lim W-1(0, tr) 0

t
exp (-A do’.W(0, t):= exp (-AO.)BB

Proof. It suffices to prove that aT"W(O, t)a =Mtllall2 with lim,rM =oo. By
controllability of (A, B) there is a 6 > 0 such that

B T (-a o’)a d _-> Ila ,exp

Now, since r(A)= {s C[Re (s)= 0}, the solutions of =-Ax have the property
that there exists T > 1 such that IIx(T)ll=_->llx(0)ll= (to see this, assume A in Jordan
form" if A is semisimple, it is immediate, otherwise it follows from some simple
estimates). This yields

NT

Io liB (-Ao’)a = d >-_ N6 [la 2.exp

This yields the desired growth of W(0, t).
LEMMA B.2. Assume (A, B) controllable, Xo given and o.(A) {s C]Re (s) 0}.

Then, for all e >0, there exist T >0 and u =2(0, 0(3) such that the solution of
ax +Bu, x (0) Xo, satisfies x (T) 0 and Ilu IIe2o.) <-- e.

Proof. Consider, for tr fixed, J(xo):=min’orllu(t)llZdt subject to =ax +Bu,
x(O) Xo, x(tr) 0. It is well known (see [13, p. 137]) that J(xo) xW-a(O, tf)Xo. The
result follows then from Lemma B.1.

Proof of Proposition B.1. Since (A, B) is stabilizable (relative Cg), there exists K
such that

(A +BK)?# (Ker H) F (Ker H),

o.[(A +BK)IV (Ker H)] Cg,

o.[(A +BK)(mod 7# (Ker H))] c Cg.
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By suitably choosing the basis, this yields

=2, A+BK=[Ao
with

o-(A 1) {s ClRe (s) 0},

A021

B1] H [0 H2].o’(A2) c Cg, B
B2

Furthermore, since (A, B) is stabilizable, (A1, B1) will be controllable. From Xo
7/’’ (Ker H) it follows that H exp [(A + BK)t]Xo vanishes for all t. Lemma B.2 implies
that for all e >0, there exists u and T>0 such that x(0)-xo, and
x (T) T2. This yields

=H2 J0 exp [A2(t-z)]B2u(r) dry(t)

which, since r(A) c Cg, is the convolution of an l-kernel {t --exp (A2t)B} with an
arbitrary small u 2(0, ). Hence y is arbitrarily small in the 2-norm. It is also
immediate that the corresponding x 2(0, ). This yields J(xo)= 0, as desired. [3

PROPOSITION B.2. Assume Xo ’ (Ker H). Consider now J(Xo) :=
inf Ily (t)ll dt, subject to 2 -Ax +Bu; y nx; x(O)= Xo, u .2(0, c), x .2(0, c).
Then J (Xo) O.

Proof. That o [[y (t)ll dt vanishes without the constraints u s 2(0, c) and x s
(0, ) follows immediately from [4, Thm. 10]. However, it is easily seen by
examining the proof that the u and x used for showing that this infimum is zero are
indeed 2-functions. This yields the proposition. [3

Proof of Theorem B.1. Consider the least squares control for the system 2
Ax +Bu with cost functional, with e > 0

Io (llull / llxll=) / llHxll dt.

Let J (Xo) be the optimal cost with Xo x(0) and u Kx the optimal control law.
From Proposition B.1 it follows that lim_,o J (x0)= 0 for Xo 7/’ (Ker H) and from
Proposition B.2 this follows for x0 s* (Ker H). Since (A, B) is stabilizable (relative
Cg), u =Kx is an asymptotically stabilizing control law with J(xo)->0 Ilnxll dt
arbitrarily small for e $0 and XoS(KerH)+TA(KerH). This yields the
theorem. 3

COROLLARY B.1. Simultaneous quenching of the impulse responses

Hi exp [(A +BK)t]Gi (i k, ] 1)

in the .e-sense, with internal asymptotic stability (by means of a common feedback
matrix K) is possible if

(i) (A, B) is stabilizable (relative Cg),
(ii) Yi, im G. C : (1" ik Ker Hi)+ f’ (1’- ik Ker Hi).

This corollary is an immediate consequence of Theorem B. 1. The next result follows
directly from Corollary B.1 and Lemma A.3 in Appendix A.

COROLLARY B.2. Consider the linear mapping

M-LK(M):= E o’Fi f exp [(A +BK)z]M exp [(A +BK)rz]dzFS
i! .0
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in the space of (n n) symmetric matrices. Then for all {0"i} there exists a matrix K such
that the eigenvalues ofL: (M) are smaller than 1 in modulus if

imFi c((q KerFi)+ 7/’((q KerF/).
i! i! i!

Appendix C. In this appendix a question similar to that in Appendix B is con-
sidered, but now with respect to the fl-norm. With the same notations we say that
impulse response quenching in the l-sense with internal asymptotic stability is possible
if for all e > 0 there exists a feedback matrix K such that

(i) r(A +BK) Cg,

(ii) Io Ilw(t)lldt <= .
The obtained condition is slightly stronger than the criterion of Theorem B.1; it is
expressed by the following result:

THEOREM C.1. Impulse response quenching in the l-sense with internal
asymptotic stability is possible if

(i) (A, B) is stabilizable (relative Cg),
(ii) im G c (Ker H) + Vg* (Ker H).
Proof. (i) It may be shown that there exists an (A, B)-invariant subspace 7/’1 and

a matrix K1 such that (A +BK1)V1 V1, tr((A +BK1)IV1)c Cg, and

* (Ker H) + 7/’g* (Ker H) (KerH) 7/’1.

(ii) By the results of [4, Thm. 12] there exists an (A,B)-invariant
and a matrix K such that -,o ’ (Ker H), (A +BK)
r((A +BK)1) Cg, and

Io Iln exp [(A + BK)t]G’II dt <- e

where G" im G f3Y - is the canonical injection.
(iii) Let K 0//be defined by K[7#1 KIIV1, KIg/ KI and r(A +BK)

Cg. The stabilizability of (A, B) guarantees the existence of such a K. Also

Io [IH exp [(A + BK)t]G[I dt Io [[H exp [(A +BK)t]G’II dt <-e

which yields Theorem C.1.
Notice the difference between the conditions (ii) in Theorems B.1 and C.1. In the

former case im G should lie in the almost stabilizable almost (A, B)-invariant subspace
"contained" in Ker H; in the latter case im G should be part of the stabilizable almost
(A, B)-invariant subspace "contained" in Ker H. It is not possible to replace condition
(ii) of Theorem C.1 by the slightly weaker condition (ii) of Theorem B.1. This is
illustrated by the following example:

A=
-1’

B=
1

G=
0’ H=[O 1].
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Then

[1] *(KerH)={O}, (KerH)=[1]7/(KerH)=im
0

g
1

This shows that condition (ii) of Theorem C.1 is not satisfied; it is shown in 3.3 that
impulse response quenching in the l-sense with internal asymptotic stability is not
possible. On the other hand, condition (ii) of Theorem B. 1 holds, and impulse response
quenching in the 2-sense is possible.

COROLLARY C. 1. Simultaneous quenching of the impulse responses

Hi exp [(A +BK)t]Gj (i k, j 1)

in the L-sense with internal asymptotic stability (by means of a common feedback
matrix K) is possible if

(i) (A, B) is stabilizable (relative Cg),
(ii) j, im G C((qik Ker Hi) + g* (ik Ker Hi).

The result of Corollary C. 1 can be used to derive a condition for stabilizability of the
nonlinear time-varying system

F

(C.1) 2(t) Ax(t)+Bu(t)+[F F2 Ft]M(x(t), t) F2 x(t)

with x I". The matrices Fi are square (n n) matrices. The gain matrix M(x, t) is
of dimension (ln ln). Let a linear time-invariant feedback u(t)= Kx(t) be applied
to this system. Then, according to the small loop theorem [14], the system is p-input-
output-stable if

(i) tr(A +BK) c Cg,
(ii) IlM(x, t)ll<a Vx,
(iii) maxi.il [IF, exp [(A + g)t]F,.ll dt < /Zz.

Hence Fix(t) 2(0, oo); the Hurwitz character of A +BK then shows that the solution
of (C.1) tends to zero as for all initial conditions. Hence the null solution of
(C.1) is asymptotically stable in the large. Sufficient conditions for the existence of a
feedback matrix K satisfying (i) and (ii) can be derived from Corollary C.1. Consider
now the special case that M(x, t) is a block diagonal matrix

M(x) diag [f(x, t)F f2(x, t)F f(x, t)F?]

when the functions fi are scalar and F- denotes the generalized inverse [12, pp.
142-144] of the matrix Fi. Then (C.1) reduces to (14); the following result is hence
obtained"

PROPOSITION C.1. For any > 0 there exists a constant feedback matrix K such
that the null solution of
(C.2) (t) (A +BK)x(t)+ , fi(x(t),t)Fix(t)

iel

is asymptotically stable in the large for all nonlinear gains satisfying

Ifi(x, t)l < a (i 1, Vx,

if (A, B) is stabilizable (relative Cg), and if

imFi c(i, Ker Fi)+ 7/’*(f’) Ker Fi).
il
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Appendix D. Following the suggestion of one of the reviewers we have collected
in this appendix the relevant facts on (A, B)-invariant and almost (A, B)-invariant
subspaces used in this paper. More details may be found in references [2], [3], [4].

Consider the system k =Ax +Bu with x f := R". A subspace c is said to
be an (A, B)-invariant subspace if there exists a matrix K such that is (A +
BK)-invariant (i.e. such that (A+BK)r ). An equivalent property is that satisfies

where 3 := im B.
Let V(ff’) denote the set of all (A, B)-invariant subspaces contained in a given

subspace if’. Then this set is closed under subspace addition, i.e. 1, 2 V(ff’)=>
1 +2 V(5). Hence there exists a largest (A, B)-invariant subspace in 6, which is
denoted by 7/’*(5). Systematic finite and linear algorithms are available [2, 3] to
compute 7/’*(if’). A related concept, denoted by (if’), is defined as follows

V’g* (9) := sup {T" V(SC)[:IK such that (A +BK)T" T" and o-(A +BK) c Cg}.

It is easily proven that this subspace is well defined. It is called the largest stabilizability
subspace contained in 5v and is readily computed from *(5v) [2]. Finally 7/’ is
similarly defined with Cg replacing Cg in the definition.

Let Y/i, k, be a family of (A, B)-invariant subspaces. Then, by definition, there
exist matrices Ki such that (A +BKi)i Vi. However, there is no guarantee that there
exists a single K such that (A +BK) for all k. If this is the case, then the
subspaces F’ are said to be compatible (A, B)-invariant subspaces. It is easy to prove
that the subspaces V’ are compatible, for example, if they are nested (c C 2 C. C

7/’k), but in general compatibility is a difficult matter to verify.
A further generalization leads to controllability subspaces. Thus

Yt*(Sv) := sup{ V(6e)lfor K such that (A +BK)V’ 7/’,

there holds (A +BK[ (-1 im B) F’}.

Again, Yt*() is well defined. For equivalent definitions and algorithms for computing
Yt*(6) we refer the reader to [2].

An interesting generalization of (A, B)-invariance is almost (A, B)-invariance.
These notions have been introduced in I-3] and further worked out in [4]. The largest
almost (A, B)-invariant subspace contained in a given subspace 6 is the subspace of
initial states in 5 for which there exists an input such that the resulting state trajectory
is almost contained in 6. However, this depends on the topology chosen. In particular,
we obtain a somewhat larger subspace if we measure "almost being contained in" in
the v-sense (1 <_-p <) rather than in the -sense. Similarly, the largest almost
controllability subspace contained in 6 is the subspace of initial states in S’ which, by
means of an input, may be transferred to any terminal state in that subspace, such
that the resulting state trajectory is almost contained in 5. Let 7#a* (5) and 7/’* (S)
denote respectively the supremal -almost-controllability and the p-(1 _-<p <
o)-almost-controllability subspace contained in 6. Similarly Yta*(S) and
denote respectively the supremal o-almost-(A, B)-invariant and the p-(1 <=p <
)-almost-(A, B)-invariant subspace contained in 6.

In the present paper we use primarily gt (5). We therefore define it formally:

gt ’ (5):= sup Rb (5)
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where

Here

and

Rb(Q) := {lb [X0, Xl lbZ:lT>O, such that for all e >0,

there exists x Zx with the properties: (i) x (0) Xo,

(ii) x(T) xl, and (iii)lld(x(t), )llSel(O.T) <- e}.

d (x (t) ) := inf [Ix (t) s

Ex :- {x R lx is absolutely continuous and ::lu

such that 2 (t) Ax (t) +Bu (t) almost everywhere}.

This definition merely says that Y () is the largest subspace of in which any two
states can be transferred to one another while keeping the 5l-norm of the distance
of the state trajectory to 5 arbitrarily small. This has an obvious interpretation in
terms of l-(almost) output nulling for the system 2 =Ax +Bu, z Hx, with 5
Ker H. The subspace (5) is readily computed by means of the following finite
linear recursive algorithm:

Then

k+l= im B +A(5 (’1 k),

eo {0}.

: (5) 5o := lim

where this limit is obtained monotonically in at most Min [codim (im B), 1 + dim
steps.

The subspace F() may be defined completely analogously as

7/’ () := sup V()

where

Vb () {7/’b ]VXo Ub and e > 0=lx 2; with the properties’

(i) x (0) Xo and (ii)lid (x (t), f)ll(o,) }.

In [4, Thm. 10] it is proven that : (5) *(5)+9’ (3). Its main use in feedback
system synthesis stems from the following result [4, Thm. 12].

THEOREM D.1. Consider the finite dimensional linear system 2 Ax +Bu, z
Hx. Let 1 <-_ p < oo. Then for all e > 0 there exists a matrix K such that

if and only if
im G c 7/’ (Ker H).

This theorem is also the basic tool for our results on robust stabilizability.
However, a number of refinements were needed (Theorems B.1 and C.1). We note
in closing that, because 1 _-<p <, b* (5) and Ub* () need not be contained in 0.
This fact is amply discussed in [4].
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GEOMETRY OF THE ALGEBRAIC RICCATI EQUATION, PART I*

MARK A. SHAYMANS-

Abstract. We synthesize and generalize the two principal methods for classifying the set of real
symmetric solutions of the algebraic Riccati equation (ARE) to obtain a result which combines the
advantages of both existing methods. The geometric approach we take also clarifies the roles of ontrollability
and observability in the theory of the ARE. In addition, we discuss the properties of a special subset of
the solution set of the ARE, the unmixed solutions, and find that they exhibit many of the same properties
as the extremal solutions, K and K-.

Key words, algebraic Riccati equation, linear quadratic control, Hamiltonian matrices

1. Introduction. In this paper we consider the algebraic Riccati equation (ARE)
-A’K KA +KBB’K O 0, where A, B and O are real matrices of dimensions
n x n, n x rn and n x n, respectively, and O O’. (We use prime to denote matrix
transpose.) For the most part we shall be concerned with the set of real symmetric
solutions of the ARE which we denote by F. In [19] (this issue, pp. 395-409), we
discuss the topological properties of F. In contrast, this paper considers methods for
describing F at the set-theoretic level.

There are two principal methods for classifying the set of solutions of the ARE.
The first method relates the set of real symmetric solutions of the ARE to a certain
class of n-dimensional invariant subspaces of the associated 2n x 2n Hamiltonian matrix

H =-
-A’-O

For this reason we refer to it as the Hamiltonian matrix method. Its development is
due to many people including A. G. J. MacFarlane [10], J. E. Potter [14], K.
Mrtensson [11] and A. C. M. Van Swieten [22].

The second method of classifying the set of real symmetric solutions of the ARE
was introduced by J. C. Willems [23] and was extended by W. Coppel [5]. If K/

denotes the maximal element of F, then this approach relates F to the set of invariant
subspaces of the matrixA -BB’K/. We will refer to this approach as Willems’ method.

The Hamiltonian matrix method and Willems’ method are both very well known.
However, to the best of our knowledge, the relationship between the two approaches
has never been described. As we indicate in the next section, the two methods have
different strengths. Thus, it is desirable to have a classification theorem which combines
the two results. This is the principal motivation for this paper. We obtain a classification
of the set of real symmetric solutions of the ARE which both unifies and extends the
two existing methods. In the process of doing so, we also describe the geometric roles
of controllability and observability in the theory of the ARE, and show that they are
precisely dual. In addition, we describe the properties of a special subset of F consisting
of what we call unmixed solutions and show that these solutions share several of the
useful properties of the extremal solutions K/ and K- This is particularly interesting
because the concept of unmixed solutions extends to more general (even nonsquare)
ARE’s than the equation -A’K -KA +KBB’K O 0 of linear least squares station-
ary optimal control, whereas the concept of extremal solutions does not generalize.

* Received by the editors July 11, 1981, and in revised form May 10, 1982. This research was partially
supported by the U.S. Army Office of Research under grant DAAG 29-79-C-0147.

" Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 63130.

375



376 MARK A. SHAYMAN

These "non-Hamiltonian" ARE’s are useful in various engineering applications, such
as in the theory of singularly perturbed systems [13].

2. Comparison of existing classifications. In this section we discuss the advantages
and disadvantages of the two principal classification methods.

The following theorem describes the Hamiltonian matrix method for classifying
F. The version of this result which we state is essentially that contained in [22].

THEOREM 1. There is a one-to-one correspondence between the set of real solutions
of the ARE and the set of n-dimensional H-invariant subspaces which are complemen-
tary to the n-dimensional subspaceSp [t]. (Sp denotes the column span of a matrix.)
This correspondence assigns the invariant subspace S(K)= Sp[] to the solution K. The
matrix of the restriction of H to S(K) with respect to the basis given by the columns o
[] is A -BB’K. Furthermore, K is symmetric if and only if x’Jy O, for all x, y S(K),
where J is the 2n x 2n matrix [_ ].

Proof. If S is an n-dimensional subspace which is complementary to Sp [], then
there exists an n x n matrix K such that S Sp []. If S is also H-invariant, then there
exists an n x n matrix R such that

A -BB’

The top equation implies that R A BB’K. Substituting for R in the second equation
then gives -O-A’K K(A-BB’K), which shows that K is a solution of the ARE.
Conversely, if K satisfies the ARE, then

-0 -A’ (A -BB’K),

which shows that S(K) is H-invariant and that A-BB’K is the matrix of HIS(K)
with respect to the basis given by the columns of []. Finally note that

if and only if K K’, which proves the last assertion.
If S is a subspace of z, such that x’Jy =0, for all x, y S, then we call S a

Lagrangian subspace. (The term "Lagrangian" is sometimes reserved for n-
dimensional subspaces which satisfy the indicated condition, but we do not make this
restriction.) Theorem 1 gives a one-to-one correspondence between F and the set of
n-dimensional Lagrangian H-invarint subspaces which are complementary to Sp [].

Before discussing the second principal classification, Willems’ method, we consider
the relationship between Theorem 1 and a result due to J. Rodriguez-Canabal [16],
[17]. This result extends a method due to R. W. Bass and W. E. Roth [1], [4], [18]
and is based on the factorization of the characteristic polynomial of H. Let h (s) be
the characteristic polynomial of H, and let K be a real symmetric solution of the
ARE. Then Rodriguez-Canabal’s theorem states that there exists a polynomial g(s)
such that h(s)=(-1)"g(s)g(-s) and g(H)[] []. To see why this is true, let K be
any real symmetric solution of the ARE. Then

[ ]-1[ A -BB’] =[A ’K
0 -(a -’g’]"

This equation implies that Sp [] is H-invariant and that A-BB’K is the matrix

H Sp [] with respect to the basis given by the columns of []. It also shows that if
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we let g(s) be the characteristic polynomial of A -BB’K, then h(s) (-1)ng(s)g(-s).
Since g(s) is the characteristic polynomial of HI Sp [], g(n) annihilates every vector
in Sp []. Thus, g(H)[] [].

In contrast to Theorem 1, the Rodriguez-Canabal result is not a one-to-one
correspondence. First, given a polynomial g (s) satisfying h (s) (- 1)"g (s)g (-s), there
might not be any real symmetric solution K of the ARE satisfying g(H)[]=[o].
From Theorem 1, we see that this will occur if and only if there is no n-dimensional
Lagrangian H-invariant subspace which is complementary to Sp [] and whose minimal
annihilating polynomial divides g(s). Secondly, given g(s) satisfying h (s)
(-1)"g(s)g(-s), there can be more than one real symmetric solution K satisfying
g(H)[/]=[0]. This occurs if and only if there is more than one n-dimensional
Lagrangian H-invariant subspace which is complementary to Sp [] and whose minimal
annihilating polynomial divides g(s). For examples of both possibilities (nonexistence
and nonuniqueness) see [17].

It is well known [23] that if (A, B) is controllable and F is nonempty, then F
contains a unique element K/ (K-) such that every eigenvalue of A-BB’K/ (A-
BB’K-) has nonpositive (nonnegative) real part. K/ and K- have the additional
property that if K F, then K-<=K -<_K / with respect to the usual partial ordering
of symmetric matrices. For this reason, K/ and K- are called the extremal solutions
of the ARE.

We introduce some notation. LetR be a linear operator on [n with characteristic
polynomial p(s)=p+(s)p(s)p-(s), where the roots of p/(s) (p(s)) (p-(s)) have
negative (zero) (positive) real parts. Then L+(R) (L(R)) (L-(R)) denotes the sum
of the primary components of R which correspond to its left half-plane (imaginary
axis) (right half-plane) eigenvalues--i.e., L/(R) =- ker p/(R), L(R) =-ker p(R),
L-(R =- ker p-(R ).

Let A=-K+-K -. It can be shown [5] that for any K eF, L(A-BB’K)=ker A
and that A-BB’KlkerA=A-BB’K+[ker A. Let V+=-L+(A-BB’K+), Vo--
L(A -BB’K/) (= ker A), and let V_--L-(A-BB’K-). Note that L-(A -BB’K+)
O=L/(A-BB’K-). Let T=-A-BB’K/[ V/, and let ST be the set of all invariant
subspaces of T. The next theorem describes the second principal method for classifying
the set of real symmetric solutions of the ARE. It is W. Coppel’s extension l-5] of a
result of J. C. Willems [23].

TIaEOREM 2 (J. C. Willems, W. Coppel). Let (A, B) be controllable and suppose
that F is nonempty. If S is any (A-BB’K/)-invariant subspace which is contained in
V/ (i.e., S ST), then S A-I(S ") R, where S" denotes the orthogonal complement
of S in and A-I(Sl) is its inverse image. There is a bi/ection y:ST- F defined by
c (S) =- K/Ps +K-(I -Ps), where Ps is the profection onto S along A-a(S-). IlK 49 (S),
then L/(A -BB’K) S, L(A -BB’K) Vo and L-(A -BB’K) A-(S +/-) f-1V_.

Remark 1. If A > 0 (or equivalently, if H has no pure imaginary eigenvalues),
then V+ N" so T =A BB’K/ and Theorem 2 reduces to the original theorem of
Willems.

In our view, the Hamiltonian matrix method has two extremely attractive features.
The first feature is that it easily generalizes to non-Hamiltonian Riccati equations. If
P is m x p and B is the (p + m) x (p + m) partitioned matrix

Bm1 B12]
B21 B22J’

the set of solutions of the quadratic matrix equation B21 +B22P-PB11-PB2P =0
is in one-to-one correspondence with the set of p-dimensional B-invariant subspaces
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which are complementary to the m-dimensional subspace Sp [o,]. The correspondence
associates the solution P with the subspace Sp [p]. Of course, if B is not a Hamiltonian
matrix, it is a misnomer to call this the Hamiltonian matrix method.

The second attractive feature of the Hamiltonian matrix method is that it permits
us to make precise the idea of solutions at infinity. One of the phenomena of the
Riccati differential equation which is difficult to understand is that of finite escape
time. A standard mathematical technique for studying a differential equation whose
solutions "blow up" is to compactify the phase space. The reason why this is useful
is that every vector field on a compact manifold is complete [2], so finite escape times
do not occur. For the Riccati differential/ =-A’K-KA +KBB’K-Q, the phase
space is the vector space of real symmetric n n matrices. The most convenient
compactification of this space is the Lagrangian Grassmannian . It consists of all
n-dimensional Lagrangian subspaces of 2n. The subset c of consisting of those
subspaces which are complementary to Sp [t] is a chart of which is open and dense.

R. Hermann [7] and C. Martin [12] have showed that every Riccati differential
equation Ii2 -A’K -KA +KBB’K Q on the space of real symmetric n x n matrices
is the expression in local coordinates of the restriction to ’ of a vector field on .
The equilibrium points of the flow on consist of those elements of which are
H-invariant. However, only those H-invariant subspaces which belong to 5 corres-
pond to equilibrium points of the original Riccati differential equation on the space
of n x n symmetric matrices. The points in which are outside , can be viewed as
the points at infinity in the Lagrangian Grassmannian. Thus, the n-dimensional
Lagrangian H-invariant subspaces which are not complementary to Sp [] represent
solutions of the ARE at infinity. In the next section, we show that the concept of
solutions at infinity is necessary to understand the duality between controllability and
observability in the theory of the ARE.

In our view, the major disadvantage of the Hamiltonian matrix method is that it
fails to exploit the Hamiltonian symmetry of the equation -A’K -KA +KBB’K Q
0. In other words, it does not use the fact that H is a Hamiltonian matrix. (A
Hamiltonian matrix is a 2n 2n matrix Z such that JZ +Z’J 0.) This is precisely
the reason why the Hamiltonian matrix method generalizes to non-Hamiltonian Riccati
equations.

We have described elsewhere [19], [21] a simple parametrization for the set of
all invariant subspaces of fixed dimension of an arbitrary finite dimensional linear
operator. Using this result, we can describe all the n-dimensional H-invariant sub-
spaces. However, it is not at all clear how the two additional conditions, Lagrangian
and complementarity, determine a subset of the set of all n-dimensional H-invariant
subspaces. In the next section, we show that the assumption of controllability makes
the issue of complementarity trivial. Later we will see that it is possible to describe
precisely which n-dimensional H-invariant subspaces are Lagrangian. To do this, we
must use the Hamiltonian symmetry of the ARE.

Willems’ method is quite different from the Hamiltonian matrix method. It relates
the set of real symmetric solutions of the ARE to the set of all invariant subspaces
of T(= A-BB’K+I V+). There are no additional requirements corresponding to the
Lagrangian and complementarity conditions of the Hamiltonian matrix method. This
is an attractive feature of Willems’ method because it enables us to use results on the
algebraic variety of invariant subspaces of a finite dimensional linear operator to
describe the geometric structure of F. These results are detailed in [19], [21]. The
disadvantages of Willems’ method are that there is no obvious generalization to the
non-Hamiltonian Riccati equation and there is no concept of a solution at infinity.
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3. Controllability and observability.
PROPOSITION 1. Let M =- ker [B, AB,. ., An-IB]’. Let N {[o] [2n. Y M}.

Then N is the largest subspace of Sp [] which is H-invariant.

Proof. Let y M. Then

A
-A’ [0]:[-A’yJy

Since y eM, it follows that B’y =0 and A’y eM, so H[]eN, showing that N is
H-invariant. Let S be any H-invariant subspace which is contained in Sp [], and
suppose that S is k-dimensional. Let [0y] be a basis matrix for S. The H-invariance of
S implies that there exists a k x k matrix P such that

-BB Y] 0H[] =[-A’YJ =[Oy]p=[yp].
This shows that B’Y=O and A’Y=-YP, which implies that B’Y=0, B’A’Y=
O, ,B’(A’)n-lY=O, so Sp YM. Hence, S N.

COROLLARY. (A, B) is controllable if and only if Sp [] contains no nontrivial
H-invariant subspace.

The next proposition is excerpted from the proof of a theorem by V. Kuera
[8] which concerns stabilizability.

PROPOSITION 2 (Kuera). Let S be an n-dimensional Lagrangian H-invariant
subspace. Then S f’) Sp [] is H-invariant.

Proof. Let [] be a basis matrix for S. Since S is Lagrangian, IX’ Y’]J[:] 0,
which implies that Y’X X’Y. Since S is H-invariant, there exists an n x n matrix
R such that

A -BB’] X
R

In particular, this implies that AX-BB’Y XR. Let z ker X. Then 0 Y’Xz
X’Yz. Now, z’Y’AXz-z’Y’BB’Yz -z’Y’XRz, which implies that B’Yz -0. Then
0 AXz-BB’Yz XRz, so Rz ker X. Thus kerX is R-invariant. Now,

SfqSp[Oi]=l[]z’zkerX}
Since H[:]=[:]R, the R-invariance of kerX implies the H-invariance of S (3
Sp []. [-1

The following theorem is an immediate consequence of Propositions 1 and 2.
THEOREM 3. Let (A, B) be controllable. Then every n-dimensional Lagrangian

H-invariant subspace is complementary to Sp [].
Remark 2. Theorem 3 shows that if (A, B) is controllable, then the ARE has no

solutions at infinity. In other words, the compactification of the Riccati flow in the
Lagrangian Grassmannian introduces no extraneous equilibrium points.

Remark 3. V. Kuzera has proved [8] that if H has no pure imaginary eigenvalues
and (A, B) is stabilizable, then the n-dimensional Lagrangian H-invariant subspace
L+(H) is complementary to Sp []. (L+(H) is the sum of the primary components of
H corresponding to its left half-plane eigenvalues.) By assuming that (A,B) is
controllable rather than merely stabilizable, we obtain the much stronger result that
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every n-dimensional Lagrangian H-invariant subspace is complementary to Sp [0]. In
the next section, we give a converse of Theorem 3.

Propositions 1 and 2 and Theorem 3 have interesting dual versions in the special
case where Q C’C for some p x n matrix C. To emphasize the complete duality,
we replace the submatrix-BB’ in H with an arbitrary symmetric matrix-L.

PROPOSITION 3. Let IYt ----[-’c --’]. LetI --ker [C’, A’C’, ., (A’)"-Ic’]’. Let
_-{[;] e N2,. x e/r}. Then 1 is the largest subspace of Sp [0t] which is I-7I-invariant.
COROLLARY. (C, A) is observable if and only if Sp [0t] contains no nontrivial

I2I-invariant subspace.
PROPOSITION 4. Let S be an n-dimensional Lagrangian IZI-invariant subspace.

Then S f’) Sp [] is ITI-invariant.
The proofs of Proposition 3 and 4 are completely dual to the proofs of Propositions

1 and 2 and are therefore omitted. The following theorem is an immediate consequence
of Propositions 3 and 4.

’THEOREM 4. Let (C, A) be observable. Then every n-dimensional Lagrangian
I2I-invariant subspace is complementary to Sp [/].

We have already noted that those elements of which are not complementary
to Sp [] correspond to the points at infinity in . Similarly, it makes sense to view
those elements of S which are not complementary to Sp [] as the "points at zero"
in the Lagrangian Grassmannian. The validity of this interpretation is especially clear
for the subset of . If S Si.e., S is complementary to Sp []then S can be
expressed as Sp [] for some symmetric n n matrix K. Then thecondition that S
intersect Sp [0] is equivalent to K being singular. Thus, the elements of c which
intersect Sp [0] are "points at zero" in the sense that they are the graphs of singular
symmetric matrices.

Theorem 4 shows that if (C, A) is observable, then none of the equilibrium points
of the Riccati flow in the Lagrangian Grassmannian are points at zero. In particular,
if S is an equilibrium point of the form Sp [], then K is nonsingular. Since the
equilibrium points of the form Sp []c] are precisely the equilibrium points which
correspond to solutions of the original (i.e., uncompactified) ARE, this shows that
every solution of the ARE is nonsingular. We state this result as a theorem.

THEOREM 5. Let (C, A) be observable. Then every real symmetric solution of the
ARE -A’K-KA +KLK-C’C 0 is nonsingular and hence defines a nondegenerate
quadratic form.

Remark 4. It is of course well known [3] that if (A, B, C) is a minimal triple,
then the stabilizing solution K/ of -A’K-KA+KBB’K-C’C =0 exists and is
positive definite. However, the result in Theorem 5, that observability implies that
every solution is nonsingular, does not seem to be recognized.

Remark 5. K. Mrtensson [11] has proven several results which are related to
those of this section. However, his results on the role of controllability and observability
were derived under the assumption that A has distinct eigenvalues. A result which is
equivalent to Theorem 3 has been discovered independently by P. Lancaster and L.
Rodman and appears in a recent paper [9]. In the special case where L is negative
semidefinite, Theorem 5 follows from a result of H. Wimmer [24]. However, his proof
does not extend to the general case where L is only symmetric.

Remark 6. Comparing Theorems 3 and 4, we conclude that controllability and
observability have precisely dual roles in the geometry of the ARE. Controllability
guarantees that no n-dimensional Lagrangian H-invariant subspace intersects Sp [0],
which means that the ARE has no solutions at infinity. Observability guarantees that
no n-dimensional Lagrangian H-invariant subspace intersects Sp [], which means that
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the ARE has no solutions at zero. Note that this duality cannot be appreciated without
having the precise meaning of points at infinity which is made possible by the
compactification.

We close this section by considering the relationship between the controllability
of (A,B) and the quadratic character of the ARE -A’K-KA +KBB’K-Q-0.
Suppose that the reachable subspace has codimension r > 0. By changing basis in R",
we may assume that

All 121 A22
with All rxr, A22 (n -r) x (n -r) and that B =[B] with B. (n-r)xm and that
(A22, B2) is controllable. Let

[(211 Q12] and K [KI K12]O
O2 O22J tK2 K22J"

From the partitioned ARE which results, we obtain four matrix equations, but two
of these are equivalent due to symmetry. Only one of these equations involves
and this equation is -A’11Kll-KllA lI-A’21K2 -KEAzl +KI2BzBK2 -Q O.
This shows that the r(r + 1) variables in the symmetric matrix Kll enter the ARE
linearly. Hence, if (A, B) is not controllable, then the ARE is not genuinely quadratic.

We can also interpret this from a geometric viewpoint. In [19] we note that if
(A, B) is controllable and F is nonempty, then F is compact. Consider the linear
matrix equation A’IKa /KIxAaa 0. This equation has nontrivial solutions if and
only if A 11 has zero as an eigenvalue or has a pair of eigenvalues Ai and A. such that
Ai / Ai 0. If this is the case, then the solution set of the linear equation is a vector
subspace of positive dimension. Since the eigenvalues of Aaa are the uncontrollable
eigenvalues of A, the following theorem is an immediate consequence.

THEOREM 6. Suppose that F is nonempty and that (A, B) is not controllable. If
0 is an uncontrollable eigenvalue of A or there is a pair of uncontrollable eigenvalues
A, Ai such that A + Ai O, then F is not compact.

We can also interpret this result in the context of the Hamiltonian matrix method.
It is not hard to show that the set of all n-dimensional Lagrangian H-invariant subspaces
is compact. If (A, B) is controllable, then each of these subspaces is complementary
to Sp [] and hence corresponds to a solution of the ARE. Thus, F is compact. On
the other hand, if (A, B) is not controllable, some of the n-dimensional Lagrangian
H-invariant subspaces may intersect Sp []. The remaining n-dimensional Lagrangian
H-invariant subspaces need not form a compact set. Thus, in the absence of controlla-
bility, F need not be compact. Of course, the most extreme example which illustrates
this is the case where B 0. Then the ARE is a linear matrix equation, so if its
solution set F contains more than one element, then F is an affine subspace and
therefore not compact.

4. Unmixed solutions. In this section, we define a special subset of F which we
call the unmixed solutions. We describe several of their properties which resemble
the properties of the extremal solutions K/ and K-

The first lemma is a tool which will be used to establish the existence of n-
dimensional Lagrangian H-invariant subspaces. It appears in Van Swieten’s thesis
[22] and extends a result due to Potter [14] and Mrtensson [11].

LEMMA 1. Let H be a Hamiltonian matrix and let p(s) be its characteristic
polynomial. Suppose that p(s)=p(-s)p2(s) with p(-s) and p2(S) relatively prime. Let
Sl =- ker pl(I) and let Sz= ker p2(iYI). Then x X O, for all x S, x2 S2.
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Proof. Let Xt and X2 be basis matrices for St and S2o Since St and S2 are
/-invariant, there exist square matrices R t, RE (of the appropriate dimensions) such
that HXt XtR and HX2 X2R2. Suppose that pE(S) contains a positive power of
an irreducible polynomial g(s). Then pt(-s) does not contain g(s) as a factor. It
follows that the primary component of R2n (relative to/-) corresponding to g(s) is
completely contained in $2. Since this is true for each irreducible factor in p2(S), S2
is a sum of whole primary components of REn (relative to/). This implies that the
characteristic polynomial of/-] S2 is pE(S), SO p2(s) det (Is R2). Since/- is Hamil-
tonian, p(s)=p(-s), so p(s)=pt(s)pE(-S). Then the above argument applied to pl(s)
shows that p (s) det (Is R t).

Since J/- =-/-’J, it follows that X’EJIYIXt =-XEIYI’JXt, which implies that
XJXtR -R2X2JX1. Letting Z =-XJXt yields the equation ZRt +RZ 0 Since
p (s) det (Is R t) and pE(S) det (Is R2), R and -R have no eigenvalues in
common. This implies that the only solution is Z =0. Hence, X’JXt =0, which
completes the proof.

In the remainder of this section and in the next section, we make the assumption
that H has no eigenvalues on the imaginary axis. In 6, we describe what changes
are necessary when H has pure imaginary eigenvalues.

Since H is a real Hamiltonian matrix, its spectrum is symmetrical with respect
to both coordinate axes. Let/ t,-/ t,""",/p,-p be the distinct real eigenvalues of
H (i > 0), and let A t, A 1, -A 1, -A t, , Aq, Aq, -Aq, -Aq be the distinct nonreal eigen-
values of H (Re Aj > 0, Im A. > 0). Let Ei and E-i be the generalized eigenspaces
corresponding to/i and-/i respectively. Let F. and F_. be the primary components
corresponding to the pairs of eigenvalues A., Ai and -Ai, -Ai respectively. Since H is a
Hamiltonian matrix, dim E dim E_ and dim F. dim F_. (i 1, , p ;/"
1,... ,q).

Let A be the set of n-dimensional H-invariant subspaces of the form E+I )
E+p 0) F+/-t ) F+. In other words, an element of A is obtained by choosing
Et or E-a,’’’, Ep or E_p, Ft or F-a,’’’, Fq or F_ and summing the ones that are
chosen. A clearly contains 2p+ elements. If L A, then there exists a unique subspace
L2 A such that HILt and HILL have no eigenvalues in common. L2 is obtained by
making the opposite choices from those made in forming L t. We say that L and L2
are a pair of opposites in A. A contains 2p+q-t such pairs.

PROPOSITION 5. Every element of A is Lagrangian.
Proof. Let L A. Let p (s) be the characteristic polynomial of/-/, and let p (S)

be the characteristic polynomial of HILt. Then p(s) (-1)"p (s )p (-S with pt(s) and
pt(-s) relatively prime. Applying Lemma 1 in the special case where pE(S) p I(S)
gives x’Yy 0, for all x, y 6 L 1, so L is Lagrangian.

COROLLARY. If (A, B) is controllable, then every element of A corresponds to a
real symmetric solution of the ARE.

Proofi Every element of A is an n-dimensional Lagrangian H-invariant subspace.
If (A, B) is controllable, then every such subspace is complementary to Sp [o] and
hence corresponds to a solution of the ARE.

For the remainder of this section, we will assume that (A, B) is controllable unless
otherwise stated. Let L A, and let K be the real symmetric solution of the ARE
which corresponds to Li.e., L Sp [:]. By Theorem 1, the matrix of HIL with
respect to the basis given by the columns of [:] is A -BB’K. If p (s) is the characteristic
polynomial of H and pl(s) is the characteristic polynomial of HI L, then it follows
from the definition of A that p(s)= (-1)"p (s )p (-S with pl(s) and pt(-s) relatively
prime. Since pt(s) det (Is-(A-BB’K)), this means that if h is an eigenvalue of H,
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then either A-BB’K has the eigenvalue A with maximum multiplicity and the
eigenvalue -A with zero multiplicity or it has the eigenvalue -A with maximum
multiplicity and A with zero multiplicity. For this reason, we call K an unmixed
solution. There are exactly 2p/q unmixed solutions. Note that if L =E_I @"" @
E_p ( F-1 ( ( F_q, then K K+, whereas if L E1 03 E, 03 F1 03 0)
Fq, then K K-, so the extremal solutions are unmixed.

The unmixed solutions are interesting because they resemble the extremal sol-
utions in several respects. For one thing, they occur in pairs. If L and L2 are a pair
of opposites in A and K1 and K2 are the corresponding elements of F, we say that
Ka and K2 are a pair of opposite unmixed solutions. K2 is the unique element of F
with the property that A-BB’Ka and A-BB’K2 have no eigenvalues in common.

In [19] we show that the unmixed solutions are always isolated points in F. In
fact, they are the only solutions which are guaranteed to be isolated no matter what
Jordan block structure the matrix H has.

Another interesting property of the unmixed solutions is their analytic depen-
dence on the coefficient matrices in the ARE. Let be the open subset of Rn2 Rn"

" consisting of all minimal triples (A, B, C) with A n n, B n m and Cp n. Let
S(n) be the vector space of n n symmetric matrices, and let ’;S(n) be the
mapping which takes a minimal triple (A, B, C) to the unique symmetric positive
definite solution K/ of the ARE -A’K-KA+KBB’K-C’C=O. By using the
implicit function theorem, D. Delchamps showed [6] that is real-analytic. In other
words, K/ depends analytically on the matrices A, B and C. Using the same tool,
we are able to prove the following more general result.

THEOREM 7. Let Po be an m p matrix which satisfies the equationB +B2P-
PBI-PB2P=O where BI, B2, Bzl, B22 are real matrices of dimensions p p,
p m, m p and rn m, respectively. Suppose that Bx +B2Po and B2-PoB2 have
no eigenvalues in common. Then there exists a neighborhood U of (BxI, B2, B2, B22)
in o2+p,,+,w+,’- and a unique mapping : U --> R,w such that

O(B, B2, BI, B2) Po
and

B214- B220 (BI, B12, B21, B22)-0(B 11, B 12, B21, B22)B 11

--O(Bll, B12, BE1, BEE)B121[i(Bll, B12, B21, BEE) 0,

V(BII, Bz, B21, B22) U.
Furthermore, the mapping is real-analytic.

Proof. Define /’ ,:+,,+,,w+m: i,,, i,,p by

rl (B , B2, B2, B22, P) =-B2 +B2P PB PB .P.

Let M S(n). Then

lim l[r/(BI, B2, B, B2, Po + tM)-rl(Bl, B2, BI, B22, Po)]
t-,0

Op-PoB   M -B

The eigenvalues of the linear map O ofm into ’P given byM (B 202 PoB2)M 4-

M(-B-BEPo) are {cti +fli}, where {ci}i=l and {/3i}’=a are the eigenvalues of B2-
FoB2 and -B11 B2Po, respectively. Since B x1 +B2Po and B2 FoB2 have no
eigenvalues in common, is an isomorphism. The assertions of the theorem follow
immediately from the implicit function theorem and the analyticity of /.
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COROLLARY. Suppose that (A, B) is controllable and that

Ao BOBo’

H--[_oO -_A o, ]
has no pure imaginary eigenvalues. Let Ko be an unmixed solution of the ARE
_AO,K _KAo +KBOBO’K _Q0= 0. Then there exists a neighborhood Uof (A, B, QO)
in tn2+n’ xS(n) and a unique mapping O:US(n) such that tO(A,B,Q)=Ko
and -A’O (A, B, Q) (A, B, Q)A + d/(A, B, Q)BB’O (A, B, Q) Q O, for all
(A, B, Q U. Furthermore, g/ is real-analytic.

Proofi Since L0 is an unmixed solution, A-BB’Ko and -(A-BB’Ko) have
no eigenvalues in common. Applying Theorem 7 with BI =A B2 =-BB’
BI _Q0 and B22 =-A’, the result follows immediately. [3

Remark 7. If Q=C’C with (A,B, C) minimal, then H has no pure
imaginary eigenvalues, so the hypothesis of the preceding corollary is satisfied. Thus,
if K is an unmixed solution of -A’K-KA+KBB’K-C’C=O, then K
depends analytically on the coefficient matrices in a neighborhood of (A, B, C). It
is important to note that this is strictly a local result except in the case where K is
either K+ or K-. Since K+ and K- exist for every minimal triple (A, B, C)e ;, K+

and K- are real-analytic functions defined on all of ;. These are the only unmixed
solutions which exist globally since we can choose (A, B, C)e ; such that [_cA,c ---f’]
has only two distinct eigenvalues, /x and -/x. Then the only unmixed solutions of
-A’K-KA +KBB’K-C’C =0 are K/ and K-.

Using the results of this section, we can prove converses to the controllability
and observability theorems in 3. By Theorem 1, the real symmetric solutions of the
ARE are in one-to-one correspondence with the n-dimensional Lagrangian H-
invariant subspaces which are complementary to Sp []. This is true whether or not
(A, B) is controllable. If we assume that H has no pure imaginary eigenvalues (as we
have in this section), thenH always has n-dimensional Lagrangian invariant subspaces.
In particular, every element of A is such a subspace. However, in the absence of
controllability, there is no guarantee that any of these subspaces are complementary
to Sp []. Thus, the compactified Riccati flow always has equilibrium points, but without
controllability some or all of these may be at infinity. In fact, if (A, B) is not controllable
and if H has no pure imaginary eigenvalues, then the Riccati flow has at least 2p+q-1

equilibrium points at infinity. This follows as a corollary of the following theorem,
which provides a converse to Theorem 3.

THEOREM 8. Suppose that H has no pure imaginary eigenvalues and that (A, B)
is not controllable. Let L1 and L2 be any pair of opposites in A. Then LI and L2 are
not both complementary to Sp [].

Proof. LetM --- ker [B, AB, , An-lB ]’. Let N {[0y] e N2n. Y e M}. By Proposi-
tion 1, N is H-invariant. Since L1 and L2 are each sums of primary components of
H such that N2, L1 @ L2, it follows that N (N flL1) (N 0L2). Since (A, B) is
not controllable, N is not trivial, so N f’l L and N 71 L2 cannot both be zero. Since N is
contained in Sp [], L and L2 are not both complementary to Sp [0]. [3

COROLLARY. I]:H has no pure imaginary eigenvalues and (A, B) is not control-
lable, then there are at least 2p+q- n-dimensional Lagrangian H-invariant subspaces
which are not complementary to Sp [].

Proof. Since A contains 2/q-a pairs of opposites, the result follows immedi-
ately. 71

Remark 8. There is another way to prove Theorem 8. Suppose that La and L2
are both complementary to Sp []. Then there exist K1, K2 e F which correspond to
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L1, L2 respectively. Since H has no pure imaginary eigenvalues and K1 and K2 are
a pair of opposite unmixed solutions, A -BB’K1 and A -BB’K2 have no eigenvalues
in common. But this means that every eigenvalue of A can be shifted by state feedback.
By a well-known result [25, p. 52], (A,B) must be controllable.

Theorem 8 has a dual result regarding observability.
THEOREM 9. Let I-?I =-- [-’c ’]. Suppose thatIhas no pure imaginary eigenvalues

and that (C, A) is not observable. Let L and L2 be any pair of opposites in A. Then
L1 and L2 are not both complementary to Sp [or].

COROLLARY. If L1 and L2 are complementary to Sp [] and hence correspond to
solutions KI andK of the ARE, then K1 and K2 are not both invertible.

Throughout this section, we have emphasized the similarity between the properties
of the unmixed solutions of the ARE and those of the extremal solutions K+ and
K- We are interested in the unmixed solutions for more than just theoretical reasons.
The existence of extremal solutions is a consequence of the Hamiltonian symmetry
of the usual ARE-A’K-KA +KBB’K-Q =0. However, for certain engineering
applications, one is interested in the more general ARE B21 +B22P-PBa1-PB12P
0, where the unknown matrix P is m p with rn and p possibly unequal. For example,
this more general ARE is related to the problem of block-triangularizing linear systems,
which is of interest in the study of singularly perturbed systems [13]. For this general-
ized ARE, there is no such thing as extremal solutions, and solutions do not occur
naturally in pairs.

However, the concept of an unmixed solution does extend to the generalized
ARE. As we noted in 2, the "Hamiltonian" matrix method is still valid. Thus, there
is a one-to-one correspondence between the set of solutions of the generalized ARE
and the set of p-dimensional subspaces which are invariant with respect to

B [Bll B12]
[B21 BJ’

and complementary to the m-dimensional subspace Sp [0,]. The correspondence associ-
ates the solution P with the subspace Sp []. The solutions which correspond to the
unmixed solutions of the usual ARE are those P for which Sp [] is a sum of
whole primary components of B. This is equivalent to the condition that the restriction
B ISp p] has no eigenvalues in common with the induced map B on the quotient
RP+"/Sp []. In terms of matrices, this means that BI +BEP and BEE-PB12 have
no eigenvalues in common. It follows from a result in our companion paper [19] that
such a solution is always isolated. Also, it follows from Theorem 7 that such a solution
depends analytically on the coefficient matrices. Thus, the "unmixed" solutions of the
generalized ARE are the most attractive solutions.

5. Classification theorems. In 2, we noted that the difficulty in using the
Hamiltonian matrix method to understand the structure of F is due to the two additional
conditions, complementarity and Lagrangian. In 3, we showed that the assumption
of controllability renders the question of complementarity trivial. If (A, B) is control-
lable, then every n-dimensional Lagrangian H-invariant subspace is complementary
to Sp []. Thus, the remaining problem is to identify those n-dimensional H-invariant
subspaces which are Lagrangian.

In the preceding section we saw that the Potter-Mrtensson result (essentially
Lemma 1) shows that certain n-dimensional H-invariant subspaces are Lagrangian,
namely those which belong to A. However, A is always a finite set. On the other hand,
it is easy to find matrices A, B and Q such that the corresponding ARE has uncountably
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many real symmetric solutions. (A simple example is K2-I2--0, where I2 is a 2 2
identity matrix.) By Theorem 1, the corresponding Hamiltonian matrixH has uncount-
ably many n-dimensional Lagrangian H-invariant subspaces. Thus, this result falls far
short of describing all the n-dimensional Lagrangian H-invariant subspaces.

In this section, we solve this problem by incorporating some of the ideas behind
Willems’ approach into the framework of the Hamiltonian matrix method. Willems’
result (Theorem 2) singles out the pair of extremal solutions K+ and K-. In our result,
K+ and K- are replaced by an arbitrary pair of opposite unmixed solutions. This is
yet another way in which the unmixed solutions resemble the extremal solutions. We
will assume that (A, B) is controllable and that H has no pure imaginary eigenvalues.
We discuss the case where H has pure imaginary eigenvalues in the next section.

Let L1 and L2 be any pair of opposites in A, and let K1 and K2 be the pair of
opposite unmixed solutions of the ARE corresponding to L1 and L2 (i.e., L Sp [gl],
Lz Sp Let A12--K1-K2, A1=-A-BB’K1, A2=-A-BB’K2. Usingthe factthat
K1 and K2 are solutions of the ARE, it is easy to check that the following equation
holds:

(*) AA12-+- A12A2 0.

LEMMA 2. A12 is nonsingular.
Proof. By (.) it follows that ker A12 is A2-invariant. From the definition of A12

A and Az agree on ker A12. Since K1 and K2 are a pair of opposite unmixed solutions,
A1 and A2 have no eigenvalues in common. Hence ker A12 0. [-1

Suppose that S is an n-dimensional Lagrangian H-invariant subspace. Since L1
is a sum of primary components of H and L is the sum of the primary components
not in L 1, it follows that S (S 71L 1) ( (S 71Lz). Thus, S determines an H-invariant
subspace of L1, namely S 71L1. The following fundamental result shows that the
converse is true--that every H-invariant subspace of L1 determines a unique n-
dimensional Lagrangian H-invariant subspace.

PROPOSITION 6. Let SI be an l-dimensional subspace of L1. Then there exists a
unique (n-l)-dimensional subspace $2 of L2 such that $1 O)$2 is Lagrangian. If
$1 Sp [1]C, where C is n x full rank, then $2 Sp [2]D, where D is any n x (n l)
full rank matrix which satisfies C’A12D 0. Furthermore, S1 is H-invariant if and only
if $2 is H-invariant.

Proof. There is no loss of generality in taking S to be of the form Sp [,]C with
C n x full rank. Let $2 be an arbitrary (n -/)-dimensional subspace of L2. Without
loss of generality, let Sz --- Sp [2]D with D n x (n l) full rank. Then

K1C K2D -I K1C KD D’AlaC 0

Thus, Sl ( S2 is Lagrangian if and only if C’A12D-" 0. Since A12 is nonsingular, the
condition C’A12D =0 determines Sp D uniquely. In fact, SpD A-(Sp C)z. Thus,
$2 is uniquely determined.

Now, it follows from Theorem 1 that H(S1)=Sp[z,]A1C and H(S2)
Sp [2]AED. Hence, S is H-invariant if and only if Sp C is A-invariant, and $2 is
H-invariant if and only if A-z(Sp C) +/- is AE-invariant. However, it follows from (.)
that Sp C is Al-invariant if and only if A-2(Sp C)z is AE-invariant. Hence, $1 is H-
invariant if and only if $2 is H-invariant.

Since the controllability of (A, B) implies that every n-dimensional Lagrangian
H-invariant subspace is complementary to Sp [], the following theorem is an immedi-
ate consequence of Proposition 6.
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THEOREM 10. There exists a one-to-one correspondence between the set of H-
invariant subspaces of L1 and the set of n-dimensional Lagrangian H-invariant sub-
spaces which are complementary to Sp [0]. This correspondence associates Sp [/1]C with
Sp [:lcc otc2o], where C is a full rank matrix with Sp C Aa-invariant and D is any full
rank matrix such that Sp D A-2a(Sp C).

Remark 9. Since Sp [:Cc Dc2D] is Complementary to Sp [], the n n submatrix- S )+/- A-[C,D] is always nonsingular. Since Sp/-’A12( pC this means that 12(SpC) +/-

is complementary to Sp C. Thus, this shows that if M is any A 1-invariant subspace
of Rn, then A-EX(M-) is complementary to M.

Theorem 1 gives a one-to-one correspondence between the set of real symmetric
solutions of the ARE and the set of n-dimensional Lagrangian H-invariant subspaces
which are complementary to Sp [0]. Composing this correspondence with that given
in Theorem 10 yields the following result.

THEOREM 11. There exists a one-to-one correspondence between the set of H-
invariant subspaces of Lx and the set F of real symmetric solutions of the ARE. This
correspondence associates the subspace Sp [KI]C with the solution [KaC, KED][C, D]-1,
where C is a full rank matrix with Sp C A -invariant and D is any full rank matrix
such that SpD A-1

12 (Sp C)’.
Proof. By Theorem 10, the H-invariant subspace of La Sp []C corresponds to

the n-dimensional Lagrangian H-invariant subspace Sp [tclcc oKo]. Since [C,D] is
nonsingular, this subspace can be expressed as

I
SP [[KIC, K2D][C, D]-I]"

By Theorem 1, this subspace corresponds to the solution [KIC, K2D][C, D]-1 of the
ARE. [3

Remark 10. Let PGl(l,R) and let PEGl(n-l,). Then [K1C, K2D]
[C, D]- [KICP1, KEDP2] [CPx, DP2]-1, which shows that the correspondence in
Theorem 11 is well defined. In other words, the solution of the ARE depends only
on Sp C and A-E(Sp C)+/- and not on the matrices C and D.

Theorem 11 gives a one-to-one correspondence between the H-invariant sub-
spaces of L and the real symmetric solutions of the ARE. Since the matrix of HILl
relative to the basis [K] is A1, this can be viewed equivalently as a one-to-one
correspondence between the A 1-invariant subspaces of Rn and the real symmetric
solutions of the ARE. Let SA be the set of A 1-invariant subspaces of ", and let
M SA1. By Remark 9, A-Ea(M+/-) is complementary to M. Let Pt be the projection
onto M along A-Ea(M’). If C is such that SpC=M, then SpC=SpPt, and if
C’AED 0, then Sp D A-2(M+/-) Sp (I- Pt). Thus,

K2D
Sp

KaPut KE(I-PM)J
Sp

K1Pt +K2(I-P)

This shows that [KC, K2D][C, D]-1= KxPt +K2(I-P). This gives the next result.
THEOREM 12. There exists a one-to-one correspondence between SAt and F which

associates the solution KPt +K2(I -Plvt) with the A -invariant subspace M, where Plvt
is the pro[ection onto M along A-(M’).

Remark 11. If SAt and F are each topologized in the natural way, then the
correspondence in Theorem 12 is actually a homeomorphism. The proof is analogous
to the proof of a similar result in our companion paper [19].
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Theorem 12 is a generalization of Willems’ classification theorem (Theorem 2)
because it shows that if L1 and L2 are any pair of opposites in A and K1 and K2 are
the corresponding pair of opposite unmixed solutions of the ARE, then every real
symmetric solution can be expressed as KPM+K:z(I-PM). If L=E_ ...
E_, F_ @ F_q and L2 El O) Ep ( F O) Fq, then K K+

and K2 K-, so Theorem 12 contains Willems’ result as a special case. Willems uses
the fact that A=-K+-K is positive definite to show that if M is A-
BB,K+-nvanant, then A-(Mx) is complementary to M. In the general case,
KI-K2 is nondegenerate (i.e., nonsingular) but indefinite. Thus, Willems’ proof does
not generalize to give our result. It is Theorem 3 which is needed to show that in the
presence of controllability, A-2(M-) is always complementary to M (for M SAI),
even if A12 is indefinite.

6. Hamiltonian matrices with imaginary axis eigenvalues. In this section, we
extend the results of 4 and 5 to include the case whereH has one or more eigenvalues
on the imaginary axis. In 4, we showed that if (A, B) is controllable and H has no
pure imaginary eigenvalues, then the set F of real symmetric solutions of the ARE
is nonempty. This is of course well known. However, if H has pure imaginary
eigenvalues, the controllability of (A, B) is not sufficient to guarantee the existence of
a real symmetric solution. For this, an additional hypothesis is necessary, which is
often stated as a frequency domain condition [23] or as a condition on the elementary
divisors of H corresponding to imaginary axis eigenvalues [9].

Suppose that (A, B) is controllable and that F is nonempty. As we noted in 2,
F contains unique solutions K/ and K- with the property that every eigenvalue of
A -BB’K/ has nonpositive real part and every eigenvalue ofA -BB’K- has nonnega-
tive real part. Furthermore, K/ and K- are extremal solutions in the sense that if
K F, then K-<-K <-K+. Using the notation introduced in 2, if R is a finite
dimensional linear operator, L+(R) (L(R)) (L-(R)) denotes the sum of the primary
components of R corresponding to its left half-plane (pure imaginary) (right half-
plane) eigenvalues.

The following result was noted by Willems [23]. A proof appears in Coppel’s
paper [5]. As in 2, A K+-K-.

PROPOSITION 7 (J. C. Willems, W. Coppel). IlK F, L(A-BB’K) ker A.
Let r dim ker A, and let G be an n x r full rank matrix such that Sp G ker A.

Let N -=Sp [+] (’1Sp [if-]. If K 6 F, the inequalities K-<-K <=K+ imply that K agrees
with K+ on ker A. It follows immediately that N Sp []G for all K F. Our next
proposition gives a characterization of N.

POPOSITOY 8. N is the unique Lagrangian H-invariant subspace ofL(H) which
has dimension equal to 1/2 dim L(H).

Proof. If K e F and p(s) is the characteristic polynomial of H, it is easy to show
that p(s) det [Is -(A -BB’K)] det [Is + (A -BB’K)’]. This implies that H has twice
as many pure imaginary eigenvalues as does A-BB’K. Hence, dim L(H)
2 dim L(A -BB’K) 2r, so dim N r 1/2 dim L(H).

By Theorem 1, the matrix of H[Sp [] with respect to the basis given by the
columns of [] is A -BB’K. By Proposition 7, L(A -BB’K) ker A Sp G. Hence,
Sp [] (’l L(H)=L(H Sp [:])= Sp []G N. Since Sp [] and L(H) are H-invariant,
so is N. Since Sp [:] is Lagrangian, the same is true of Ni.e., x’Jy 0, for all x, y e N.
Thus, N is a Lagra.ngian H-invariant subspace of L(H) with dim N dim L(H).

Suppose that N is another r-dimensional Lagrangian H-invariant subspace of
L(H). Let $ =-L+(H) 1. Then S is n-dimensional and is H-invariant since both
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L+(H) and are H-invariant. To show it is also Lagrangian, suppose that xl + X2
and y + y2 are in S with x 1, yi L+(H) and x2, y2 e/r. Then (x + x2)’J (y + y 2)

,j ,jx 1Jy + x 2 y2 + x Jy2 + x 2 y x 1Jy2 + x 2 y since L+(H) and/ are each Lagrangian.
(That L/(H) is Lagrangian follows from Lemma 1.) However, it is an immediate
consequence of Lemma 1 that if u L/(H) and vL(H), then u’Jv =0. Thus,
x Jy2 0 and x Jyl 0, which shows that L/(H) / is Lagrangian. Since (A, B) is
controllable, this n-dimensional Lagrangian H-invariant subspace is complementary
to Sp [t] and therefore corresponds to some K F. But since HI (L/(H) 1) has no
right half-plane eigenvalues, the same is true of A-BB’K. By the uniqueness of K/,
we must have K K/, so

L+(H) )/ Sp
K+

But

Sp [K/+] [Sp [K/+] L+(H)] @ [Sp [K/+] 71L(H)]=L+(H)( N,

which implies that/ N, proving uniqueness. 71
Remark 12. The converse of Proposition 8 is also true. Since H is a Hamiltonian

matrix, dimL+(H)-dimL-(H), which implies that dimL(H) is even. Let
dim L(H)=2r, and suppose that there exists an r-dimensional Lagrangian H-
invariant subspace N of L(H). Then L+(H)O)N is n-dimensional H-invariant, and
by the same argument as in the proof of Proposition 8 it is Lagrangian. Thus, if (A, B)
is controllable, L+(H)O3N is complementary to Sp [] and corresponds to a real
symmetric solutionK of the ARE. (In fact, K K/.) Hence, F is nonempty. Combining
Proposition 8 and Remark 12 gives the following theorem.

THEOREM 13. Suppose that (A, B) is controllable. Then the following two cond-
itions are equivalent"

(i) There exists a real symmetric solution of the ARE.
(ii) There exists a Lagrangian H-invariant subspace N _L(H) such that

dim N dim L0(H).

ff (i) and (ii) hold, the subspace N is unique.
Suppose that (A, B) is controllable and that F is nonempty. Using Theorem 13,

we can extend the classification results to the case where H may have pure imaginary
eigenvalues. First we generalize the definition of A given in 4. Let
/x 1,-/xa,...,/zp,-/xp be the distinct nonzero real eigenvalues of H (i > 0), and let
h 1, h 1, -h 1, -h 1, , hq, hq, -h, -ho be the distinct nonreal, nonimaginary eigen-
values of H (Reh. > 0, Im h. > 0). (We do not include the pure imaginary eigenvalues
of H on either list.) Let Ei, E-i, F., F_. be as defined in 4. Let N be the subspace
described in Theorem 13 and let r dim N.

We modify the definition of A given in 4. Now we define A to be the set of
n-dimensional Lagrangian H-invariant subspaces of the form N E+/-I. E+/-p 03
F+/-I...F+/-. As before, A contains 2p/q elements. If L1 A, then there exists a
unique subspace L2 A such that HIL and HIL2 have only pure imaginary eigenvalues
in common. As before, we say that L and L2 are a pair of opposites in A. Since (A, B)
is controllable, each element L of A corresponds to a real symmetric solution K of
the ARE. We call such a K an unmixed solution. If L1 and L2 are a pair of opposites
in A and K1 and K2 are the corresponding elements of F, we say that K1 and K2 are
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apair ofopposite unmixed solutions of the ARE. They have the property thatA BB’K1
and A-BB’K2 have only pure imaginary eigenvalues in common.

In [19], we show that even if H has pure imaginary eigenvalues, the unmixed
solutions are isolated points in F. In 4, we proved that if (A, B) is controllable and
H has no pure imaginary eigenvalues, then the unmixed solutions depend analytically
on the coefficient matrices (locally). This result does not extend to the case where H
is allowed to have pure imaginary eigenvalues. In fact, even the extremal solutions
fail to depend analytically on A, B and Q. A simple counterexample is given by L.
Rodman [15] who considers the question of the analyticity of the extremal solutions
in detail.

Next, we extend the classification results of 5. Let L1 and L2 be a pair of
opposites in A, and let K1 and K2 be the corresponding pair of opposite unmixed
solutions of the ARE. In order to obtain a decomposition theorem, we need our pair
of subspaces to be disjoint. Since L f3 L2 N, we must modify either L or L2. There
is no difference which one we modify, so we arbitrarily choose L1. Let L1
L f"l [L+(H)q)L-(H)]. Then/1 is of the form E+/-I q)" q)E+p O)F+ q). (F+/-q while
L2 is of the form Nq)E+/-I@" "@E+pq)F+/-lq)" .F+/-q, and it is understood that if
Ei (F.) is included in 1, then E_ (F_) is included in L., and conversely.

Suppose that S is an n-dimensional Lagrangian H-invariant subspace. Then
S=[SOL(H)] [S(3E1] O) [SE_I] 03... [SCIEp] O) {SfqE_o] [StqF1]
O) IS (3F_1]...@[S (3Fq]@[S OF_o]. Since (A, B) is controllable, S corresponds
to some K F. Since the matrix of HIS with respect to the basis [:] is A-BB’K,
Proposition 7 implies that

S (’I L(H) L(HIS) Sp []G N.

It follows immediately that S [S fq/1]03[S [q L2].
Remark 13. In the decomposition S [S fqL1][S fqL2], L1 and L2 do not occur

symmetrically. To obtain a symmetrical decomposition, we could modify L2 as well
as L1. If we let IS2=--L2f’I[L+(H)L-(H)], then S=N@[Sf_,I]O)[Sfqf_,2] which
has L1 and L2 occurring symmetrically. The reason why we use the asymmetric
decomposition is that the result it gives contains the Willems-Coppel theorem
(Theorem 2) as a special case. In the Willems-Coppel theorem, there is a corresponding
asymmetry in the roles of K+ and K- due to the fact that A-BB’K+ is restricted to

V+. If H has no pure imaginary eigenvalues, 1 L and 2 L2, so this issue does
not arise.

The decomposition S=[SL1][SfqL2] shows that every n-dimensional

Lagr,angian H-invariant subspace S determines an H-invariant subspace of L 1, namely
S L1. The converse is also true. First we need a preliminary result. As in 5, we
let Alz=-K1-K2, A1 =-A-BB’K1, A2=-A-BB’K2.

LEMMA 3. ker A12 ker A.
Proof. As in Lemma 2, ker A12 is A2-invariant, and A and A agree on this

subspace. Since A andA have only pure imaginary eigenvalues in common ker
L(A)=kerA. On the other hand, if x ker A, then K/x =K-x. Since K-<=K1,
K2--<K +, it follows that Klx K2x, so x kerA12. Hence, ker A

PROPOSITION 9. Let $1 be an l-dimensional subspace of L1. Then there exists a
unique (n-l)-dimensional subspace $2 of L2 such that $10)$2 is Lagrangian. If
S1 Sp []C, where C is an n x full rank matrix such that Sp C
then $2 Sp []D whereD is any n x (n l) full rank matrix which satisfies C’A12D O.
Furthermore, $1 is H-invariant if and only if $2 is H-invariant.
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Proof. Since $1 is an/-dimensional subspace of L
__
L t, there exists an n x full

rank matrix C such that St Sp [1]C. Since At is the matrix of HILt with respect
to the basis [/1], St_ITt=Ltfq[L+(H)@L-(H)] if and only if SpC_L+(At)@
L-(A t). If $2 is any (n /)-dimensional subspace of L2, then $2 can be expressed as
$2 Sp []D for some n x (n- l) full rank matrix D. As in the proof of Proposition
6, S$2 is Lagrangian if and only if C’A2D =0. Thus, to show that a unique
exists such that S @$2 is Lagrangian, we must show that given C n x full rank, there
exists an n x (n- l) full rank matrix D such that C’A2D 0 and that this equation
determines Sp D uniquely. This is equivalent to showing that given the/-dimensional
subspace Sp C contained in L+(A i)@L-(A ), there exists a unique (n -/)-dimensional
subspace, say M, of " such that A2(M)& Sp C. But this is true if and only if
dim A-x2(Sp C)x n -l. (By A(Sp C)x we mean the inverse image of (Sp C)x under
A2.)

-SSince A2 is not necessarily invertible, it is not obvious that dim Ax2 p C) n l.
Since dim ker A2 r, dim A2(n) n r. Also, dim (Sp C) n 1. Thus,

-1 Sdim (2(R")(SpC);)(n-r)+(n-1)-n =n-r-1. Then dimS2( pC
dim ker 1: +dim 12(n) (Sp C) r +(n -r-l) n -l. Suppose that
dim(pC)x m >n-l, and let X be n m full rank with SpX=(SpC)
Since L and L2 are disjoint, the same is true of Sp []C and Sp [:]X. It ollows
that Sp [1 x:X] is a Lagrangian subspace of dimension + m > n. However, it is
obvious from the definition of a Lagrangian subspace that no such subspace can have
dimension greater than n. Hence, dim 5(Sp C)= n-1 as required. Thus, there is
an n (n-1) full rank matrix D such that C’12D=0. Furthermore, SpD=
5(Sp C);, so SpD (and hence S:) is uniquely determined. By the same argument
as in the proof of Proposition 6, S is H-invariant if and only

Remark 14. In Proposition 9, the relationship between S and 82 is described
in terms of the bases [] and [:] or L1 and L2, respectively. In the case where 81
(and hence S:) is H-invariant, a useful basis-free description of S: (in terms o $1) is
possible. In fact, $2 N ([(S)]; 2), where2 L2 (L+(H)L-(H)). To prove
this, it suces to show that if we let 2=N([J(S1)]x2), then S2 is n-
dimensional Lagrangian. Then the uniqueness part o Proposition 9 will imply that

Suppose that $1 is an/-dimensional H- invariant subspace ofx. Since JH +H’J
0, it follows that H JH’J. Thus, H(S) S implies that JH’J(Sx) Sx. Since j2 -L
this gives H’J(S1)=J(S1), which shows that J(S) is H’-invariant. Thus [J(S)] is
H-invariant. Also, dim[J(S1)]X=2n-l. Since [J(S1)]x is H-invariant, [J(S1)]=
([J(S)]x )([J(S)]; 2)([J(S)]x L(H)). Since Lx is Lagrangian and S
a=Lx, it follows that J(S1), so [J(S1)]I=. Since no eigenvalue
H[(H) is the negative of an eigenvalue of H:, it follows from Lemma 1 that
J(La) L(H). Thus, the fact that Sx= implies that [J(Sx)]x L(H) L(H).
Hence, [J(S)]x ([J (Sa)]x 2)L(H). Since dim L(H) 2r and dim n
r, we conclude that dim([J(S1)]2)=(2n-l)-(n-r)-2r=n-l-r. Thus,
dim 2 r + (n r) n l, so dim Sx2 n as required. Since x, 2 and N are
each Lagrangian andS1 x, [J(S1)] =2, we haveJ(S)
[J($1)]Z2 and J(N) N. We have already noted that J(x) L(H), so J(Sa) N.
Similarly, J(2) L(H), so J([J(S)] 2) N. Also, we have the trivial fact that
J(Sa) Z [J(Sa)] 2. It follows immediately that Sx@2 is Lagrangian, which com-
pletes the argument.

By using Proposition 9 in place of Proposition 6, we obtain the results which
follow. They generalize Theorems 10, 11 and 12 to include the possibility that H has
one or more pure imaginary eigenvalues.
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THEOREM 14. Them exists a one-to-one correspondence between the set of H-
invariant subspaces of1 and the set of n-dimensional Lagrangian H-invariant sub-
spaces which are complementary to Sp []. This correspondence associates Sp [gl]C with
Sp [KlCc r,o], where C is a full rank matrix such that Sp C is an A -invariant subspace
which is contained in L+(A)L-(A) and D is any full rank matrix such that
Sp D A .p C) Equivalently, this correspondence associates the H-invariant sub-
space SL with the n-dimensional Lagrangian H-invariant subspace S
([J(S)] O f_.)O)N, which is complementary to Sp [0].

Remark 15 Since (A,/3) is controllable, Sp K2D] is complementary to Sp [],
which means that the n n submatrix [C, D is nonsingular. This shows that if M is
any A a-invariant subspace which is contained in L+(A1)@L-(A), then A(M-) is
complementary to M. Note that the additional requirement thatM
is trivial if H has no pure imaginary eigenvalues.

THEOREM 15. There exists a one-to-one correspondence between the set of H-
invariant subspaces of and the set F of real symmetric solutions of the ARE. This
correspondence associates the subspace Sp []C with the solution [KC, K2D][C, DJ-a,
where C is a full rank matrix such that Sp C is an A-invariant subspace which is
contained in L+(Aa)@L-(A), and D is any full rank matrix such that SpD
a;(Sp c)

THEOREM 16. Let TaAxIL+(A1)@L-(A1). There exists a one-to-one corres-
pondence between ST and F which associates the solution KIPm +K2(I-P) with the
Tx-invariant subspace M, where P is the projection onto M along A (M).

Remark 16. Theorem 16 generalizes the Willems-Coppel classification theorem
(Theorem 2). If K K+ and K2 K-, then this is precisely Theorem 2. Coppel’s
proof of Theorem 2 depends on the fact that AK+-K is nonnegative definite in
order to show that A-X(M) is complementary to M. Since A12 is generally indefinite,
this argument does not extend to our situation. Instead we must use the controllability
result (Theorem 3) as described in Remark 15.

7. Conclusion. In 2, we noted that the principal disadvantage of the Hamil-
tonian matrix method is its failure to exploit the Hamiltonian symmetry which is
present in the ARE. Consequently, it does not explain how the Lagrangian condition
and the complementarity requirement cut out a subset from the set of all n-dimensional
/-/-invariant subspaces. In this paper, we have addressed this question in some detail.
In 3 we showed that the controllability of (A, B) is sufficient to guarantee that every
n-dimensional Lagrangian H-invariant subspace is complementary to Sp [0] and hence
corresponds to a real symmetric solution of the ARE. If H has no pure imaginary
eigenvalues, the controllability of (A, B) is a necessary condition as well.

In 5 and 6, we have presented a simple classification for all the n-dimensional
Lagrangian H-invariant subspaces which are complementary to Sp []. This result
(Theorem 14) describes a one-to-one correspondence between this set and the set of
all invariant subspaces of a particular matrix. We have described elsewhere [19] a
simple parametrization for the set of all invariant subspaces of an arbitrary finite-
dimensional linear operator. Combining this parametrization with Theorem 14 gives
a simple parametrization of the set of n -dimensional Lagrangian H-invariant subspaces
which are complementary to Sp [].

In order to derive Theorem 14, we have incorporated into the Hamiltonian
framework some of the ideas behind the Willems-Coppel classification theorem. In
doing so, we have obtained a generalization (Theorem 16) of the Willems-Coppel
result. In our result, the pair of extremal solutions, K+ and K-, is replaced by an
arbitrary pair of what we call opposite unmixed solutions, Ka and Kz.
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Our geometric approach gives a clear interpretation of the roles of controllability
and observability in the theory of the ARE. The role of controllability is to guarantee
that there are no solutions at infinity. Controllability also ensures that the ARE is
genuinely quadratic and that the set F of real symmetric solutions is compact (with
respect to the Euclidean topology). The role of observability is to guarantee that there
are no solutions at zeromthat every element of F is nonsingular and hence defines a
nondegenerate quadratic form. When we make precise the concept of points at infinity
and points at zero by compactifying the ARE in the Lagrangian Grassmannian, the
geometric roles of controllability and observability are dual" controllability implies
that every n -dimensional Lagrangian H- invariant subspace is complementary to Sp [],
whereas observability implies that every such subspace is complementary to Sp [0t].

We have also studied the special subset of F consisting of the unmixed solutions.
These solutions include the extremal solutions, K+ and K-, and share several of their
properties. As we have already noted, they occur in pairs and each such pair gives a
decomposition theorem which is analogous to the Willems-Coppel classification
theorem. Each unmixed solution is isolated, and if H has no pure imaginary eigen-
values, then it depends analytically on the coefficient matrices. However, the concept
of an unmixed solution extends to non-Hamiltonian (even nonsquare) ARE’s, while
the concept of extremal solutions does not.

The classification theorems in 5 and 6 were derived for the set of real symmetric
solutions of the usual (i.e., Hamiltonian) ARE -A’K-KA +KBB’K-Q =0 under
the assumption that (A, B) is controllable. We have proved in 4 that if (A, B) is not
controllable and H has no pure imaginary eigenvalues, then no pair of opposite
unmixed solutions exist. Hence, no Willems-type decomposition theorem is possible
in the absence of controllability.

It is possible to obtain theorems resembling Theorems 10, 11 and 12 which
classify the set of all n-dimensional H-invariant subspaces and the set of all real
solutions (not necessarily symmetric) of the ARE, at least in the case where H has
no pure imaginary eigenvalues [20]. However, these results are not so nice as those
for the Lagrangian subspaces and symmetric solutions. This is due to the fact that the
controllability of (A, B) does not guarantee that every n-dimensional H-invariant
subspace is complementary to Sp []. Also, in our view, there is no practical reason
for wanting such classification theorems for the set of all real solutions. This is because
the primary function of these theorems is to describe how the Lagrangian requirement
determines a subset of the set of all n-dimensional H-invariant subspaces. If we do
not care about the Lagrangian condition, this motivation is absent.

We have noted in 4 that the concept of unmixed solutions extends to the
generalized ARE B21+B22P-PBxl-PB12P=O, where the unknown matrix P is
m p. However, since this is not a Hamiltonian ARE, the unmixed solutions do not
occur naturally in pairs. Thus, a Willems-type decomposition is not possible. In
addition, there is no real motivation for such a decomposition since there is no
Lagrangian condition with which to deal.

Acknowledgment. The results contained in this paper represent part of the
author’s doctoral thesis [20] completed under the direction of Professor R. W. Brockett
of Harvard University.
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GEOMETRY OF THE ALGEBRAIC RICCATI EQUATION, PART II*

MARK A. SHAYMANS.

Abstract. We prove that the set of real symmetric solutions of the algebraic Riccati equation is
isomorphic to the algebraic variety of invariant subspaces of a related n n matrix. By characterizing the
structure of this variety, we obtain a detailed description of the geometric properties of the solution set of
the algebraic Riccati equation.

Key words, algebraic Riccati equation, linear quadratic control, invariant subspaces

1. Introduction. By the algebraic Riccati equation (ARE), we mean the quadratic
matrix equation -A’K KA +KBB’K O 0 where A, B and O are given real
matrices of dimensions n n, n tn and n x n respectively, and O O’. The ARE is
the algebraic equation satisfied by the equilibrium points of the Riccati differential
equation, and is of critical importance in optimal control and filtering theory. For
most applications, one is interested in the set of real symmetric solutions of the ARE.
We use F to designate this set.

It is well known [13] that if (A,B) is controllable and F is nonempty, then F
contains a unique element, K/ (K-), with the property that every eigenvalue of
A-BB’K/ (A-BB’K-) has nonpositive (nonnegative) real part. It is the solution
K/ which is used to construct the optimal feedback control for the linear-quadratic
stationary optimal control problem and for this reason a large portion of the research
on the ARE is devoted to the design of algorithms to obtain K/.

However, there are several reasons why it is important to understand the structure
of all F. For one thing, knowledge of the entire solution set is useful for the development
of numerical methods to find K/. In addition, there are other applications where
knowledge of all of F is of intrinsic importance. They include network synthesis
realizations which employ a minimal number of resistors and the construction of all
minimal square solutions to the spectral factorization problem with application to
stochastic realization theory [4].

There are two approaches in the literature to the problem of characterizing F.
J. C. Willems [13] proved that under mild assumptions, the elements of F are in
one-to-one correspondence with the set of all invariant subspaces of the matrix
A/=A-BB’K/. Using this bijection, Willems showed that every real symmetric
solution can be expressed as a combination of K/ and K-. This result was generalized
by W. Coppel [3].

The second approach to the characterization of F establishes a one-to-one corres-
pondence between F and a certain subset of the set of all n-dimensional invariant
subspaces of the 2n 2n Hamiltonian matrix H=--[_Ao-_,’]. This method was
developed and generalized through the work of several authors including J. Potter
[6], K. M,hrtensson [5] and A. C. M. Van Swieten [12]. A discussion of the relationship
between Willems’ approach and the Hamiltonian matrix method is included in our
companion paper 19] (this issue, pp. 375-394).

Both, existing results are set-theoretic. In each case the existence of a bijection
is established. On the other hand, F has more structure than a set. At the very least,
F has the topological structure it inherits as a subset of the Euclidean space of n x n

* Received by the editors July 11, 1981, and in revised form May 10, 1982. This research was partially
supported by the U.S. Army Office of Research under grant DAAG 29-79-C-0147.

5" Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 63130.
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real symmetric matrices. Thus, it is appropriate to ask topological/geometric questions
about F. For example, when is F finite? When does it contain continuous families of
solutions? How many connected components are there? Do the connected components
have a system-theoretic interpretation? Does F admit the structure of a differentiable
manifold (with the Euclidean topology)? If so, what is its dimension? The answers to
geometric questions of this type should prove useful to those interested in the
applications mentioned above. In particular, they should aid in the design of numerical
algorithms to solve the ARE.

Because the existing results are set-theoretic, the only geometric information
they can supply is the cardinality of F. In 2, we show that if (A, B) is controllable,
then F is naturally identified with a projective variety. With this identification, F can
itself be viewed as a projective variety. Then we prove that the bijection in Willems’
theorem is an isomorphism of projective varieties. This enables us to obtain the
geometric properties of F from those of SA/, the variety of invariant subspaces of A /.
This leaves us with the problem of describing the structure of the variety of invariant
subspaces of an arbitrary linear operator on I or Cn. This is a difficult problem unless
the operator is semisimple (diagonalizable). However, the problem is tractible, and
our results are outlined in 3. For the proofs, the reader is referred to [11], [10]. In
4, we use these results to describe the topological structure of F, and we give

system-theoretic interpretations for some of the geometric properties. In 5, we
describe a parametrization for the set of invariant subspaces of an arbitrary linear
operator on N" or Cn. We used this parametrization in [10] to derive several of the
topological properties discussed in 3. As far as we are aware, there are no published
parametrizations of the set of invariant subspaces of a finite dimensional linear
operator. If the operator is not semisimple, there is no obvious way of listing all of
its invariant subspaces. However, without such a parametrization, it is not clear how
to use either Willems’ theorem or the Hamiltonian matrix method to generate all the
solutions of the ARE. Since invariant subspaces occur throughout linear systems
theory as well as elsewhere in applied mathematics, it is our hope that these results
will prove useful in other applications besides the algebraic Riccati equation.

We close this section with an example which shows that F has interesting geometric
structure even for a very simple ARE.

Example 1. Consider the ARE K I =0. Then F consists of all symmetric
matrices in O (n), the group of n x n orthogonal matrices. If X O (n) and K F, then
X’KX e F, so O(n) acts on F by conjugation. K1 and K belong to the same orbit if
and only if they have the same spectrum. Since the eigenvalues of a symmetric
orthogonal matrix are 1, there are exactly n + 1 orbits. Each orbit contains an element
in the canonical form

I --p

Since the stabilizer of this matrix is O(p)x O(n-p), the corresponding orbit is the
homogeneous space O(n)/O(p) x O(n -p), which is the Grassmann manifold G(N)
of all p-dimensional subspaces of N". (For a brief discussion of homogeneous spaces,
see [1, pp. 164-171].) A simple argument using the fact that the eigenvalues of a
matrix depend continuously on its entries shows that the connected components of F
are precisely the n + 1 orbits. Hence F is the disjoint union p=o

2. Isoophis tho. Let be any field, and let [X,..., X,] be the ring
of polynomials in n variables with coefficients in . Let {p} be any collection of
polynomials in [X, ., X, ], and let V {x ": p (x) O, V }. Then V is called
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an (affine) algebraic variety in g". A nonzero polynomial q [X,..., X,] is said to
be homogeneous if each term in q is of the same degree. If every polynomial in {p}
is homogeneous, then V is called a homogeneous variety. In this case, it is easily seen
that if x V, then every multiple of x belongs to V. Thus, V can be viewed as a
collection of lines through the origin. To be precise, we define an equivalence relation
on V-{0} whereby x---y if there exists a nonzero real number A such that y Ax.
Then we can view V as the set of equivalence classes. When the homogeneous variety
V is viewed in this way, it is called a projective variety.

In practice, the terms "algebraic variety" and "projective variety" are also used
to describe objects which can be identified with algebraic or projective varieties by
structure-preserving mappings. Let W be a finite-dimensional vector space over
’(= or C), and let Gi(W) denote the set of all j-dimensional subspaces of W. Then
the elements of Gi(W) do not belong to a Euclidean space. However, the classical
Pliicker embedding identifies Gi(W) with a projective variety, so Gi(W) is itself
regarded as a projective variety. For the basic concepts of algebraic geometry, we
refer the reader to [2]. This volume also describes various applications of algebraic
geometry to problems in systems theory.

The set F of real symmetric solutions of the algebraic Riccati equation is the zero
set of a collection of quadratic polynomials defined on the 1/2n(n + 1)-dimensional
vector space of real symmetric matrices. Thus, F is an algebraic variety over the field. In this section, we show that if (A, B) is controllable, then F can be identified with
a certain projective variety in a natural way, and can therefore be itself regarded as
a projective variety. We then prove that the one-to-one correspondence in the
Willems-Coppel classification theorem is an isomorphism of projective varieties.

Let G(2") denote the Grassmann manifold of all n-dimensional subspaces of
2,. Let J be the 2n 2n matrix [_0 0]. If M is a subspace of R2, (not necessarily
n-dimensional), we say that M is Lagrangian if x’Jy O, Vx, y M. Let M(n) denote
the vector space of all n n real matrices. Define a mapping & :M(n)- G"(2") by
g,(K) Sp [i], the column space of the matrix []. embeds M(n) in G" (2,) as an
open and dense submanifold.

Let H [_Ao -,’] denote the 2n 2n Hamiltonian matrix corresponding to the
ARE. Let denote the set of all elements of G" (2,) which are both Lagrangian and
H-invariant. If (A, B) is controllable and F is nonempty, then it is shown in the
companion paper [9] that g, maps F onto . Thus, we can use the embedding 4’ to
identify F with the subset ff of G" (2,). The assumption of controllability is essential.
If (A, B) is not controllable, can (and generally does) contain elements which are
not complementary to the n-dimensional subspace Sp [] and thus do not belong to
the image of 4’.

Let denote the subset of Gu([2) consisting of those elements which are
Lagrangian, and let Si-i(n) denote the subset of G" (R2,) consisting of those elements
which are H-invariant. If 2, is endowed with the standard inner product, then
={MG(2"):[J(M)]-=M}. Thus, is the fixed point set of the mapping
M--[J(M)]z on Gn(N2n). Since this is a regular mapping of the projective variety
G(N2n), it follows immediately that is a subvariety of G" (N2"). It is also easily
shown that S,(n) is a subvariety of G(N2") [10]. Since f" 5f (’1S,(n), it follows that

" is a subvariety of G" (N2,). By using the embedding to identify F with ’, we can
therefore view F as a subvariety of G" ([2).

We introduce some notation. Let R be a linear operator on N with characteristic
polynomial p(s). Express p(s) as the product p(s)=p/(s)p(s)p-(s), where the roots
of p+(s) (p(s)) (p-(s)) have negative (zero) (positive) real parts. Define L+(R)
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kerp+(R), L(R)-kerp(R), L-(R)=kerp-(R). Thus, L+(R) (L(R)) (L-(R)) is
the sum of the primary components of R which correspond to its left half-plane
(imaginary axis) (right half-plane) eigenvalues.

Suppose that a real symmetric solution of the ARE existsmi.e., F is nonempty.
Then K+ and K- exist. It is well known [13] that if K F, then K-<-K <-K+ with
respect to the usual partial ordering of symmetric matrices. Let A=K+-K It can
be shown [3] that for any K F, L(A-BB’K)- ker A. In fact, since K-<-K <-K +,
it follows that A-BB’Klker A A +[ ker A.

Let V+ =L+(A+), Vo=L(A+) (= ker A), and let V_=L-(A -BB’K-). Note that
L-(A+)=0 and L+(A-BB’K-)=O. Let T=A+[V+, and let S be the set of all
invariant subspaces of T. The following result is Coppel’s generalization of Willems’
theorem [13], [3].

THEOREM 1 (J. C. Willems, W. Coppel). Let (A, B) be controllable and suppose
that F is nonempty. If S is any A+-tnvanant subspace which is contained in V+ (i.e.
S ST), then S ()A-I(s -k) --n, where S +/- denotes the orthogonal complement orS in
and A-I(s -) is its inverse image. There is a bijection 6"ST-->F defined by cb(S)=-
K+ps +K-(I-Ps), where Ps is the projection onto S along A-(S-). IlK b (S), then
L+(A -BB’K) S, L(A -BB’K) Vo and L-(A -BB’K) A-a(S z) V_.

If A > 0, then V+ " so T A+, and Theorem 1 reduces to the original theorem
of Willems.

We will assume that the hypotheses of Theorem 1 are satisfied. Under these
conditions, it is shown in [9] that L(H) contains a unique Lagrangian H-invariant
subspace N with the property that dim N (1/2)dim L(H). It is also shown that there
is a one-to-one correspondence between " and the set of H-invariant subspaces of
L+(H). Let H+ denote the restriction of H to L+(H), and let Sn+ denote the set of
all invariant subspaces (of all possible dimensions) of H+. If we let 6" ’--> SH/ denote
the bijection, then 6(M)=MVIL+(H) and 6-1(M1)=MI([J(MI)]+/-V1L-(H))N.
(See [9 Thm. 14].)

Let R be a linear operator on a finite dimensional real vector space V. Let
El,’’ ", E, denote the primary components of R, and let Ri be the restriction of R
to Ei. Let SR denote the variety of all invariant subspaces of R, and let SR denote
the variety of all invariant subspaces of Ri. There is a natural bijection ot’SR-’>
SR1 X’’’xSR. defined by a(S)= (S E1,’’’, S Ep). The inverse of a is given by
-1 -1

a ($1,’’’ ,S,)=$1@"" ’@Sp. It is proven in [10] that a and a are regular map-
pings, and thus a is an isomorphism of projective varieties. Now, let E, F and G each
be sums of some of the Ei’s such that V -E@F@G. Let RE, RF andR denote the
restrictions of R to E, F and G respectively. There is a natural bijection fl" Sn -> SRE X

SnF X Sn given by/3 (S) (S V1 E, S (’1 F, S G). By essentially the same argument used
for a, it follows that fl is an isomorphism of projective varieties.

We return to the Riccati equation. Recall thatH+ HIL+(H). Let H- HIL-(H)
and let H=HIL(H). Then the mapping 7"Sn-->SH+xSq-xSqo with
(M (’IL+(H),Mf-IL-(H),M (’IL(H)) is an isomorphism (of projective varieties).
The mapping 8 is the restriction of 3’ to Svi(n)(’1 followed by projection on the first
factor. Thus, 8 is a regular mapping. The mapping 8 -1 is the mapping M->
(M1, [J(M1)]+/-F’IL-(H),N) followed by 3"-. The mapping MI-->[J(M)]+/-V1L-(H)
consists of the regular mapping MI->[J(M1)]+/- followed by 3" which is then followed
by projection on the second factor. It is therefore a regular mapping. We conclude
that 8 -1 is a regular mapping. We have’

LEMMA 1. Supposg that (A, B) is controllable and that F is nonempty. Then the
mapping 8"’S+ with 6(M)=M (qL+(H) is an isomorphism of profective varieties.
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We can now prove that F is isomorphic to ST.
THEOREM 2. Let (A, B) be controllable and suppose F is nonempty. Then the

mapping ST -> F defined by dp (S) K+Ps +K-(I Ps) is an isomorphism ofprojective
varieties.

Proof. The structure of F as a projective variety is that which it inherits from "via the embedding . Thus alp’ST --> F is an isomorphism if and only if 0 &’ST -> " is
an isomorphism. Therefore, by Lemma 1, it suffices to show that 6 0 &:ST-> SH
is an isomorphism of projective varieties. We have

(,)
[ ’ ]O(&(S)) Sp K+Ps +K-(I-Ps)

=Sp
K+ Ps+Sp (I-Ps).

It is shown in [9] that Sp[+]=L+(H)@N. Thus, the mapping x -[+]x is an
isomorphism of R onto L+(H)@N. It is well known that A + is the matrix of the
restriction of H to Sp [+] relative to the basis given by the columns of [+]. (See,
e.g., [9].) Thus, H[ff+] [+]A +. This implies that Ix maps L+(A+)( V+) onto L+(H).
It is also clear that if S is an A+-invariant subspace of V+ (i.e., S ST), then the image
of S under/z is an H-invariant subspace of L+(H) (i.e., tx(S)S,+). Thus,/z induces
an isomorphism, call it t2, of ST onto S,+, where/2 (S) is the image of $ under

ISince tz maps V+ onto L+(H), the subspace Sp [:+]Ps in (.) is contained in L+(H).
From [9], we know that Sp [-]=L-(H)@N. Hence, the subspace Sp [-](I-Ps) is
contained in L-(H)N. (Thus, the sum in (.) is a direct sum.) This means that

I6 (0 (& (S))) 0 (O (S)) (3 L+(H) Sp [K+]Ps. But this means that 8 (0 (O (S))) is the image
ot S under IT. Thus, 6 & =/2, showing that 6 0 O is an isomorphism.

It is shown in [9] that the Willems-Coppel theorem holds with K +, K- replaced
by other pairs of solutions (called opposite unmixed solutions). By an argument
completely analogous to the one given above, it is easily seen that the corresponding
bijection is again an isomorphism of projective varieties.

3. The variety of invariant subspaces. In this section, we describe the geometric
structure of the variety of invariant subspaces of an arbitrary finite dimensional linear
operator. We omit the proofs since they appear elsewhere [11], [10]. Let V be an
n-dimensional vector space over the field - of real or complex numbers. Let A
Hom (V)--i.e., a linear mapping of V into itself. SA denotes the set of all invariant
subspaces of A, and SA(k) denotes those elements of SA which are k-dimensional.
SA (k) is topologized as a subset of G k (V), the Grassmann manifold of all k-dimensional
subspaces of V, and the topologies on {SA(k)}=o generate a topology on SA which
makes SA the topological disjoint union Ilk=0 SA(k).

THEOREM 3. SA(k) is a compact subvariety of Gk(V).
THEOREM 4a. Let =-- C. Let F1, , Fq be the generalized eigenspaces ofA. Let

Aj be the restriction of A to F., and let SAt be the variety of invariant subspaces of Ai,

/" 1, .., q. Define l" S, --> SA1 x. SAq by 1 (S) =- (S F1, , S F). Then is
an isomorphism of pro/ective varieties.

THEOREM 4b. Let ; . Let B be the complexification of A. Let El,’’’, Ep be
the generalized eigenspaces of A corresponding to its real eigenvalues, and let
F1, F1, ", Fq, Fq be the generalized eigenspaces (in conjugate pairs) orb corresponding
to the nonreal eigenvalues of A. Let Ai be the restriction ofA to Ei (i 1, ., p ), and
let Bj be the restriction of B to F. (] 1,..., q ). Define. I SA -> SA1 " SAp SI
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SB. by n (S) - (S El, S (] Lp, S+ F1, S [ Fq), where S+ is the
complexification of the subspace S. Then rl is an isomorphism of real proective varieties.

It is important to note that Bi is an operator on the complex vector space F., so
Sn(k) is a subvariety of the complex Grassmann manifold G (F.).

The importance of Theorems 4a and 4b is that they express the variety of invariant
subspaces of A as the product of varieties of invariant subspaces of operators which
have only one distinct eigenvalue. Thus, to characterize SA for every operator A, it
suffices to characterize SA for every real operator and every complex operator possess-
ing a single eigenvalue. However, for such an operator A, there exists such that
A-M is nilpotent. Since SA-t SA, there is no loss of generality in taking A to be
nilpotent. The remainder of the results in this section are stated for nilpotent A.

Let A be a nilpotent operator on V, and let (rex,.. ", m) be the partition of n
corresponding to the Jordan block structure of A (m " mr 1). Let k be fixed,
and let (pa, ., pl) be a partition of k (p =>. ’>-p => 1). We say that (p, ., pl) is
a partition of k compatible with the block structure ofA if <= r and p; <- m;,/" 1, , 1.
Let Sa(k; p,’", pt) be the subset of Sa(k) consisting of those elements which have
cyclic structure (pa,..., p). It is easy to show that SA(k; pa,’", pl) is nonempty if
and only if (Px,"" ", Pt) is compatible with the block structure of A. It is trivial to
show that there is always at least one partition of k which is compatible with the
block structure of A, so SA (k) is nonempty.

There are two special cases where the structure of Sa(k) is readily apparent and
well known. These are described in Theorem 5.

THEOREM 5.
(a) IfA is semisimple (diagonal&able), then SA(k)=Gk(V).
(b) IfA is cyclic, then SA(k consists of exactly one point.
The next result shows that Sa is finite if and only if A is cyclic.
THrOREM 6. IfA is cyclic, then SA consists of exactly n + 1 points. Otherwise, SA

contains a connected component which is a profective space of positive dimension.
Theorem 5 describes the structure of SA in the cases where A is semisimple or

cyclic. These are the extreme cases. In the semisimple case, A has n 1 1 blocks,
whereas in the cyclic case A has one n n block. A class of nilpotent operators which
includes both the semisimple and the cyclic cases is the set of operators with block
structure of the form (ml,""", m)= (m 1, 1,. ;., 1). (Note that n m+r- 1.) These
are the operators which have at most one block of size greater than 1 1. Note that
if r n and ml 1, then A is semisimple, while if r 1 and mx ?/, then A is cyclic.
Also, if (m,. , m) (rex, 1, 1), then the only partitions of k which are compat-
ible with the block structure of A are of the form (p, , pt) (px, 1, 1), where
p =< m and =< r. The following result describes completely the geometry of Sa(k)
for an operator A with block structure (m, 1, ., 1).

THEOREM 7. Let A have block structure (rex,..., mr)--(m x, 1,..., 1), and let
(px,... ,pt)=(px, 1,..., 1) be a partition of k which is compatible with the block
structure of A. Then (1) If pl= l or l=r, SA(k;pl, 1,. .,1)G(r). (2) If pl>l
and < r, then

SA(k; pl, 1,..., 1)-G(;)-G(r-X), Sa(k; pl, 1,..., 1)Gt(),
and

Sa(k;pl, 1,..., 1)-Sa(k;pl, 1,..., 1)_Sa(k;pl-1, 1,..., 1).
(l + 1) terms

(An overbar indicates closure and indicates isomorphism.)
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Example 2. Let n =6 and suppose that the block structure of A is
(ml, m2, m3, m4)=(3, 1, 1, 1). Let k =3. There are three partitions of k which are
compatible with the block structure of A: (3), (2, 1), (1, 1, 1). By Theorem 7, $a(3; 3)
G1(ff;4)-Gl(5;3),Sa(3; 2, 1) Gz(,.’4)-G2(,-3)andSa(3; 1, 1, 1) G3(4). Further
more, Sa(3; 3) G1(-4), SA(3; 3)--Sa(3; 3)___8,,(3; 2, 1), $a(3; 2, 1)G2(,"4) and
$a(3; 2 1)-Sa(3; 2, 1)_Sa(3; 1, 1, 1). Thus, $a(3; 3) has the topological structure
Of GI("4) except that it is missing a piece which has the structure of G l(,z-3). This
missing piece is a subset of $a(3; 2, 1). 6’,,(3; 2, 1) has the topological structure of
G2(o-4) except that it is missing a piece which has the structure of G2(3). This missing
piece is a subset of Sa(3; 1, 1, 1). Finally, $a(3; 1, 1, 1) is isomorphic to G3(’4). Thus,
SA(3) consists of three Grassmann manifolds, ol(4), G2(,4), G3(,."4) which are not
disjoint. The GI(4) intersects the G2() along a common submanifold which has
the structure of G1(3). The G(-4) intersects the G3("4) along a G(3).

Remark 1. Theorem 7 shows that if A has block structure (ml, 1,..., 1), then
SA(k) consists of a finite sequence of Grassmann manifolds which are joined to each
other along Grassmannian submanifolds. In general, the Grassmann manifolds have
different dimensions, and at the points of the joining submanifolds, SA(k) is not locally
Euclidean. Thus, the connected components of SA need not be manifolds.

The class of operators with block structure (m 1, 1, ., 1) appears to be the largest
class of nilpotent operators for which the structure of SA can be explicitly described
in terms of familiar manifolds. The next result deals with the connectivity of 6"A for
an arbitrary nilpotent A.

THEOREM 8. SA(k is path-connected.
COROLLARY. SA consists of exactly n +1 connected components, namely

s(0),... ,s(n).
From Theorem 7, we know that SA(k) need not be a manifold. It is natural to

ask whether SA(k) is a union of manifolds. The following theorem shows that this is
indeed the case. In fact, the subset of SA(k) consisting of those elements which have
a given cyclic structure is a regular submanifold of Gk(V). Let (pl,’" ,pt) be a
partition of k which is compatible with the block structure of A. Let (Cl,’’’, cs) be
the partition of n which is conjugate to (m 1,’", mr), and let (ql,"’,qd) be the
partition of k which is conjugate to (pl,. ’, pt).

THEOREM 9. SA(k; Pl,""", Pl) is a connected regular submanifold of Gk(V) of
dimension i=1 qi(ci-qi) over

Remark 2. In order to prove Theorem 9, we have constructed charts (local
parametrizations) for SA(k; pl,"’, Pl). These charts give a simple parametrization
for SA(k; pl,’", Pl) which is useful even in applications where the topology is not
importanti.e., where only a convenient method for enumerating the invariant sub-
spaces is needed. We discuss this in detail in 5.

Using Theorems 8 and 9, we can identify all the isolated points of SA. Since this
result does not appear in either [11] or [10], we give a detailed proof.

THEOREM 10. If A is cyclic, each connected component of SA contains only one
point, so there are n + 1 isolated points in SA. If A is not cyclic, the only connected
components ofSA which consist of single points are SA(0) and SA(n ), so there are exactly
2 isolated points in SA.

Proof. The case where A is cyclic is treated in Theorem 5, so suppose that A is
not cyclic. The connected components SA(O) and SA(n) trivially consist of one point
each, so we need to show that if 0 < k < n, then SA(k) contains more than one point.
Suppose that 0 < k < n and that Sg(k) contains only one point. It is easy to show that
there is always at least one partition of k which is compatible with the block structure
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of A. Let p (pl," , pt) be such a partition. Since S,(k) contains only one point, p
must be the only partition of k which is compatible with the block structure of A and
SA(k; pl,""’, pl) must contain only one point.

Let (m 1,’’ ’, mr) be the partition of n corresponding to the block structure of
A. Since A is not cyclic, r> 1. Let (c.,..., Cs) and (q.,...,qa) be the conjugate
partitions of (ml,. ",mr) and (pl,’ ",p) respectively. By Theorem 9,
SA(k;p,’’’,p) is an ’-analytic manifold of dimension .,id=lqi(i--qi). Since
SA(k p, Pl) contains only one point, it follows that qg ci, 1, , d. If d s,
then k ql -["" -[- qd C1 At’" q’- Cs tl which is contrary to assumption. Since k > 0,
it follows that 0 < d < s. A consequence of the definition of conjugate partition is that
s m 1, d p, r c and ql. Thus, p < m 1. Since cl r > 1, we have q c > 1.
Since pl < m and > 1, it follows that (pl "- 1, P2, Pl 1) is a new partition of k
which is compatible with the block structure of A, a contradiction. (If pl 1, then in
our notation the new partition would be written (p + 1, , pt-1).) 71

4. Geometry of the solution set. In this section, we use the isomorphism theorem
(Theorem 2) and the results on the variety of invariant subspaces to characterize the
geometric structure of the solution set of the ARE. As before, F denotes the space
of real symmetric solutions with the Euclidean topology. We assume that (A, B) is
controllable and that F is nonempty. T is the restriction of A/(--A-BB’K/) to
V+(=-L+(A +)). By Theorem 2, F is isomorphic to St.

Our first result follows immediately from Theorem 3.
THEOREM 1.1. F is compact.
Remark 3. The compactness of the solution set is a consequence of the fact that

the ARE is a quadratic equation. This is in sharp contrast with the situation for a
linear matrix equation. If a linear equation has multiple solutions, the solution set is
an affine subspace of positive dimension and is therefore never compact. Our assump-
tion that (A, B) is controllable is necessary to guarantee that the ARE is genuinely
quadratic. If (A, B) is not controllable, then F need not be compact. This is discussed
in more detail in our companion article [9]. The compactness of F (when (A, B) is
controllable) also follows directly from the existence of maximal and minimal solutions.
Since K-<-K <-K + VKF, it follows that F is bounded as a subset of the vector
space of real symmetric matrices. Since F is closed, this implies that F is compact.

We let m denote the dimension of V/. Let R be the complexification of the
operator T. Let El,’’ ", E, be the generalized eigenspaces of T corresponding to its
real eigenvalues, and let F, F, , Fq, Fq be the generalized eigenspaces (in conjugate
pairs) of R corresponding to the nonreal eigenvalues of T. Let m and n. denote the
dimensions of Ei and F., respectively. Let T be the restriction of T to Ei (i 1, ., p),
and let R. be the restriction of R to F. (f 1,..., q). By Theorem 4b, the mapping
,1" ST- Sr x x Sr x Sn X X SR defined by
F,... ,S+f-lFq) is an isomorphism. (S + denotes the complexification of the
subspace S.)

Recall that for an arbitrary linear operator P on a vector space V, Sp Se-xt.
Since Ti and R. differ from nilpotent operators on Ei and F. by multiples of/, this
means that as far as the structure of St, and SR is concerned, we can treat T/ and R.
as though they were nilpotent. Using the isomorphism r/and the theorems for nilpotent
operators from 3, we obtain the results which follow.

TIEOREM 12. F has finite cardinality if and only if T is cyclic. In this case, F
contains exactly (m + 1)... (m + 1) (/’/1 + 1) (g/q + 1) elements. If T is not cyclic,
then F contains a connected component which is a product of real and/or complex
projective spaces, at least one of which has positive dimension.
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Proof. If T is cyclic, then the same is true of Ti (i 1,.. , p) and R. (/’ 1, , q).
From Theorem 6, ST, and SRj are finite and contain mi + 1 and ni + I points, respectively.
Since rt is a bijection, ST (and hence F) is finite and contains exactly (m "[- 1) (rap + 1)
(/’/1 "[-1)’’" (/’/q q-1) points. Conversely, if T is not cyclic, then at least one of the Tg
or R. is not cyclic. If Tg is not cyclic, Theorem 6 states that ST, contains a connected
component which is a real projective space of positive dimension, while if Rj is not
cyclic, then SRj contains a connected component which is a complex projective space
of positive dimension. If Tg or Rj is cyclic, then its connected components are trivially
zero-dimensional projective spaces. Since rt is an isomorphism, it follows that ST (and
hence F) contains a connected component which is a product of projective spaces, at
least one of which has positive dimension. [-I

Remark 4. An interesting consequence of Theorem 12 is that the solution set
of the ARE is never countably infinite. It is either finite or it contains at least one
continuous family of solutions.

It is appropriate to make some historical comments regarding Theorem 12. The
conclusion that F is finite if and only if T is cyclic is a purely set-theoretic result and
as such follows immediately from the Willems-Coppel bijection. This was noted by
Willems in [13]. On the other hand, the last conclusion in Theorem 12 is a topological
result and thus depends on our isomorphism theorem (Theorem 2).

We also compare Theorem 12 to some conclusions made by Rodriguez-Canabal
[7], [8]. Let h(s) denote the characteristic polynomial of the Hamiltonian matrix
H [-o --’]. Each polynomial g (s) satisfying h (s) (- 1)ng (s)g (-s) is called a fac-
torization of h(s). The basic result in [7], [8] is that if K F, then there exists a
factorization g(s) such that g(H)[] []. In fact, g(s) is the characteristic polynomial
ofA BB’K. (See our companion paper [9] for further discussion.) Rodriguez-Canabal
observed that F can be infinite if there exists a factorization g(s) which coincides with
the minimal polynomial of H. This observation is not equivalent to the first statement
in Theorem 12. For example, consider the ARE

K2-- 0 1
0 0

It is easily seen that this ARE has infinitely many real symmetric solutions. In fact,

K + 0 1
0 0

Since A 0 and B =/, A/ -K/. Thus, A/
is not cyclic, so Theorem 12 implies that

F is infinite. However, it is easily checked that the minimal polynomial of /-/ is
(s + 1)(s + 2)(s 1)(s -2). Since this polynomial has degree 4, it cannot coincide with
any factorization g (s) of h (s).

Rodriguez-Canabal also gives some formulas for the number of real symmetric
solutions. However, as is noted in [9], there is not generally a one-to-one correspon-
dence between the set of factorizations of h (s) and the set F of real symmetric solutions.
Thus, the formulas in [7], [8] are not valid without additional restrictions which are
not mentioned. We discuss this further in Remark 6 below.

The next result gives a complete description of F in the case where T is semisimple
(diagonalizable).
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THEOREM 13. If T is semisimple, then F is isomorphic to a disfoint union of
products of real and complex Grassmann manifolds. Specifically,

F U G()x
k=0 k=0 /=0 1=0

X ago(m") x Gll(Cnl) x... x

Pro@ T is semisimple if and only if Tg is semisimple (i 1,..., p) and Ri is
semisimple (f 1,. ., q). If T is semisimple, then by Theorem 5,

St, G’(Eg)= G,(N’).
ki =0 ki =0

If Rj is semisimple, then

SR, G’(E.)
0 0

The result follows immediately. 71
Remark 5. Using Theorem 7, we can completely describe the geometric structure

of F if the Jordan canonical form of T contains at most one nontrivial block for each
eigenvalue. In this case, each of the operators Ti (i 1,. , p) and R. (/" 1,. , q)
satisfy the assumptions of the theorem, so each connected component of 6’7- (and
hence of F) is a product of "joined" Grassmannians. The connected components are
not generally manifolds.

The next theorem describes the connected components of F.
THEOREM 14. F has exactly (m + 1)... (m + 1)(n + 1) (nq if- 1) connected

components. If K, Ke F, then K and Ke belong to the same connected component if
and only irA-BB’K and A-BB’Ke have the same set of eigenvalues.

Proof. It follows from Theorem 8 and the isomorphism r/ that S (and hence F)
has exactly (m + 1) (too + 1)(n + 1) (nq + 1) connected components. It also
follows that if $1, SS, then S1 and $2 belong to the same connected component
of Sr if and only if dimSYlEi dimSEEi(i=l, ...,p) and dimS +1 -)F/.--
dim S/ Y) (/" 1,... ,q). But this is true if and only if the restrictions T[S and
T IS2 have the same set of eigenvalues. Let K1, K: F be the solutions of the ARE
which correspond to S and S:. By Theorem 1, L+(A-BB’K)=S and L+(A
BB’K:) S:. It also follows from Theorem 1 that A -BB’K1 agrees with T on S and
A-BB’K: agrees with T on S:. This implies that the left half-plane eigenvalues of
A-BB’K are the eigenvalues of T IS1, and the left half-plane eigenvalues of A-
BB’K: are the eigenvalues of T[S:. Since K and K: belong to the same connected
component of F if and only if S and Se belong to the same connected component of
S.r, we see that K1 and K. belong to the same connected component of F if and only
if A-BB’K1 and A-BB’K: have the same left half-plane eigenvalues. In 2 we
noted that for any K s F, L(A-BB’K) Vo (=ker A) and A-BB’I( agrees with
A/ on Vo. In particular, this implies that A-BB’K and A-BB’K have the same
imaginary axis eigenvalues. Now, let H be the 2n 2n Hamiltonian matrix [_Ao -__,’].
It is easy to show that for any K s F, H is similar to [A-n,’C -nn’

0 -(A-BB’K)’]. Thus,
det (Is -H) =det (Is -(A-BB’K)) det (Is +(A-BB’K)) which shows that the left
half-plane eigenvalues of A-BB’K uniquely determine the right half-plane eigen-
values of A-BB’K. We conclude that K1 and K2 belong to the same connected
component of F if and only if A-BB’K and A-BB’K have the same set of
eigenvalues. [q
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Remark 6. Theorem 14 shows that two solutions of the ARE belong to the same
connected component of F if and only if they yield the same closed loop characteristic
polynomial. As mentioned above in reference to the work of Rodriguez-Canabal and
in the preceding proof, each K F gives rise to a factorization h (s) (- 1)ng (s)g (-s)
of the characteristic polynomial of H. In fact, g(s)=det (Is-(A-BB’K)). It follows
immediately from Theorem 14 that if (A, B) is controllable, then two solutions
K1, K2 e F give rise to the same factorization of h (s) if and only if K1 and K2 belong
to the same connected component of F. It is easy to see that there are exactly
(m + 1) (mp + 1)(n + 1) (nq + 1) distinct factorizations of h (s). Since this equals
the number of connected components, we conclude that the factorizations of h (s) are
in one-to-one correspondence not with the set F but with the connected components
of F. This is true provided that (A, B) is controllable and F is nonempty. In the special
case where T is cyclic, each connected component consists of one point, so there is
a one-to-one correspondence between the factorizations of h (s) and the set F. Hence
if F is nonempty but finite and (A, B) is controllable, then the cardinality of F can be
obtained by counting factorizations. This provides the theoretical justification for the
counting procedure of Rodriguez-Canabal. We emphasize that this procedure fails if
(A,B) is not controllable. Geometrically, this is because some n-dimensional
Lagrangian H-invariant subspaces may intersect Sp [] and hence fail to correspond
to any solutions of the ARE. (See [9] for further discussion.)

For applications, it is useful to know which solutions are isolated. Let 8i be equal
to mi + 1 if Ti is cyclic and equal to 2 otherwise (i 1, , p). Let ej be equal to n. + 1
if R. is cyclic and equal to 2 otherwise (j 1, , q).

THEOREM 15. F contains exactly tlt2 tpee2 eq isolated solutions. In par-
ticular, F contains at least 2o+q and at most (m l+ 1).. (rap + 1)(n + 1)... (nq + 1)
isolated solutions.

Proof. This is an immediate consequence of Theorem 10 and the isomorphism

Remark 7. Using Theorem 10 and the isomorphism r/, we can actually identify
those solutions which are isolated. Let K F and let S Sr be the invariant subspace
which corresponds to K. Then K is isolated in F if and only if S f’)E 0 or S f’l E Ei
if T is not cyclic (i 1,..., p) and S/ f’lF/= 0 or S/ fqF. =F if R. is not cyclic
(/" 1, , q). In particular, if S f’) Ei 0 or S Ei Ei (i 1, p) and S/ f3 F. 0
or S/ f)F. F. (/" 1,..., q), then K is isolated regardless of which (if any) of the Ti
and Ri are cyclic. The solutions satisfying this condition are the 2/q isolated solutions
whose existence is guaranteed by Theorem 15.

In the proof of Theorem 14 we noted that if K sF and H is the
2n 2n Hamiltonian matrix [_Ao -_,’], then det (Is -H)
det (Is-(A-BB’K)) det (Is +(A-BB’K)). If pK(s)det (Is-(A-BB’K)), then
det (Is-H)=pK(s)(-1)pn(-s). The 2/ solutions described above are precisely
those solutions K for which pt,:(s) and pn(-s) have only pure imaginary roots in
common. If A is an eigenvalue of H with nonzero real part, and K is such a solution,
then either A-BB’K has the eigenvalue A with maximum multiplicity and the
eigenvalue -A with zero multiplicity or it has -A with maximum multiplicity and A
with zero multiplicity. For this reason, we call such a K an unmixed solution. In
particular, K/ and K- are such solutions. The unmixed solutions are interesting because
they share some of the useful properties of the extreme solutions K/ and K- This
is discussed in detail in our companion paper [9].

If the Ti (i 1,..., p) and Ri (/" 1,..., q) are neither cyclic nor semisimple,
then the connected components of ST (and hence of F) are not generally manifolds.
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(See Remark 5 for a class of examples.) However, we will show that each connected
component is a (set-theoretic) disjoint union of products of analytic manifolds.

Let K1, K2 F, and let $1, $2 ST be the subspaces which correspond to K1 and
K2 respectively. In other words, O(S1)= K1 and & ($2)= K2. Then K1 and K2 belong
to the same connected component of F if and only if dim $1 (3Ei =dim $20Ei (i-
1 ,p) anddimS+ +(3F. dim $2 f’lF. (/" 1,... ,q)- i.e., if and only if TIS1 and
TIS2 have the same set of eigenvalues. (In particular, dim $1 dim $2.) Let
be integers such that 0_-<ki_-<m and 0_-<li-<ni (i=l,...,p, j=l,...,q). Let
F(kl,’’’ ,k, 11,’" ’, l) denote the connected component of F defined by {K F:
dim &-I(K) fqE ki (i 1,..., p), dim [O-I(K)]+ f-IF/= l. (i 1,..., q)}.
([&-I(K)]+ is the eomplexifieation of the subspaee O-I(K).)

Let Oi (a 1, ’, a r,) be the partition of mi corresponding to the block structure
of Ti (i 1,..., p), and let IT--(/,’"",/j) be the partition of nj corresponding to
the block structure of Rj (/" 1, q). Let a’ (a 1, ", a ,,) be a partition of ki which
is compatible with the block structure of T/, and let b (b, b--- ) be a partition
of li which is compatible with the block structure of Ri. Let / -----(y,..., y;),
(6, , ;;), e --(el, ., e,) and f f,. , fg) denote the conjugate partitions
of a, 13i, a and b respectively. Let F((kl; al), ’, (k"; a"), (/1; bl), , (l; bO)) denote
the subset of F(k,..., k., 11,’’’, l) defined by {K F: O-X(K)fqEi has cyclic struc-
turea (i 1,..., p), [O-(K)]+ (3F. has cyclic structure b (/" 1,..._ q)}. ByTheorem
4b, it follows that the image of F((kl; al), "", (ko; a"), (/1; bl), "", (/; bO)) under
&-i is isomorphic to the product ST(kl; al) ST,(k,; a")SR(ll; bl)
SR,(l;,b"). By Theorem 9, ST,(ki, ai) is a real-analytic manifold of dimension

d.Y’-- e (3’ e ). By the same theorem, SR, (1.; bj) is a complex-analytic manifold of
complex dimension Y=lf(6-f) and therefore a real-analytic manifold of twice
this dimension. The next theorem follows immediately.

THEOREM 16. F((kl;al), (kp;a"), (/1;bl), (/;bO))is a real-analytic
manifold of dimension

P di q

i=1 v=l i=1 u=l

Note that a connected component of F corresponds to the set of all K F for
which TIO-I(K) has a given set of eigenvalues. By Theorem 16, we see that a manifold
is obtained by fixing not only the spectrum of TI-I(K) but also its Jordan canonical
form.

Since F((kl; al), (k,; a"), (/; bl), (/; bO))is a manifold, each of its points
has a neighborhood which is homeomorphic to , where r is the dimension given in
Theorem 16. In other words, the manifold can be locally parametrized by vectors of
r real numbers. Such a parametrization is called a chart. By the isomorphism theorem
(Theorem 2), the problem of constructing charts for the subsets F((k 1, al), , (k,; a),
(/1; bl), "", (lq; bO)) of F is equivalent to the problem of constructing charts for the
images of these subsets under &-l. Thus, the problem becomes that of parametrizing
(subsets of) the variety of invariant subspaces of a finite-dimensional linear operator.
A solution to this problem is given in the final section.

5. Parametrizing the variety of invariant subspaces. In this section, we describe
a solution to the problem of parametrizing the set of all invariant subspaces of a finite
dimensional linear operator. This parametrization provides the charts for the subset

81F((kl, ), ..., (k,; aP), (ll; bl), ’’’, (14; b)) of F. However, it is of interest for other
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reasons as well. To use either Willems’ theorem (Theorem 1) or the Hamiltonian
matrix method to generate all the solutions of the algebraic Riccati equation, some
method of listing the invariant subspaces is essential. In fact, a parametrization for
the set of invariant subspaces would be useful in many problems in systems theory
and applied mathematics. The lack of such a parametrization has apparently led many
authors to restrict their results to operators which have distinct eigenvalues or which
are diagonalizable.

As in 3, V is an n-dimensional vector space over the field " of real or complex
numbers and A e Hom (V). By choosing an appropriate basis, we can assume that A
is a matrix in lower Jordan canonical form. Of course, this may require com-
plexification Using the bijection r/ described in Theorems 4a and 4b, we see that
there is no loss of generality in assuming that A has exactly one distinct eigenvalue,
say A. Since A and A-AI have the same invariant subspaces, we lose nothing by
assuming that A is nilpotent.

Let A be a nilpotent matrix in lower Jordan canonical form which acts on -n.
Let (m 1,"’, mr) be the block structure of A. Fix k such that 0-<k <=n, and let
(P 1,’’’, [3l) be a partition of k which is compatible with the block structure of A.
Let $ e Sa(k; pl, ",Pl). Since S has cyclic structure (pl, ’, Pl), it has an ordered
basis of the form {vl, Avl,’" ,APl-lvl, v2, AVE, ,A’2-1vE, "’’, vl, Avl, ’’’,

A’z-lvl}, with A"vi O, 1, ., I. Conversely, if S is any subspace which has a basis
of this form, then S SA(k; Pl,’’’, Pl). We call such an ordered basis a cyclic basis
for S.

Let $ SA(k; Pl,’’’, Pl), and let B be an n x k rank k matrix whose columns
form a cyclic basis for $. Partition the rows of B according to the partition (m
of n, and partition the columns according to the partition (pl,""’, pl) of k. Then B
consists of rl blocks, and the ifth block, Bij, is rn x pj. It is easy to verify that Bgi has
the following structure: (i) B0 is constant along diagonals; (ii) if the diagonals of Bii
are numbered starting with the lower left-hand corner and if at is the constant value
of the entries on the tth diagonal (t 1, ., mi +pi 1), then at 0 for > min (m, pi).
A matrix with properties (i) and (ii) will be called regular lower triangular (RLT). A
partitioned matrix whose blocks are RLT matrices will be called block regular lower
triangular (BRLT). Thus, if B is a matrix whose columns form a cyclic basis for a
subspace S SA(k; p 1, ",Pl), then B is an n x k rank k matrix which is BRLT when
the rows are partitioned according to (m 1,’’ ", mr) and the columns are partitioned
according to (Pl,’"’, Pt). Conversely, if B is such a matrix, then Sp B (the column
span of B) is an element of SA(k; Pl,’’" ,PI). We let 5(k; Pl,"’" ,Pl) denote the set
of all such matrices. Note that the row partition (ml,.. ", mr) corresponding to the
block structure of A is suppressed.

Example 3. Let (ml, mE, m3) (4, 3, 1). Let k 5 and let (pl, P2) (3, 2). Then
the elements of 3 (5; 3, 2) are the full rank matrices of the form

0 0 0

X2 0 0

X3 X2 0

X4 X3 X2

x5 0 0

X6 X5 0

X7 X6 X5

_x8 0 0

10 0

Y3 0

Y4 Y3 I
0 Oy 0

Y7 Y6 I
Y8 03
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The problem with using (k; pl, ’, Pl) to parametrize SA(k pl, Pl) is that
the correspondence is not one-to-one. In general, many matrices in Y3 (k; pl,..., Pl)
span the same element of SA(k; pl, , p). To obtain a one-to-one correspondence,
we define an equivalence relation on Y3(k; p,... ,Pl). If B,B2eY(k; px,"" ,pt),
then B1---B2 if and only if SpB Sp B2-i.e., if and only if B1 and B2 correspond
to the same element of SA(k; Pl,’’’, Pt). In order to parametrize SA(k; p,"’, pt)
by elements of (k; pa,... ,Pl), we must choose a representative from each
equivalence class. To do this, we define canonical forms on (k; pl,"’, Pl) with
respect to the equivalence relation --.

Let y (y,..., yl) be a multi-index of length such that yl,’" ", yt are distinct
integers between 1 and r, not necessarily in increasing order. We say that 3’ is a

’compatible multi-index if my, =Pi,/" 1 l, and we let C(k" Pl, pt) denote the
set of compatible multi-indices corresponding to the partition (pl, , Pl) of k. Since
(pl,’",pt) is compatible with the block structure of A, mi =>Pi, /= 1, ..., l, so
3’ (1, 2,..., l) is a compatible multi-index. Hence, C(k; pl,’", pt) is nonempty.

For each yeC(k; Pl,’’’ ,Pl) and B s(k; Pl,’"" ,P/), let Mr(B) be the k xk
submatrix obtained by taking the last pi rows from the yith block of rows,/" 1, .., 1.
The following result is proved in [10].

PROPOSITION 1. Let B e(k; px," Pl). Then there exists 3’ C(k; pl,. ., Pl)
such that det M,/(B) 0.

Example 4. As in the previous example, let (ml, me, m3) (4, 3, 1), k 5,
(pl, P2) (3, 2). Then C(5; 3, 2) {(1, 2), (2, 1)}. If B is the matrix in Example 3, then

xe 0 0 0 Oq x5 0 0 0 0

X3 X2 0 Y3 0 [ X6 X5 0 Y6 0

M(1,2)(B)= __x4_ x_23 X2 Y[[ M(2,1)(B)= x7 x6 x5 Y7 Y6

x6 x5-[y6 0 1’ X3X2 0 Y3 0

X7 X6 X51 Y7 Y6_] X4 X3 X2 Y4 Y3

By Proposition 1, at least one of these submatrices is nonsingular.
For each /6C(k; p,..., p/), let Vv ={B e(k; p,... ,p)" det Mr(B)# 0}. By

Proposition 1, {Vv}vc(k;pl.....p, is a cover of (k; pl,"" ", pl). In fact, each Vr is an
open and dense subset of (k; pl,"" ,pt). It is easy to see that if B1, B2e(k;
pa,..., p) and Bx’-,B2 then Ba e Vv if and only if B26 Vv. Thus, Vv is a union of
whole equivalence classes. The next proposition combines several results in [10].

PROPOSITION 2. Let B Vv. Then there is a unique matrix B in the equivalence
class of B such that Mv(J) has the [ollowing form" Let Mii denote the i/’th block of
M,(B) when both the rows and the columns are partitioned according to the partition
(Pl, Pl) Of k. (So Mii is Pi Pi’) Then the first pi diagonals ofMl, , M, (counting
from the lower left-hand corner) are zero except for the pth diagonal of M, which is
equal to one.

Remark 8. From the definition of M./(B) and the fact that B is BRLT, it follows
that the diagonals of Mgi above the pith are automatically zero. This implies that M,
is a Pi Pi identity matrix and Mg 0 for < j.

We will say that B Vv is in canonical form with respect to 3’ if M(B) has the
special form described in Proposition 2. Since each equivalence class which is contained
in Vv has a unique representative which is in canonical form (with respect to ,), these
representatives are in one-to-one correspondence with those subspaces in SA(k;
pl,"’ ’, pt) which are spanned by matrices in Vv. Thus, the matrices in Vr which are
in canonical form parametrize a subset of SA(k; pl,"’,pt). Since the collection
{Vv}vc(k;pl.....p, is a cover of N(k; Pl, Pt), we have a set of parametrizations (one
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for each 3’ C(k pl, , p)) such that every S Sa(k pl, ",Pl) is contained in at
least one parametrization.

Remark 9. It is easy to show that each parametrization parametrizes an open
and dense subset of Sa(k; pl,’", pl). Thus, for many applications it will suffice to
use a single one of these parametrizationsmsince the subspaces omitted form a
negligible subset of Sa(k; pl,""",

Example 5. As in Examples 3 and 4, let (m 1, m2, m3) (4, 3, 1), k 5, (p l, p.)
(3, 2). Then Sa(5; 3, 2) is covered by two parametrizations which correspond to the
two elements of C(5; 3, 2):

-0 0 0
1 0 0

0 1 0
0 0 1

x5 0 0

0 x5 0
0 0 x

_x8 0 0

0 0-
0 0

0 0
0 0

0 0

1 0
0 1

y8 0
_

0 0 0

x2 0 0

0 x2 0
0 0 x2

1 0 0
0 1 0

0 0 1

x8 0 0

0 0-
0 0
1 0
0 1

0
0 0
0 0

y (1, 2) v =(2, 1)

Remark 10. In [10], we defined a restricted class of elementary column operations
called elementary cyclic column operations (ECCO’s). Roughly speaking, these are
elementary column operations which preserve the BRLT structure of the matrices in
Y3 (k; pl,""", p). Using ECCO’s, one can design a simple algorithm to put a matrix
B e Vv in its canonical form with respect to ,/. In fact, such an algorithm is implicitly
used in the proofs in [10].
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COMMENTS ON
"IDENTIFIABILITY OF SPATIALLY VARYING AND CONSTANT

PARAMETERS IN DISTRIBUTED SYSTEMS OF PARABOLIC TYPE"*
M. COURDESSESt

Abstract. In the paper [SIAM J. Control and Optim., 15 (1977), pp. 785-802], S. Kitamura and
S. Nakagiri gave results on identifiability of constant parameters of a system described by a linear,
one-dimensional parabolic partial differential equation with pointwise measurement. Unfortunately, their
expression of the solution seems to be incorrect and consequently some of their results are, too. A new
expression for the solution is given here, as well as a necessary and sufficient condition for identifiability.

1. Introduction. Following the notation from the paper of S. Kitamura and
S. Nakagiri [5], let us consider the system described by

(1)
Ou Ou
--=a+bu+f(x,t), x(0,1) t>O,
Ot Ox 2

with boundary and initial conditions given as

Ou
aoU(t, 0)-(1- ao)-- (t, O)--go(t),

(2)
Ou

aau(t, 1)+ (1-al)-X-X (t, 1)= g(t),

(3) u(x, o)= Uo(X).

O-<ao-< 1,

O<-a_-<l,

The measured output y is represented by

(4) y(t)=u(x,,t), t>-O,

where xp denotes the position of a sensor.
Under some assumptions a unique solution of (1), (2), (3) exists. Kitamura and

Nakagiri [5] consider the eigenvalue problem associated with (1) and (2) and give the
representation of the solution u (x, t) in terms of the eigenvalues kn and the eigenfunc-
tions 4n (x) [3, p. 795]. We remark that , (x) do not depend on the parameters a and
b. In fact the calculation of the solution gives [2], [4]

I0U(x,t) 2 (Uo,n)e:"t(X) + 2 e-"(t-’)(x)(n,f)d
n=l n=l

(5) +a E ((1)-/(1)) e-k"(t-)n(X)gl(,r dr
n=l

+a E ([/Jn(O)--Ctn(O)) e-k"(t-*)$n(X)go(7") dz,
n=l

where (.,.) denote the inner product of L2 [0, 1] (see [2, p. 29]).

* Received by the editors April 21, 1981.
t Laboratoire d’Automatique et d’Analyse des Syst6mes du CNRS, 7, Avenue du Colonel Roche,

31400 Toulouse, France, and Universit6 Paul Sabatier, Toulouse, France.
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2. Results on identifiability. The results given in [5, Result 12] must be modified,
for the parameter a appears in the expression and [5, Lemma 3] does not apply. First
we give:

LEMMA. Let {kn}n= 1.2.. and {k} 1. 2. be strictly monotone increasing sequen
ces tending to infinity and let

Cn e -tc’t= Cmne-t for all [0, ).
n=l n=l

Assume E, [C,I and ET= [cTl to be convergent.
i) If C, and C 0, for all n 1,...,N, then k, =k and C, C for n

ii) ff C and C 0 for all n=l,2,..., then k,=k and C=C for
n 1, 2,. ..

The proof is omitted [1].
RESLW. Let Uo(X) and f(x, t)=0 in (1)-(3). Let go(t) and gx(t) belong w C[0, )

and let

(i) go(t)O and gx(t)0,
(ii) go(t)O and gl(t)Oor
(iii) go(t)O and g(t)=go(t),

where satisfies the inequality fl(,(1)-(1)) -(,(0) + (0)) for all n, n 6N (the
set of natural numbers).

Then parameters a and b are always identifiable if and only if xo is such that
i (xo) 0 for at least one N.

Proof. We shall prove only the case (i). Under the assumptions we obtain from (5)"

y(t) a (On(O)+O(O))e-"(t-’)On(Xp) go(z) d

or

Put

y(t) a , (, (0) +’ (0)) e-"’6, (xp) go(t-z) dz.

a(t)=a 2 ($n(0)+$’(0))e-k"’$,(xp),
n=l

a (t) a, E (, (0) + ’, (0)) e-kTttn (xp).
n=l

Since the difference of outputs e(t) is zero we have also

o(a(z)-a’(z))go(t-z)

dr =0, _->0.

Then Titchmarsh’s theorem [3, p. 34] gives

a 2 (O,(O)+On(O))e-g"tO(xp)=am (s,(O)+O(O))e-7O,,(xp),
n=l n=l

Since bn(0)+O’(0) 0 for all neN [5, Lemma 4] and Oi(Xp)7O, our lemma implies
that a am and ki k thus b b,.

The proof of the necessity is similar to that for [5, Result 10].
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WIDE SENSE STATIONARY SOLUTIONS OF LINEAR SYSTEMS
WITH ADDITIVE NOISE*

L. ARNOLD, AND V. WIHSTUTZq

Abstract. Let z be a (wide sense) stationary process with spectral measure Fz, acting as noise on

(*) 2 Ax + Bz, y Gx.

The aim of this paper is to describe the set of stationary outputs y. A stationary solution x is called hard
if it satisfies (.) as a stochastic process, its spectral measure F then satisfies

(**) (i, -A) dF"(A (iA -A)* dFZ(h ).

Any solution of (**) is called a soft stationary solution of (*). If iA or(A), h is called critical.
For B G =/, there exists a soft stationary solution if and only if there exists a hard stationary solution

on the original probability space if and only if (ih A)-I L2(F) and image AF2(A) c image (iA A) for
critical A. The intuitive meaning of this condition is that the critical frequencies of the undisturbed system
have to be missing in the noise spectrum in a certain sense. Otherwise we encounter resonance. The soft
stationary solution is unique if and only if the hard stationary solution is unique on any probability space
if and only if all Re .(A) 0. The set of all stationary solutions is described. The results carry over to the
observable case for general C.

Key words, wide sense stationary processes, linear stochastic systems

1. Introduction. Notions of solution. Let z be a mean square continuous zero
mean wide sense stationary stochastic process ("wide sense" is dropped from now
on) on the real line with values in " defined on a probability (pr.) space (12, if’, P),
with spectral representation

z(t) 1 eitx dsr(a ), E dsr(a dsr(a )* dE (a).

Here, st(a) is the spectral process of z, and the nonnegative definite matrix dF (a) its
spectral measure. (The star * denotes complex conjugation and transposition,
M* =A]rr.) Let H be the closed linear span in L2 (, , P) of the components of
z(t), , with scalars from C. We define a space L2(F=) of Cm"*-valued measurable
functions on as follows" Let tz be a nonnegative measure with respect to which all

Fi are absolutely continuous (take, e.g., dtz =YdFi].) so that dF/dtx =f(a)=>0.
Then A (a) L2(F) if and only if

trace (h)f(h)A (h)* d/A

i.e., for each k 1,..., m

Note that it is not required that ak,gt.qf,qdlx exists. The integral I(A,B)=
A(A)dFZ(A)B(A)* for A, BL:z(F) is then defined as the matrix with (/’, k)th
element given by

I(a, B).k
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L2(Fz) is a Hilbert space with scalar product (A, B) trace I(A, B), which is isometric
to the Hilbert space (HZ) with scalar product Eh*g. Finally, let Ut be the unitary
group acting on H such that Utz(O) z(t). Then the linear time-invariant system

(1.1) Ax +Bz, x (0) x0, A d x d-matrix, B d x m-matrix,

assigns to any initial r.v. Xo L2 the unique solution

-SABz(1.2) x(t)=etg(xo+Z(t)), Z(t)= e (s)ds, te,

(all derivatives and integrals are taken in the mean square sense). We restrict ourselves
to zero mean solutions, i.e., to Xo with Exo-0. Later, in 3, we will add to (1.1) a
linear read-out map y -Gx, G a p d-matrix.

The aim of this paper is to clarify as completely as possible the problem of
existence and uniqueness of stationary solutions of (1.1).

A stationary solution x that is given as a stochastic process on some probability
space which also carries z is called a hard solution. In view of : -Ax Bz the search
for hard solutions amounts to looking for x(t)= e it d(h) for which (ih -A) d(h)=
B d((h). (Such a solution is thus always stationarily connected with Bz, i.e., the pair
(x, Bz) is stationary.) For a nonsingular B this means that H cHx. We are interested
in the converse, HXcHz, i.e., in those solutions which are actually driven by the
noise, for which there is thus an xoeH such that x(t)-Utxo. Those x are called
subordinated (cf. Gikhman and Skorokhod [4, p. 242]).

The spectral measure dF*(h)=E d(h)d(h)* of a (real) stationary solution x
satisfies

(1.3) (ih-A)dF(h)(ih-A)*=BdFZ(h)B*, dFX(-h)=dFX(h).

Any spectral measure F satisfying (1.3) for given F is said to be a soft solution of
(1.1). It is called subordinated if dFX(A)=R(A)dFZ(A)R(A)*, R L2(FZ). A soft
solution is said to be realized on a probability space if there is a hard solution on that
space with F satisfying (1.3). A subordinated soft solution can always be realized via
d(h R (h) dr(h) whenever z can be defined on that space.

The situation is simple if all Re hi(A) 0. Then there are always unique soft
and hard solutions (which are subordinated) given by dF (h)
(ih -A)-IB dF (h )B*(ih -A)*-1 and d(h (ih -A)-IB d(h ), respectively. In case
all Re hi(A) <0 we use (ih -A)-I --o exp (s(ih -A)) ds to convert x into the more
familiar form

x(t) [ eit(ih -A)-IB dr(h) | e(t-S’ABz(s) ds,
J_

similarly if all Re Aj(A) > 0 (see Bunke [3, p. 46ff.]).
It remains to consider the case where some Re hi(A) 0. We call a h N critical

if ih is an eigenvalue of A (i.e., ih-A is singular), otherwise it is called noncritical.
Of course, if h is critical, so is -h.

All results presented in this paper remain valid for the discrete time system
X,+l =Ax, +z, if the obvious changes are made. To our knowledge, only some
particular cases with critical h’s have been treated (see Wentzell [6, p. 56], for the
nth order scalar equation, or Arnold, Horsthemke and Stucki [1] for d 2, h 1,2 :t: i).

Analogous problems can be posed in the framework of strict sense stationary
processes (see Arnold and Wihstutz [2]). The white noise case was treated by Snyders
[5].
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2. The case = Ax + z.
2.1. Soft solutions. We have to solve (1.3) for B L For each fixed critical A,

(1.3) becomes the algebraic equation

(2.1) TPT* C, C >- 0,

where T ih -A, P AF (h) _-> 0, C AF (h) ->_ 0, with its homogeneous version

(2.2) TPT* O.

Note that F may jump at h even if F is continuous, because (ih-A) is singular.
Let us recall a few facts from linear algebra (all subspaces and linear operators are
in Ca)
Ca im Tker T*, im T_L ker T* for all T, for Hermitian C im C _1_ ker C. For
C DD* >-0 im C imD and ker C ker D*. />_-0 denotes the square root of
C _>-0. For any linear operator

p q

T: Xi=Cd->ca= Yk
]=1 k=l

there exists a unique decomposition T Y=I Y, =1 Tk. into linear operators Ti" Ca->
Ca with T,i(X.) Yt,, Tt,i(XI)= 0 for all #/’. Also, the restriction To of T to im T* is
a bijection To’ im T* -> im T. Consequently, if for C _-> 0 im C cim T (or, equivalently,
ker C ker T*) T* preserves linear independence of im C and ker C 71 im T as
subspaces of im T. Therefore, if we define in Ca the subspaces

X1 T*(im C), X2 T*(ker C CI im T), X3 ker T,

then under the condition im C cim T we have Ca=XaXz(X3 with XaX2
im T* _l_ker T =X3. We call a solution P of (2.1) or (2.2) C-subordinated if there is
an R such that P RCR*. A subordinated solution is thus always => 0, and for C 0
only P 0 is subordinated.

LEMMA 2.1. Given the homogeneous equation TPT*= O, where T is prescribed"
(i) There exists a nontrivial (general, Hermitian, nonnegative definite, C-subordin-

ated for C O) solution P if and only if ker T 0.
(ii) A (general, Hermitian, nonnegative definite, C-subordinated) matrix P is a

solution of TPT* 0 if and only if
(2.3) P(im T*) = ker T.

Proof. (i) The condition ker T 0 is obviously necessary. If it holds, then condition
(2.3), which is an obvious reformulation of (2.2), can be satisfied for a nontrivial P,
e.g., in case C 0 by the subordinated

0 on im T*,
P = R3CR on ker T,

where R 3* "ker T -> im C # 0 is arbitrary while 0 on im T*. [-1

LEMMA 2.2. Given the inhomogeneous equation TPT*= C with prescribed Tand
C>_O

(i) Existence. There exists a solution P >- 0 if and only if there exists a subordinated
solution if and only if
(2.4) ker C = ker T* (or, equivalently, im C = im T).
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(ii) Set of solutions. An arbitrary solution P QQ*>-0 is given by

t 0U*x/To*-1 onX1,
(2.5) O*= of’IX2,

arbitrary on X3,

where U is an arbitrary unitary operator on Cd. An arbitrary solution P of (2.1) also
has the form P Po + P,, where

T1CT- on Xl,
(2.6) Po 0 on X2(X3
is the canonical solution (derived from (2.5) by putting O*= 0 on X3) and Ph is a
(Hermitian solution of the homogeneous equation (2.2) such that Po +Ph >= O.

(iii) Set of subordinated solutions. An arbitrary subordinated solution P RCR *
is given by

4 U,4T-
(2.7) R*

+ arbitrary into ker C on Xa,
arbitrary into ker C on X2,
arbitrary on X3,

where U is unitary with invariant subspace im C.
(iv) Uniqueness. The solution is unique (and equal to the canonical solution Po)

if and only if ker T =X3 0.
Proof. (i) If P satisfies TPT* C, then for every Cx im C there is a y PT*x

such that Ty--Cx, i.e., im C c im T. Conversely, if (2.4) holds, then Cd =imC
ker C f3im T@ker T* and C T*(im C)@T*(ker C 7/im T)ker T =XIX2(
X3 because To* im T--> im T* is bijective. Thus Po given by (2.6) is well defined and
obviously subordinated. It remains to show that it is a solution. In fact, for each
X =Xl@X2@x3im C@ker CYlim T@ker T*, TPoT*x TT-daCT*o-T*xI =Cx
Cx since TT I T’-aT* on im C cim T and x2@x3 ker C ker T*, by (2.4).

(ii) Suppose P=OQ* solves (2.1). Then IO*T*xl--I,/ xl for all x =x@x2@
ximC@kerCflimT@kerT*=C, thus [l*T*x2[=0 entailing O*=0 on X2
and [O T x[=]@xl[ or, equivalently, [O*T*V-lyl=[y[ on im C, entailing that
O T /-’ U is isometric on im C and finally 0*= U*/T- on X, where
U can be taken unitary on C without loss of generality. Finally, * is arbitary on
X. Therefore, a solution has to look like (2.).

Conversely, if P=OO* has form (2.5), then we will prove that y*TPT*x
y*Cx for all x, ye yielding (2.1). Start with x=x(x, y=y(yimT(
kerT*=Cd, T*x=T*Ul(T*u2, yT=T*yI=vT(vTXI(X=imT*.
Then y*TPT*x y’TPT*x (vT +vT)IO*(T*uI + T’u2) vTT
x/UU*x/T*o-aTu=V*lCU=y’Cxa=y*Cx. If O*=0 on X we obtain P0 as a
particular (subordinated) solution. Clearly P-Po Ph satisfies (2.2) since (2.1) is linear.

(iii) All we have to show is that the R*’s defined by (2.7) are exactly the
solutions of the equation x/R* Q* with Q* given by (2.5). Of course, every R*
from (2.7) satisfies X/R * Q* with some O* from (2.5). To show that every solution
of x/R* O* looks like (2.7) we introduce a second decomposition of Cd given by
Y im C, Yz ker C and decompose our operators as follows:

/’= Fll + F12 + F21-b F22, Fik(Yk)CYi, Fk (Yek) 0,

R* =R*I +R.2 +R +R’ +R2 R(X,)c Yj,

R(X)=0, O*=Q*I+Q*2+Q, O(X)=0.
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Writing down now the equation /R* Q* in detail and taking into account that
F12 F21 F22 =0 and Fll is invertible on Y1 with F-) /1 we find that R13, R21,
R22 and R3z are arbitrary, while R12=0 and FllR*l =QI* U*/T-1 on X1 into
Y1, from which we conclude that necessarily U*(imC)cimC and R*I
4-1U*4To*-1.

(iv) If ker T 0 then certainly Po is the only solution. If there were two different
solutions, then P1-P2 would solve the homogeneous equation, whence, by Lemma
2.1(i) kerT0. [3

Remark 2.1. If C, T and P are on Na rather than on Ca, the preceding lemmas
remain valid with the obvious changes.

Remark 2.2. Matrix representation of the solutions of (2.1) and (2.2). As shown
by the lemmas, an appropriate basis for representing the solutions as matrices is
furnished by Cd Xl@X2(X3o

(i) Homogeneous equation. A general solution P of TPT*-0 has the matrix
representation

P 0 0 P23 Pi arbitrary.

P31 P32 P33
P is a Hermitian solution if and only if Pki Pi, P is a nonnegative definite solution
if and only if P31 P13 P32 P23 0, P33 O3O’ >= O. Finally, P is a subordinated
solution if and only if it is nonnegative definite and P33 R3CR, R3 arbitrary on
ker T and 0 on im T*.

(ii) Inhomogeneous equation. The canonical solution P0 looks like

TICT-1 0

Po 0 0
0 0

0

0

0

Any nonnegative definite solution has the form P Po +Ph >= O, where Ph is a Hermitian
solution of the homogeneous equation with the following structure" P31
031U*4T-1 P*3, P32 0 =/023, P33 I3111 + 03203*2 or

(2.8)
T-d CT-1 0 T-d

P= 0 0 0

OU*4T- 0 03111 -4-03203"2
with U unitary and O31, 032 arbitrary on ker T and 0 on im T*. For a subordinated
P RCR * Po +Ph we have for the possible R’s

T 4U4- RI X,
R 0 Rzz .Sz,

R31 R32 X3,

im C ker C

with arbitrary R 12, R22, R31 and R32 and U unitary leaving im C invariant, while the

Ph has to satisfy P31=R31/U*/T’-1 =P3, P3z 0 =P3, P33=R31CR’l or

TICT- 0 T-d14PU4R*It
(2.9) P 0 0 0 )R4U*4T*o- O R3,CR’I

withR arbitrary on ker T, 0 on im T* and U unitary leaving im C invariant.
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Remark 2.3. Equation (2.8) tells us that the Ph 0 in the solution P Po +Ph >= 0
Of the inhomogeneous equation is only a nonnegative definite solution of the
homogeneous equation if and only if Q31 0. Similarly, by (2.9), the Ph 0 in a
subordinated P Po +Ph is never subordinated itself.

The preceding lemmas solve the problems concerning soft solutions for a particular
critical h. It remains to piece together the jumps at the various critical ,’s and determine
what happens in between, so that the final result will be a spectral measure of a
stationary process x with values in Rd.

THEOREM 2.1. (Homogeneous equation), a) Existence: There exists a nontrivial
(even subordinate) soft solution, i.e., a spectral measure Fh satisfying the homogeneous
equation

(2.1 O) (ih A dF (h )(ih A)* 0

if and only if there exists a critical .
b) Set of soft solutions: All solutions F, of (2.10) are pure/ump measures with

possible iumps at critical , ’s, where the ump Mu’, ( at >-0 is chosen according to
Lemma 2. l(ii) with T ia -A, P ZkF ( (for 0 choose z (0) to be real), and
ZkF (-)= zkF (). The subordinated solutions are those which have subordinated
jumps as given by Lemma 2.1(ii) with C zkF ( ).

Proof. The equation

(ih -A) dF (h)(ih -A)* 0 for each Borel set B c g
\critical h’s

is only compatible with dF 0 off the critical h’s. So if there is no critical h, there
will be no nontrivial solution. Now assume there exists a critical h _-> 0. For this (2.10)
reads

(iA -A)zw (A)(iX -A)* 0.

We can apply Lemma 2.1(i) with T ih A (singular) yielding a nontrivial P zkF’ (A)
(even one that is subordinated to C ZkF’(,) and real if , =0). For , _-<0 put
zM, (-,)= ZXF’ (A), which is always possible because P solves TPT*= 0 if and only
if/5 solves TPT* 0 and (i(-,)-A) (i, -A). [3

TVIZORZM 2.2. (Inhomogeneous equation), a) Existence. The following state-
ments are equivalent"

(i) There exists a soft solution, i.e., a spectral measure F satisfying the
inhomogeneous equation

(2.11) (i -A) dF()(i -A)*=dFZ().

(ii) There exists a soft subordinated solution, i.e.., a spectral measure of the form
dF( R (A dFZ (,k )R ( * that satisfies (2.11).

(iii) X( )(iA -A)-1 Lz(FZ), X indicator function of noncritical ’s and

image zw (,) image (i, -A) for each critical .
b) Set of soft solutions. Any solution of (2.11) is given by

F =F +Gn,

where the canonical (subordinated !) solution F has the form
A)-I, noncritical,

(2.12) dF()=Ro(,)dF()Ro()*, R()=
(i,-a)1, ,critical,
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(ih -A)o: im (ih -A)*-->im (ih -A) being the (bifective) restriction of (ih-A) to
im (ih-A)*. Each Gh is a pure jump function with possible (Hermitian, but not
necessarily nonnegative definite) ]umps at critical h’s, where AGh(A) solves the
homogeneous equation (2.10) with AF (h)+ AGh(A >=0 and AGk(-A) AGh(A ). For
each fixed critical h, the possible jumps AF (h) are described by Lemma 2.2(ii) for
T=iA-A,P=AFX(A) and C AFz(A).

c) Set of subordinated solutions. Any subordinated solution of (2.11) is described
by

A)-I, noncritical,
R ()

Rx, critical,

where Rx for a critical is given by formula (2.7) in Lemma 2.2(iii) with T ih -A,
e AF (A) and C AF (X).

d) Uniqueness. The soft solution is unique (and equal toF, thus even subordinated)
if and only if there is no critical A, i.e. if and only if all Re Aj(A) # 0. The subordinated
solution is unique (and equal to F if and only if AF (A)= 0 for each critical A.

Proof. a) It suffices to prove (i) ==> (iii) ==> (ii). So assume (i), i.e., the existence of
a solution F. For critical A’s, F satisfies

(ih -A)AF (h)(ih -A)* AF (A),

which clearly entails im AF (A) c im (iA -A), while for noncritical A’s

(iA -A) dFX(A)(iA -A)*= Is dF (A)’
\critical A’s \critical A’s

B c R Borel set.

As in the case of a scalar measure we conclude from the last equation’that the only
possible candidate for F for noncritical A’s is

dF(h (iA -A)-1 dF (h)(ih -A)*-1.
Since the existence ofF as a spectral measure was assumed, the right-hand side satisfies

P

tr [ X(h)(ih -A)-1 aF

in other words, X(A)(iA -A)-lsL2(F). Thus (iii) is satisfied.
Now assume (iii). Then we claim that F defined by (2.12) is a solution (which

is obviously subordinated). The first condition of (iii) says that

I dF (h) I R(A)dF(A)R(A)*
\critical h’s \critical h’s

is well defined, while the second condition of (iii) assumes that at critical A’s

aFt, (h) Ro( )aF (h)Ro(t )*

is well defined, so F is a bona fide spectral measure. It obviously satisfies (2.11).
Furthermore,. because Ro(-A) Ro(A)(and, of course, dF (-A) dF (A)),
dF (-A) dF (A). Thus we have found a subordinated solution.

b) and c) The existence proof tells us that in between critical A’s we have no
other choice but dF =dF (iA-A)-ldFZ(iA-A)*-1. For critical A’s, the possible
jumps are described by Lemma 2.2.

d) follows immediately from b) and c).
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Remark 2.4. Sufficient condition for noncritical h ’s. The intuitive meaning of the
existence condition X(h)(ih-A)-1 L2(Fz) or

(2.13) tr I_ X(h)(ih -A)-1 dFZ(h)(ih -A)*-1

is that the critical frequencies of the undisturbed system A --Ax have to be removed
from the noise spectrum. To give the criterion a form that allows more insight assume
that A is in complex Jordan canonical form, A diag (A Ak) with F (h) parti-
tioned into blocks accordingly. Then (2.13) holds if and only if

(2.14) tr

_
(ih -Ai)-1 dF.(h)(ih -A.)*-l>co

for each critical Jordan block separately (the condition is trivially satisfied for the
noncritical blocks). Assume now that A iho +/-/, where

-0 0

H=
1 0

0 1 0

is of size d. Then because
1

(2.15) tr (iX -A)- dE ( )(iX -A)*- dFo(h ),, o
,

where
d-1 d-1

dF0(h) Y. Y (i(h ho))d-’--l(--i (h -h0))d-i-1 tr (HdFiH*)
k=l i=1

is a nonnegative measure, (2.13) is equivalent to

1
(2.16)

(, x0)d L2(dFo).

If one writes down (2.15) in more detail, one sees that (2.16) is equivalent to

(2.17)

(h _o)2i (i(h -ho))P-l(-i(h-ho))q-1 dF,, <co for j= 1,... ,d.
p lq=l

Note that in general one is not allowed to interchange and Y in (2.17). In the form
(2.1"7) the criterion exhibits most clearly the hierarchy of requirements on the elements
of F with any new equation added to the system. There is a convenient sufficient
condition for (2.17) containing only the diagonal elements of dF, namely,

1 1
(, ho)d L2(dFI ),"

(
(2.18)

1
Lz(dFZdd).LE(dF.),’’’,
h -h0

If (2.18) holds, then all terms appearing in (2.17) exist separately (use the Cauchy-
Schwarz inequality), so (2.17) is true. However, (2.18) neglects the possiblity of
extinction of the frequency A0 due to extreme correlation between components of z
(cf. the examples).



LINEAR SYSTEMS WITH ADDITIVE NOISE 421

If A is arbitrary, condition (2.17) has to be checked for each critical Jordan block
separately.

2.2 Hard solutions. We now return to

=Ax +z, x(t)=etA(xo+Z(t)),
(2.19)

Z(t) J0 e-SAz(s) ds, e .
THEOREM 2.3. a) Existence. There exists an (even subordinated) hard solution of

(2.19) on each probability space that can carry z if and only if there exists a soft solution.
b) Solution set. Any soft solution can be realized on some probability space. All

subordinated soft solutions can be realized on every probability space that can carry z.
They are given by

x(t)= f eitX(iA -A)- d’(A)+ E eitXR(A)A((A),
\critical A’s A critical

where R (-h) R (h), R (h) some admissible subordinator at h.
c) Uniqueness. The hard (hard subordinated) solution is unique on any probability

space that can carry z if and only if the soft (soft subordinated) solution is unique.
Proof. a) If there is a soft solution then there exists the canonical soft solution

F. This can be realized on any probability space that can carry z via

P

x(t) | ei’XR0(A) d((A) (see (2.12)).

b) Given a soft solution Fx, if it is subordinated, it can be realized wherever z
can be realized via d(A)= R (A) d’(A). If F is not subordinated, we have in general
to enlarge the probability space due to the new randomness brought in by jumps at
critical A’s. If we are completely free in our choice of the probability space we can
realize F somewhere as (e.g., as Gaussian process with orthogonal increments and
Edd* dF) and then put d" (iA -A) d, thus defining a z subordinated to x.

c) Suppose there is a unique soft solution, i.e., the canonical F. This happens
(by Theorem 2.2d), if and only if there is no critical A. But then d:= (iA-A)-1 dr
is the only solution to

(i, A) d fB d(, B Borel set in N,

i.e., the hard canonical solution is unique on any probability space. If the soft
subordinated solution is unique, then Asr(A)--0 on critical A’s, so again the only
solution to

f (ih -A)R (h)dsr I d’, B Borel set in ,
is the canonical one. [:]

The sum of hard stationary solutions of the homogeneous and the inhomogeneous
equation need in general not be stationary. If z is Gaussian then all subordinated
solutions are Gaussian.

Example 2.1. d=l, A=0, =z, x(t)=Xo+z(s)ds, hdF=dF, h=0
critical. There exists a soft solution if and only if AF (0) 0 and n\0 dF (h)/A < oo.
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In this case the canonical soft solution dF (h) (1/, 2) dF (,) is the unique subordin-
ated solution, while the general solution consists of F plus a nonnegative jump at
A 0. On the hard level, the canonical solution

o i 1
x (t)=j_ e d(h)

is the unique subordinated solution, while all solutions are x(t)= x(t)+c, c being a
r.v. orthogonal to z.

Example 2.2. Existence of a soft solution of

2=
0
x+z

with h 0 critical is assured if and only if1 (0)= 0 and

Sucient for the latter is

-4dFl<m and f -dF<m.
/{0}

If these conditions hold, z(0)=( ) with c0. For h 0, dF=dF
(ih-A)- dF (ih-A)*-, while for h =0 we obtain the following possible jumps’

with two parameters a, d where ca 2 cd. All subordinated soft solutions are
described by R (h)= (ih -A)- for h # 0, and by

R (O) (r u) rl, r2, p N, u l
rE p

yielding subordinated jumps at 0 given by

(o): R(0) (O)R (0)* c p e n, u .
up

All hard subordinated solutions are given by

x(t)=fn et l (-i 0 )d(h)+A(2(O)().
In particular, the (soft or hard) canonical solution, obtained for p 0 and u + 1, i.e.,
with

(c 0)F; (0
0 0

(0

is the unique subordinated solution if and only if c O, i.e., (0) O. Any particular
soft solution can be realized on the probability space, where z is defined whenever
there is a r.v. (0) with E(O)(O)* (0) which is orthogonal to d(1), O.
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Example 2.3. Existence of a soft solution of

2=
0
x+z

with A + 1 critical is assured if and only if

AFz(1)=c
1

=AFz(-1)’c-->O’

and

1 2)
\{-1,1} (h 1)2(h + 1)

2((1 +h (dF +dF22)+2ih(dF -dF2))<cx,

ioeo

(, 1)(, + 1)
e L2(Fo), dFo (1 + h 2)(dFZ11 + dF2 + 2i, (dF -dF2 ).

Sufficient for the latter are the conditions

fn dF
\{-1,1} (/ 1):(h + 1): < c, dF2

\{-1,1}

Suppose now that the existence conditions are satisfied. Then all possible soft solutions
of the inhomogeneous equation are dF (A) dF (A) (iA -A)- dF (A)(iA -A)*-
for A +/- 1, while for A + 1 we obtain the following possible jumps:

AFX(1) AFt(-1)
d2+4-a +1/4

2
C

/-b i(d --)
with three parameters a, b, d such that c(a2+ b 2) <=cd2. All subordinated soft
solutions are described by R(A) (iA -A)- for A +1 and by

1( s+(r+l)e ’R (1) R (-1) - \-i(t-(r 1)e ’)
i(s -(r + 1) ei
t--(r-- 1) e i" ]’

r, s, C, 0 <_-6 < 2zr, yielding subordinated jumps

7c ( Ir + 1 [2
5F (1) AFX (-1) - _-i(g + 1)(r- 1)

In particular, for r 0

i(r + 1)(- 1)) rC.
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All hard subordinated solutions are given by

f eit, 1 --it

\+/-
-i-2-(i, +A) d((a)+e"+/-(1)+e A:(-1),X

1 i+ 1
A(1)=A(-1)=e A(a(1)i(1-r) 0N0<2,

The canonical solution x(t) is obtained for 0 r 0. The subordinated solution is
unique if and only if c 0, i.e., (1)= 0, or A((1)= 0 almost surely. Any particular
nonsubordinated soft solution with jumps ( 1) can be realized on the probability
space where z is defined whenever there are two r.v.’s A(1), A(-1) with A(-1)=
A(1), EA(1) A(1)* x(1) and A(1), A(-1), d((A), A # 1, orthogonal.

We now turn to an existence condition on the hard level. Observe that

(2.20) UtZ(s) eta(z(t + s)-Z(t)).

If for T or - the mean square limit

1.i.m. Z (t) dt Zo

exists, we can take Cesfiro limit in (2.20) with respect to s and obtain (putting
Xo=-ZoH) Utxo=eta(xo+Z(t)), i.e., x(t)=Utxo is a subordinated solution of
(2.9).

Conversely, suppose there exists a hard stationary solution x(t)=
exp (iAt) d(A)=ea(xo+Z(t)). We have

e ’(i-a d(a) dt
T

Z(t)dt -Xo+
-Xo + [_ d(a).

The second term on the right-hand side will surely disappear if Iexp t(ia-A) dt/T
is bounded and tends to zero for T-m or m. By looking at each Jordan block of
A separately and confining ourselves to the critical blocks, one sees that this is only
the case if A 0 or A ( ), b e N. We have thus proved
ToaM 2.4. Let A be diagonalizable and let all Re Ai(A)= 0. There exists a

hard stationary solution of 2 Ax + z g and only g

(2.21) 1.i.m. Z(t) dt Zo

exists. N this case Xo =-Zo is the initial r.v. of Ne canonkal subordinawd solution.
Remark 2.5. If z is second order strictly stationary and A is diagonalizable with

all Re li(A)=0, then (2.21) is also necessary and sufficient for the existence of a
second order strictly stationary solution. In fact, (2.21) is certainly necessary. On the
other hand, we can do the same thing with (2.20) now reinterpreted in the strict sense
(i.e., Ut being the group of shifts on the set of z-measurable functions) ending up with
the admissible x0 -Zoe L2, so (2.21) is sufficient. In particular, if z is Gaussian there
exists a (Gaussian) stationary solution if and only if (2.21) holds.

Remark 2.6. Resonance. If there is no stationary solution, we typically encounter
a phenomenon called resonance, meaning that EIx(t)]zm(t m) for any solution.
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To investigate this it is enough to restrict ourselves to a critical Jordan block. Take,
e.g., the scalar equation =z, x(t)=xo+Z(t), Z(t)=z(s)ds; other cases can be
treated similarly (see Arnold, Horsthemke and Stucki [2] for d 2).

If zMz (0) > 0 then EIZ (t)[:’ ct 2. If M7 (0) 0 but j’_ A -2 dF(h , then

r (t)=ElZ(t) C(u-v)dudv=t (1-1sl/t)C(s)ds
-t

=tI_ g,(,)dF(A), (g,(,)=t sin
2/2]

C(t) being the covariance function of z and gt(A) a regularization of Dirac’s 8-function
with I-o gt(A) dA 2rr. Now assume that F has a density f around A 0 with/()=
IA [ + o(lA I)(A 0), -1 < a N 1. It is easily seen that for m

tct- for-1 <a < 12(t)
clogt fora=l.

3. The case Ax +Bz, y = Gx. First observe that all statements of 2 remain
true if z is replaced by Bz. As Z(t)= exp (-sA)Bz(s)ds moves almost surely in
the controllable subspace o = A-(im B) = a, the canonical stationary solution
subordinated to Bz (if existing), with initial r.v.

Xo Ro(A)B d( o,

will also stay in o since x(t)=eta(xo+Z(t)) and Ao o.
Now consider y Gx and assume first that (G, A) is observable, i.e., 0, where

d

W ker (GA-) d.
k=l

In this case we have for any

x(t)= WS e y(s+t)+G e (t-u +s)du ds,

where W eSa’G’G ea ds > 0 for all > 0 if and only if 0 (see Wonham
[7, p. 58]). Keeping in mind that a stationary x is automatically stationarily connected
with Bz via Bz -Ax, the last formula immediately yields.
TzoM 3.1. On the level of hard solutions there is a one-to-one correspondence

between stationary x and stationary (y, Bz), between stationary (x, z) and stationary
y, z) and, in particular, between subordinated x and subordinated y.

For 0 we switch to the [actor system on X / (see Wonham [7, p. 59])
which is now observable, so that Theorem 3.1 applies.

Remark 3.1. We do not know whether a stationary y can be produced by a
nonstationary x. By Theorem 3.1, such a y is certainly not stationarily connected with
Bz. However, this cannot happen if all Re Ai(A) 0 and (iA-A)-Lz(F). Indeed,
assume that y is stationary and x is the (unique) canonical stationary solution. Then
y(t)-y(t) G exp (tA)(xo--X), whence

E]y (t) y (t)12 2El y (t)] z + 2El y (t)lz c.

Since the right-hand side is bounded for all we necessarily need Xo-X to
0prevent blow-up of the left-hand side. For W 0 this entails Xo x 0, 1.e., the stationary

y was produced by the stationary x .
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OPTIMAL INPUT/OUTPUT FEEDBACK WITH
STRUCTURE CONSTRAINTS*

ROMANO M. DESANTISt

Abstract. An optimal constrained output feedback problem is studied in the framework of Hilbert
resolution space valued random processes. The main result, a necessary condition for optimality, is
simultaneously applicable to continuous time, sampled data, finite and infinite dimensional systems. When
applied to finite dimensional systems this condition rediscovers in a unified setting most of the classical
results already available in the technical literature; when applied to infinite dimensional systems, such as
hereditary differential systems, it gives new appropriate extensions of these results.

LIST OF SYMBOLS

H Hilbert space
pt, Pt orthoprojector in H
x, y, z, w elements of H
Ix the norm of x
1 resolution of the identity in H
v linearly ordered set (usually the

real numbers)
to, to minimum and maximum

elements of v
element of v

[H, Pt] Hilbert resolution space with
R {pt, v}

[T]M the memoryless component of
T

[Tic the strictly causal component of
T

F, B, N, L xi, L2i memoryless operators
(H, X, ) a space of Hilbert space valued

random processes
X family of Borel sets in H

probability measure on X
19, rr, co, r/ elements of (H, X, )
Q(o, Ix) the cross covariance operator

associated with the random
processes p and Ix

[Q(p, Ix)]t the cross variance operator
associated with Q(o, Ix)

m (0) the mean of the random
process p

E[f(tr)] the expected value of the
random variable f(o)

T, G, F, B operators acting on a Hilbert
space

T* the adjoint of T
TI the operator norm of T
tr (T) the trace of the operator T
{ei} an orthonormal basis of H
[(t), HT-(t), (t)] state (costate) realization of T
(ka-, XT-, gT-) trajectory state (costate)

realization of T
(F, G, B) state/costate factorization of T
[T] the a component of T, with

c {M, A, C}
N a memoryless feedback

compensator
the functional to be minimized
in an optimal output feedback
problem

A, N, F, B matrices
A ’, N’, F’, B’ transpose matrices
L2i, L li constraints on the feedback

compensator
zI, z 1i respectively the forward and

backward shift operator in 12
L2(to, tl; H) Hilbert space of square

integrable functions, f, defined
on (to, tl) and such that f(t) H,
ft (to, tl)

M2AR L2(-h, 0; R"), $M2 _a ($0, $1),
qb o R n, , LE(-h, 0; R’);
(t, t)-" (t 0, I//0) + (t 1,
W21 the Sobolev space of absolutely

continuous functions from
(-h, 0) to R", with first
derivative in L2(-h, 0;

W-R"W

J(N)

1. Introduction. The present paper is in line with and shares with [Po. 1 ], [Sch. 1],
[Sa.1], [Tu.1] and [De.1] an interest in the investigation of the role of causality
properties (such as strict causality, anticausality, the relation between causality struc-
ture and state realization, etc.) and causality related operations (such as the extraction

* Received by the editors May 5, 1981, and in revised form March 23, 1982. This research was
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Canadian National Research Council under grant CNRC-A-8244.
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H3C 3A7.
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of the additive and/or multiplicative causal part of a noncausal system) in linear
optimal control estimation and filtering problems with a quadratic cost functional.
Porter [Po.1] opened the way to, and Schumitzki [Sch.1] finalized, the solution of a
very general deterministic optimal regulator problem. This solution is solely based on
causality and causality related state realization fundamental properties; it is completely
independent from special systems characterizations as stationarity, state finite
dimensionality, infinite time-horizon, etc.; it encompasses multivariate cases and
frequency domain results; it is simultaneously applicable to nonstationary, finite-
horizon, and infinite dimensional state space systems. Solutions with similar attributes
were subsequently developed in the realm of stochastic filtering [Tu.1], [Sa.1] and yet
more recently in the context of a basic problem encompassing many of the classical
and nonclassical deterministic and stochastic regulator, estimator and filtering prob-
lems [De. 1 ].

In all these developments the system to be designed (estimator, controller and/or
filter) is in general simply required to be physically realizable. The novelty of the
present study is in that it considers a problem where the system can now be submitted
to such constraints as a fixed dynamical structure, a decentralized configuration, a
partial exchange of information, etc. The objective is to develop in the context of
such a problem a general enough formulation and solution so as to once again achieve
a wider range of application of the available results, a better understanding of the
role played by causality and related concepts, a better perspective of the relations
between a number of various problems, techniques, and results. This is done by
adopting the Hilbert resolution space approach which is by now standard in this kind
of study; while our notations and concepts are essentially identical to those in [De.1]-
[De.3], a brief review will be integrated in the development so as to make the paper
self contained and easier to read. Complementary background information can be
found in most of the cited references and in particular, in a text book format, in
[Po. 1], [Sa. 1], [Go. 1], [Ba. 1] and in the forthcoming [Fe. 1].

2. Causality and state. Given a linearly ordered set , with minimum and
maximum elements to and to, a family of orthoprojectors, N {pt, ,}, is a resolution

of the identity in the Hilbert space H if:
i) PtH O, PtH H and PH

_
pIH whenever k > l;

ii) if {pi} is a sequence of orthoprojectors in N and there exists an orthoprojector
P such that {Pgx }--> Px for each x H, then P N.

A Hilbert space H equipped with a resolution of the identity N={Pt: ,} is
called a Hilbert resolution space and is denoted by [H, Pt]. Given an orthoprojector
pt , the orthoprojector I _pt is denoted by Pt. An operator T: [H, pt]__> [H, pt] is
causal if ptx pry implies ptTx ptTy. T is strictly causal if it is causal and for any
given e >0 one can find a partition {t0,," ",:,’",r=t}e, such that
sup/[ATAI<e, where Ai a___pe,pe,__. T is anticausal (resp. strictly anticausal) if T*,
the adjoint of T, is causal (resp. strictly causal). T is memoryless if causal and anticausal
at the same time [De.2], [Fe.1].

LZMMA 1. If T is causal (resp. anticausal), then TPt PtTPt, ptT ptTpt (resp.
TP ptTpt, PtT PtTPt).

LEMMA 2. If T is causal (resp. anticausal) and T2 is strictly causal (resp. strictly
anticausal), then TT2 and T2T are strictly causal (resp. strictly anticausal).

A state realization (resp. costate realization) of a strictly causal (resp. strictly
anticausal) T is a triplet [r(t), Hr(t), srr(t)] such that for each e t, one has [Sch.1],
[Fe.1]
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and, for each u H,

HT(t) is a Hilbert space,

T (t): ptH - HT(t) (resp. PtH HT(t)),

T(t):HT(t)-PtH (resp. HT(t)PtH),

(T(t)XI)’T(t)U PtTPtu (resp. P’TP,u ).

We will only consider minimal state realizations, that is, realizations with T dense
in HT(t) (controllable), and ’T 1- 1 (observable). Given a strictly causal (resp. strictly
anticausal) T with state realization (resp. costate realization), [T(t), HT(t), ’T(t)], we
consider the following space of state (costate) trajectories

2T {g" ’ UtI’IT(t)[g(" T(" )U, U e [H,

together with the larger space

XT {g" v - UtJ-IT(t)lg(t) e HT(t)} >

This space, XT, comes equipped with the family of projections, {pt}, defined by the
following property" if g XT, then ptg implies

J g(z), r =< t,(Ptg)(r)
O, r>t.

Denoting by XT the smallest subspace of XT which contains XT and is closed under
{pt}, the pair (GT, KT) is called a state trajectory realization (costate trajectory realiza-
tion) if

T KTGT,

GT:[H, P’] [XT, P] is strictly causal (anticausal),

GTU ItT( )U,

KT [Xr, pt] . [H, pt] is memoryless.

In the sequel we will take [XT, Pt] to be a Hilbert resolution space. A state
trajectory realization is minimal if it is induced by a minimal state/costate realization.
A triplet of operators (F, G, B),

B [Ha, pt] [X1, pt], G [X, pt] [X2, Pt], F [X2, pt] [H2, pt],

with IX1, P’] and [X2, P’] Hilbert resolution spaces, is said to represent a state-costate

factorization of T, if T =FGB and the pairs (GB, F) and (G*F*,B*) represent a
minimal state and costate trajectory realization of T and T* respectively.

LEMMA 3. Let strictly causal T admit a state/costate factorization (F, G, B). If
for a memoryless selfadoint Q one has

T*QT Tt + Tc+ TA
then there exists a memoryless K such that

Tc KGB, Ta B*G*K*.

3. Stochastic systems. Let (H, E, ) denote a probability space of Hilbert space
valued random processes, with Hilbert space H, family of Borel sets E, and probability
measure [Ba. 1, Chap. 6]. Under appropriate conditions associated with a stochastic
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process p defined in (H, Y_,, ) there exists an element m (19) H, (the mean value of
O) and a selfadjoint operator (19)" H --> H, (the covariance of 19), such that

E(x,p)=[x,m(p)], x 6H

and

E[x,p-m(p)][p-m(p),y]=[x,O(p)y] Vx, yEH.

The symbol "Ef(tr)" denotes the expected value of the scalar valued random variable
f(tr) with respect to the probability space underlying p. Similarly, with each pair of
stochastic processes p, r one can associate an operator O(p, r), (cross covariance),
with the property that

E(x,p-mo)(Tr-m, y)= (x, O(pTr)y), x, y H.

If O(p, 7r)= 0 then p and r are uncorrelated.
By conveniently defining a measure on the index set u, a Hilbert resolution space

[H, P’] can be given a causality structure preserving representation [L2[u;
where" Lz[u;/-)] denotes the Hilbert space of square integrable functions u /--), and
/5, is the usual family of truncation operators on L2[u;/-)], [Ha.l]. With respect to
such a representation we will suppose that there exists a memoryless operator
[O(p, Ix)]M, the cross variance of O and ix, such that

(Ul, [O(p, IX)]Mu2) E f (u(r),p(r)-mo(r))(u2(r), IX (r)- m+,(r)) d’.

If p Ix, then [Q(p, tx)]M will be denoted by [Q(o)]M and referred to as the variance
of p. The trace of an operator T is given by tr (T)= i (Tei, ei), where {ei} is any
orthonormal basis in H; T is Hilbert-Schmidt if tr (T* T) < c.

LEMMA 4.
i) Q(Lp)=LQ(p)L*.
ii) E((p, Rtg)), whenever finite, is equal to tr RQ(o).
iii) tr TaQ(p)T2 tr T2TaQ(p) tr Q(o)TzTx.
iv) tr [TxQ(p)+ T*Q(p)]= 2Re tr TIQ(p).
v) ff Q(p, u) is memoryless then [Q(p, Ix)]M Q(p, Ix).
vi) If T1 and T2 are memoryless then [TQ(p, Ix)T2]M= TI[Q(p, Ix)]MT2.
LEMMA 5. Let T be a Hilbert-Schmidt operator.

i) I T is strictly causal then ! + T has a bounded causal inverse.
ii) If Ta and Tz are strictly causal then, for any real e > O,

lim I(I + TI+ eT2)-x (I + Ta)-1 -1
e (I + T) T2(I + T1)- 0 (e).

iii) There exist Hilbert-Schmidt Tc, T, and TM, respectively strictly causal, strictly
anticausal and memoryless such that

T= Tc+ T, + TM.
iv) For any Hilbert-Schmidt triplet Tc, T, and TM one has

TMTA]M O, T:TA]M O.

v) If T is strictly causal and has a state/costate factorization (F, G, B), then in
correspondence to any memoryless and invertible R, one can find memoryless N and K
such that

R + T*T (I +GB)*(R +B*KB)(I +IGB).
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4. Optimal output feedback. The following abstract problem statement is
inspired from, and can be viewed as a generalization of, a number of more specific
formulations which have appeared in recent years in the technical literature (see for
example [Le. 1], [Ko. 1], [Er. 1], [We. 1]).

Statement P1. Optimal structure constrained output feedback (Fig. 1). Let a
strictly causal T: [H1, pt] - [HE, pt] and three zero mean valued mutually uncorrelated

FIG. 1. Optimal structure constrained output [eedback in Hilbert space" determine 1 so as to minimize
J(/) 1/2 E[(y, Oy + (u, Ru )]. w PoTPTr, influence ofthe past input, (P%r), over the future output" y output

of the plant" rl additive noise" z measured noise corrupted output’ u control action" oo perturbation"
L2i, L xi structure constraints imposed on the feedback controller" N the memoryless output feedback com-
pensator to be determined.

random processes to, 7r (H1, X, ), 7 (H2, Y-,2, 2) with O(to) and O(r/) memory-
less be given. Determine a memoryless ]Q" [HE, P’] [H, pt] such that

i) I + (7=1L2i2QLli) T has a bounded causal inverse;
ii) for any other memoryless N satisfying i) one has

J(X)<-Y(),
with

](/)---a 1/2E{(y, Oy)+(u, Ru}}, y =PoT(Poto-Pou)+w,

u L2 li z w

z y +r/,

where p0 is an assigned orthoprojector in ; O, R, L.i, Li, are assigned memoryless
operators with O and R selfadjoint and positive definite.

Remark 1. The resolution of the identity will be intended to be either discrete
or continuous; when the resolution of the identity is continuous, we will take O() 0
(if O() 0 one would in general have J(N)= m and the problem would no longer
be well posed).

Remark 2. The physical interpretation of problem P1 is illustrated in Fig. 1" The
random processes w and represent respectively the input perturbation and the
output measurement noise acting on the plant T; w represents the influence of the
past input over the future output; N is the output feedback controller to be chosen
so as to minimize a weighted sum of the energies of the output, y, and of the control,
u; Li, L. allow one to take into account the constraints that one might want to
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impose on this controller such as a memoryless input/output, a decentralized configur-
ation, a dynamical controller with an assigned state space dimension. A more detailed
discussion about motivation, general historical background and constraint representa-
tion can be found in the cited references.

The main results of the paper are embodied in the following.
THEOREM 1. Under the hypothesis that the required crossvariance operators are

well defined one has"
i) If T is Hilbert-Schmidt, then a necessary condition for N to be a solution of the

optimal structure constrained feedback problem is

L2*i{[[*t]c(*]yt + *O]tNO(l) +RN([TQ’*]t + O(rl))}L *i 0,
i=1

where

a= T(I + TN)-1, N A LziILIi,

( a__ Q +N*RN, t ApO(rr)p +PoO(w )Po +NPoQ07 )PoN*.

ii) If T has a state/costate factorization (F, G, B), then this necessary condition
becomes

Li[*KoK2* + (J*KxJ +R )NO(n) +.RNK2P*]L*I O,
i=1

where K0, K and K2 are memoryless and such that

Cot7 [ri,], c, [n,], ;= [n=],
Proof. i) From the hypothesis that T is Hilbert-Schmidt and strictly causal one

has that (I + TN)-IT is well defined, bounded and strictly causal (Lemma 5).
Moreover, observing that

it follows that

where

and

y T(Prr + Polo + u ), u -N(y + rt ),

O(y) TOT*,

0 APQ(Tr)P +PoO(o)Po +NPoQ(n)PoN*

O(u) N[O(y) + O(r/) + 70 (r/) + O (rt)7*]N*.

Assuming the required traces to be well defined, one has

J(_) 1/2 tr [(2P0* +N*RNO(7) + 1/2 tr N*RN(O(I) + O(rt)*)],
where ( O +N*RN. Clearly,

1/2 tr [N*RN{’O(rt) + O(n)7*}]
is equal to zero: in the discrete case this follows from T being strictly causal, in the
continuous case, from O(r/) being equal to zero (see Remark 1).
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Using the continuity of the inverse property (Lemma 5), for any given memoryless
AN and an arbitrary sufficiently small e > 0 one has

where

It follows that

where

[I + T(N + e AN)]-1 (I + TN)- + e (I + TN)-ITZkN(I + TN)-1

z3dV L:z zL i.
i=1

zd(l) a--J(l + e Zki)-J(I)- e tr {WZX/*}

W a L La*i{*(I* q- ’*(NO(rt)+RN[YOT* +O(r)]}L*
i=1

From the arbitrariness of e, to satisfy the optimality condition one must have
tr {W*} 0. This, plus the arbitrariness of implies [W] 0, that is,

L{[f*OfOf*]u +[f*OfjMNO(n)+RN([fOf*] +O(n))}L O.
i=1

Since f*Of is a Hilbert-Schmidt operator, it admits a canonical causality additive
decomposition (Lemma 5):

f’Of [f*Of] +[f*Of]+[f*Of].
Using this decomposition one has

[f*OfOf*]" [If*Oriel*I" + [[f*Of],Of*]" + [If*
hence, since the first two elements on the right-hand side of this equation are null,

If*OfOf,]" [If*
The optimality condition becomes

L,{[[f*Of]cOf*] +[f*Of]’O(n)+RN([fOf*] +Q(n))}L, 0.
i=i

ii) Let now (F, G, B) be a state/costate factorization of T.
Using the notation

the necessary conditions become

L,{[*[]cBQg*O*P*]" +g*[]BNQ(n) +RN(P[=]’F* + Q(n))}L, 0.
i=I

By Lemma 3 there exists a memoryless K0 such that

[]c KoG.
Using the notation Ki []u and K= [H=] it follows that

i=I
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Theorem 1 unveils an interconnection between causality additive decomposition
state realization and constrained feedback optimization which nicely complements the
well understood interrelation between causality multiplicative decomposition, uncon-
strained optimization and Riccati equations [De.1], [Sch.1]. If one poses O(rt)= 0,
=L Yi=i L2iiQLI =), then the problem considered in statement P1 becomes the
optimal state feedback problem considered in these references. In this case the
necessary condition for optimality becomes N R-IB*Ko where memoryless K0 must
satisfy the equation

*(0 +N*RN)r K1 +Ko +*Kd.
It is easy to verify that one can choose ( and/ so that r (I + GBN)--PoG and/ B,
where (I, G, B) is a state/costate factorization of T. It follows that K0 must be such that

G*Po(I + GBlqI’)-*(O +2ql’*Ri)(I + GB.KI’)-PoG
K1 +Ko(I + GBlqI’)-PoG + G*Po(I + GBIqI’)-I*K.

Preoperating and postoperating respectively with (I +BIG)* and (I +Blfl’G) and
rearranging terms, one has

B*G*PoGPoGB B*KB +B*G*II’*(R +B*K1B)IGB +B*G*I*(R +B*K1B
+ (R +B*KB)IGB,

that is,

R +B*G*PoQPoGB (I +R -B*KoPoGB)*(R +B*K_B)(I +R -1B*KoPoGB).
One can then conclude that, under the Hilbert-Schmidt hypothesis, the existence of
a causality multiplicative decomposition is not only a sufficient condition for optimality,
as was recognized in [Sch.1] and [De.l], but it also is a necessary one. The above
equation also indicates that the causality decomposition to be considered is in general
slightly more complex than suggested in these references where K was systematically
supposed to be zero. All this is summarized in the following theorem:

THEOREM 2. If T is Hilbert-Schmidt and admits a state/costate factorization
(F, G, B) then a necessary and sufficient condition ]’or N to be a solution of the optimal
state feedback problem is

R +B*G*PoQPoGB (I +NPoGB)*(R +B*KIB)(I +NPoG).

$. Alplieations. By conveniently specializing the Hilbert spaces and the
operators involved, Theorem 1 allows one to rediscover the solutions of most of
the various versions of the input/output feedback optimization problems available in
the technical literature. As these problems may encompass systems which are not
Hilbert-Schmidt, it is of interest to observe that the Hilbert-Schmidt requirement of
Theorem 1 is essentially needed to guarantee that

i) I + TN enjoys the invertibility and continuity of the inverse properties
described in Lemma 7iii;

ii) H1 admits a canonical causality additive decomposition;
iii) [[I-I]M*]M 0 and [(*K*(2*]M O.

One can then make Theorem 1 applicable to systems which are not Hilbert-Schmidt
by assuming that (I + TN) has a bounded causal inverse and by verifying that properties
ii) and iii) do indeed hold in the specific case of interest.

The following examples illustrate the theory.
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Example 1. Given real matrices A(i), B(i) and F(i) with dimension n x n, n x p
and m x n respectively, let the following system be given:

x(i + 1)=A(i)x(i)+B(i)u(i)+Bo(i), x (0) x0,

y(i)=F(i)x(i), (O,N),

z (i) y (i) + o (i),

where o(i) and r/(i) are uncorrelated zero mean white noise processes with positive
definite covariance matrices O,,,(i) and On(i); x0 is a random vector independent of
o(i) and r/(i) with a zero mean value and covariance matrix O(Xo). Consider the
problem of determining a matrix N(i) of time varying gains such that taking u(i)=
-N(i)z (i) one minimizes

J[N(.)]=-gE Y. [(x(i + 1), O(i + 1)x(i + 1))+(u(i),R(i)u(i))],
i=0

where O(i) and R (i) are positive definite matrices.
This problem is brought into the framework of statement P1 by comparing the

abstract system represented in Fig. 1 with the more specific block diagram in Fig. 2.

u(i) x(i+l)=
A(i)x(i)+u(i)

w(i) rl(i)

z(i)

FIG. 2. Output feedback gains ]:or a linear discrete stochastic control problem" determine N(i),
[0, N-1], so as to minimize the expected value of 1/2y.N-1

i=o [(Y(i + 1), Q(i + 1)y(i + 1))+(u(i),R(i)u(i))].
w(i) d(i, O)xo, influence of the past input over the future output" u(. ), x(. ), y(. )=control, state and output

functions" r additive noise" o perturbation" N output feedback gain matrix function.

The strictly causal Hilbert-Schmidt operator T maps in this case [lz(O,N),Pl
[I(O,N),Pi] and is computed in terms of the symbol F(.)[zI-A(.)]-IB(.) where
zI represents the forward shift operator; the memoryless operators O(o), Q(r/), (2
and R are computed in terms of the matrices O,,,(i), On(i), O(i) and R(i); w(i)=
F(i)d(i, 0)x (0), where (i, 0) is the state transition matrix; EL:ziNLli =N. It is easy to
verify that all the hypotheses leading to and used in Theorem 1 are satisfied. The
necessary conditions for N(i) to be an optimal solution can then be obtained by
applying this theorem. Accordingly, one appropriately identifies II1 and II. and then
computes K1, K2 and K0. In this case one can use the fact that K [I1]M and
K2 [II]M are given by the memoryless components of II and II2.

Noting that the operators t and t* are formally identified with

O = [zZ -Z,(. )]- d* - [z-Z-g,’(. )]-

where A(i) A(i)-B(i)N(i)F(i), one obtains

II &[z-II-’(. )]-IF’(. )[Q(. )+N’(. )R (. )N(. )[zI-.z(. )]-,
II _a___ [z -(. )]-[B (O,,,(.) + O,,(. ))B’ + O(x. ) (0)][z-! -ft,’(. )]-.
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From here, via simple algebraic manipulations of the type illustrated in [De. 1], [Po. 1],
one finds that the memoryless component of H1 is computed by the equation

Kl(i)=a’(i + 1)K1(i + 1)a(i + 1) +F’(i + 1)

[Q(i + 1) +N’(i + 1)R(i + 1)N(i + 1)]V(i + 1),

K(N-1) =0

while the memoryless part of II2 is computed by the equation

K2(i + 1)=a(i)K2(i)a’(i)+Q,,,(i)+B(i)N(i)Q,(i)N’(i)B’(i),

K(O) Q(Xo).

Similarly, the operator Ko such that KoG (1-I1)c turns out to be determined by the
relation Ko(i) Ka(i)A (i).

Using the formula given in theorem 1, one has then

N(i) [B’(i)KI(i)B (i) +R (i)]-B’(i)K(i)(i)K2(i)F’(i)

[O,(i)+F(i)K:(i)F’(i)]-1.
In the particular case where A (.), B (.), F(. ), O (.), R (.), O,o ("), and On (.) are con-
stant matrices, this result is identical to that given by Ermer and Vandelinde in [Er.1]

Example 2. Let the discrete time invariant system

x(i + 1)=Ax(i)+Bu(i), x (0) x0,

y (i) Fx (i)

be given with A, B and F constant matrices with respective dimensions n n, n p,
and m n; Xo is a random vector with a zero mean value and covariance matrix
O (x0(0)). Consider the problem of determining a matrixN of constant output feedback
gains such that by taking u (i)= Ny (i) one minimizes the cost functional

1
J(N)=-E Z [(Y(i + 1), Oy(i + 1)) + (u (i), Ru (i))]

i=0

where O and R are positive definite matrices. This problem is brought into the
framework of statement P1 by comparing Fig. 1 with Fig. 3. The operator T to be
considered now maps [l. (0, c), P] [l. (0, c), pi] and can be conveniently represen-
ted in terms of the transfer function F(zI-A)-aB. Note that, though strictly causal,
T is not Hilbert-Schmidt. In line with the suggestion in the first paragraph of the

u(z) T a---F(zI-A)-IB

w(z)

+

y(z)

FIG. 3. Optimal constant output feedback gains problem’ determine N so as to minimize the expected
value of 2a-Y’.i=o [(y(i + 1), Qy(i + 1))+(u(i),Ru(i))]. w(z)=F(zI-A)-aXo, influence of the past input over
the future output" u(z ), y(z)= control and output functions" N constant output feedback gain matrix.
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present section, we add the hypothesis that (I + TN) has a causal bounded inverse
(i.e., the feedback system is stable) and verify by a direct inspection that properties
ii) and iii) do indeed hold in the present case. We then apply Theorem i just as in
the previous example. With a slight abuse of notations one finds

(zI-)-a, * (z-aI-fi,’)-a fi, a--A-BNF"
hence

Ha (z-aI-’)-IF’(Q +N’RN)F(z! _)-a,

1-I2 (zI -X,)-aO (xo)(Z-aI -X’)-a.
Observing that Ka and K2 once again coincide with the memoryless parts of Ha and
HE, one finds that they must satisfythe following Lyapunov equations:

A’KaA Ka -F’QF -F’N’RNF,

AK2A’-K2 -O(Xo).

Ko is easily determined by observing that

[IIa]c KaA (zI fi -a, hence Ko KaA.
One can then conclude: under the hypothesis that N stabilizes the system, a necessary
condition for it to be the optimal feedback matrix is

(R +B’KaB)NFK2F’ B’KIAK2F’.
This result represents the discrete time version of the by now classical Levine-Athans
theorem (lEe. 1, Thin. 1]).

Example 3. With A (t), B (t) and F(t) of dimension n x n, n x p and m x n respec-
tively, let

A(t)=A(t)x(t)+B(t)u(t)+B(t)oa(t), x(0) =Xo,

y(t)=F(t)x(t), [0, tl],

where w(t) is a zero mean white noise random process with a positive definite
covariance matrix Qo(t); x0 is a random vector, independent of w(t), with a zero mean
value and covariance matrix Q(xo). The problem of interest is to determine a time
varying gains matrix N(t) so as to minimize

1 {f0
;1 (t))+(u(t),R(t)u(t))dt+(y(ta),Sy(ta))}J[N(.)] E (y(t) O(t)y

where O(t),R(t) and S are positive definite matrices. The picture to compare with
Fig. 1 is now represented in Fig. 4. The strictly causal Hilbert-Schmidt
T:[L[O, ta],P’][L’[O, tz],Pt] is formally computed in terms of the symbol F(.)
[sI -A (. )]-IB (o ), where sI represents the derivative operator; the memoryless
operators O(o), O and R are computed in terms of the matrices O,,(t), O(t) and
R (t); w (t) F(t)(t, O)xo, where (t, 0)is the state transition matrix; i= LziII’L ai 1.
To obtain the necessary conditions for N(t) to be an optimal controller one establishes
the following formal operator representations:

G [st-(.)]-, 6" =[-st-(.)]-
with

A (t) A (t)-B (t)N(t)F(t).
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to(t)

Yc =Ax + V(t)

w(t)

+

y(t)

FIG. 4. Output feedback gains for a linear continuous time stochastic control problem" determine N(t),
l_tftl[0, tl], so as to minimize the expected value of uo [(Y (t), Q(t)y (t)) + (u (t), R (t)u (t))] dt + (y (tl), Sy (q))}.

w(t) =(t, 0)Xo, influence of the past input over the future output" u(. ), x(. ), y(. )=control, state and output

functions" w(t) perturbation" N(t) output feedback gain matrix.

It follows that

Ha [-sI-*’(. )]-aF’(. )[Q(. )+N’(. )RN(. )+ S6(t- tl)]F(. )[sI -(. )]-1,
II [sr g(. )]-’Is (.)QJ3’(. + O(xo) (t)][-sr g’(. )]-.

The memoryless operator Ko such that KoG [1-I1]c is computed just as in the previous
examples and turns out to be determined by the matrix Ko(t) given by

-Ii;o(t) ,’(’(t)Ko(t) +Ko(t)* (t) + F’(t)[Q(t) +N’(t)R (t)N(t)(t),

Ko(tl) F’(tl)SF(tl).

K2 turns out to be determined by

/2(t) A(t)Kz(t) +K2(t)’(t) +BQo (t)B’,

K2(0) Q (Xo).

According to Theorem 1, the desired necessary condition for optimality is then

R (t)N(t)F(t)K2(t)F’(t) -B’(t)Ko(t)Kz(t)F’(t)

and, for F(t)Kz(t)F’(t) invertible,

N (t) -R -1 (t)B,(t)Ko(t)K2(t)F,(t)[F(t)Kz(t)F,(t)]-l.
This result represents the continuous time version of the Ermer-Vandelinde theorem
discussed in Example 1.

Example 4. Consider the hereditary differential system [Ma.1]

(t) ao(t)x (t) +a (t)x (t h) +B (t)u (t) +B (t)to (t),

y(t)=F(t)x(t), te[to, tl],

x(t)={b, t=to
b l(t to), [to- h, to],

where: h >0; Ao(.),AI(.),B(.) and F(.) represent n n,n n,n p, n m matrix
functions bounded and measurable on [to, tl]; ca(t) is a zero mean white noise random
process with a positive definite covariance 0,o (t); [b , b 1(0)] is an R L2(-h, 0", R )
valued zero mean random process characterized by the covariance operator
O[b, b 1(0)]. It is once again easy to recognize that the problem of determining a
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feedback time varying gain matrix N(t) so as to minimize

J[N(.)]=-E [(y(t), Q(t), y(t))+(u(t),R(t)u(t))]dt

where u(t)=-N(t)x(t) and Q(t),R(t) are positive definite matrices, falls into the
framework of statement P1. Observing in particular that the input/output behavior
of the system can be described in terms of a strictly causal Hilbert-Schmidt operator
T’L2(to, tl; Rn)L2(to, tl; Rn), from Theorem 1 one has that, as a preliminary step
to obtain a meaningful necessary condition for N(.) to be optimal, one has to construct
a state/costate factorization of T.

A state/costate factorization of T can be constructed by applying the state space
theory developed by Delfour [De.5]. Defining M2 =R x L2(-h, 0; R"), with inner
product (b, )M2 A (4, I/0)R, + (t 1, I/1)L2, and introducing the linear operators
(t)’R"->M2, (t)u A[B(t)u, O], u R" and ff’(t):ME-> g", /(t)(4,41) --a
[F(t)4 o, 0], ( o, b M2, one has that the system 7 has the state realization described
by

d](t)=(t)](t)+l(t)u(t), (to) (&, &a),
dt

y(t) =F(t)](t)

where

(t) a___ Ix (t), xt(" )] M2, xt(O)=x(t+O)L2(-h,O;Rn), 0 (-h, 0);

ft. (t) is an operator R" x W a_ W2 ---) M2 represented by the matrix of operators

[Aoo(t) Ao,(t)]
[- lO(t) /d x(t)-]

where Aoo(t)" R R, Ao(t)" L2(-h, 0; R")Rn,
All(t)’ L2(-h, O;R")L2(-h, 0; R").

Note that A (t) is uniquely defined by

A ao(t)" R" L2(-h, 0; R ),

[fi (t) (t)] [Ao(t)-B (t)N(t)F(t)]x (t) +A (t)x (t h ),

x,(O), 0 (-h, 0).[(t)(t)]l(o)
all

From this state realization one has the following (F, G, B) state/costate factorization
of T. MemorylessB" LE(to, tl; R")-LE(tO, t; ME) andF" LE(to, tx; ME)--)L2(to, tx; R
are defined in the natural way in terms of/ (t) and/(t); strictly causal t" L2(to, M2)
LE(to, t; M2) is given by the operator (I(d/dt)-(.))-1.

To compute Ko and K2 one notes that

d_,))-a_,((ld ))(.
-1

-1 egQg*(-I-(.
-1
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where

o&[O(’)+N(’)R(.)N(.) ]0

The memoryless Ko, Ko: L2(to, tl; M2)-->L2(to, tl; M2), can be described in terms of a
matrix function of operators"

a [Koo(t) Kol(t)]Ko(t)
lKlo(t) Kxl(t)J

where Koo(t)’RR"; Kol(t)’L2(-h,O;R")R";
Kll(t)" Lg.(-h, 0; R)Lz(-h, 0; R").

The equation specifying Ko is given by

Klo(t)" R" - L2(-h, 0; R");

d ))-1/,( )(( )ff (i d ))-1(-;-A*(. (.) -X(.
d

Ko(.) (I---(.
-1 d _fi, )-1+ -I- (’) K8 (’),

which implies Ko* (t)= Ko(t) and

I’o( -(t *Ko( Ko(t) t*(t)(t)IV (t ),
Ko(tl) 0.

Similarly K2" Lz(to, tl; M2) L2(to, tl; M2) is given by the following operator differen-
tial equation [Be.l, 5.9]:

/2(t) -fi (t)K2(t) K(t)fi,*(t) + O (t),

K2(to) o[&o, & 1(0)]

As has been shown in [De.6] and [Be.1], operator differential equations of the
above type are equivalent to a well understood set of coupled ordinary and partial
differential equations. Thus the computation of K0 and K2 presents no theoretical
difficulty and, once implemented, it allows one to finally obtain the necessary conditions
of optimality. The complexity associated with these computations is on the other hand
quite formidable. As a final observation note that if F =/, then Theorem 2 gives the
solution N(t)=R-l(t)*(t)Ko(t), where Ko(t) is now computed via the following
Riccati operator differential equation

-Ro(t) *(t)Ko(t) +go(t) (t) Ko(t)l (t)R -1(t) *(t)Ko(t + O(t),

where

Ko(tl) 0

A (t) [A(t)]-[B (t)N(t)F(t)].

We rediscover then the well known state feedback solution initially proposed by Mitter
and Delfour [De.6].
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w(t)

2(t) =Ao(t)x(t)
+Al(t)x(t-h)
+v(t)

w(t)

FIG. 5. Output feedback gains for a linear functional differential stochastic control problem: determine
l_tftN(t), t[to, h] so as to minimize the expected value of Uo[(y(t),O(t)y(t))+(u(t),R(t)u(t))]dt+

(u(h),$y(t))}. w(t)=infiuence of the initial state over the future output; u(.), y(.)=control and output
functions; x(t + 0), 0 (-h, 0), state of the system; o)(t) perturbation; N(t) output feedback gain matrix.

6. Conclusion. From Theorem 1 one can see that the role played by state and
causality theory in constrained linear/quadratic optimization is just as important as
that played in the unconstrained optimization case. In particular, computational details
aside, the design of an optimal linear/quadratic structure constrained input/output
compensator has been shown to require a sequence of well defined and physically
meaningful state and causality operations which are completely independent of the
specific description of the system. These operations are" the construction of a state/
costate factorization, the extraction of strictly causal and memoryless components of
a noncausal system, the determination of a state variance operator. In the case of a
minimal and discrete resolution of the identity, this last operation corresponds once
again to the extraction of a memoryless component; in the case of a continuous
resolution of the identity, it coincides with the extraction of a strictly causal component.

From a more practical point of view, the interest of Theorem 1 is in providing a
necessary condition which is simultaneously applicable to continuous time, sampled
data, finite and infinite dimensional systems. When applied to finite dimensional
systems, this condition allows one to rediscover in a unified setting most of the results
already available in the technical literature (Examples 1, 2, 3); when applied to infinite
dimensional systems, such as hereditary systems, new results are obtained (Example
4); the formidable computational complexity associated with these results opens in
turn the way to a new research avenue in the development of efficient computational
algorithms. The interest in Theorem 2 is in showing that the existence of a causality
multiplicative decomposition, in addition to being a sufficient condition for a solution
of the optimal state feedback problem (as established in [Sch.1] and [De.l]), is also
a necessary one. By a dual formularization of statement P1 and Theorems 1 and 2,
all this could be quickly transferred into the context of constrained filtering and
estimation problems. The pattern to follow is clearly indicated in [De.l].
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GLOBAL BEHAVIOR OF GENERALIZED EQUATIONS:
A SARD THEOREM*

A. REINOZAt

Abstract. In this paper we are concerned with the global behavior of solutions of generalized equations.
Regularity properties of solutions, which are relevant from an algorithmic and theoretical viewpoint, are
shown to be generic. This is the fundamental ingredient to establish and prove a Sard theorem for generalized
equations.

Key words, nonlinear programming, transversality, subdifferential

1. Introduction. In this paper we shall address questions concerning the global
behavior of generalized equations, that is, inclusions of the form

(GE) 0 f(x) + Oqc(X)

where f:Rn--> Rn is a function, C is a polyhedral convex set c(" is the indicator
function of C, i.e.,

0 ifx C,
qc(x):=

+oo otherwise,

and 0c( is the subditterential operator of the indicator function, i.e.,

{v I(v, z x) <- 0 for all z C} if x C,
qc(X):=

otherwise.

A generalized equation is a unified way of representing problems from different
fields, e.g., mathematical programming, complementarity and mathematical econom-
ics, among others. When C 7-, we have the nonlinear complementarity problem
first introduced by Cottle [1]. This problem has received a great deal of attention in
the last decade. At about the same time that the paper of Cottle appeared, Hartman
and Stampacchia [8] proved the following result: Iff: is a continuous function
on a convex compact set C in ", then there is an x* in C such that for all x C

(VIP) (x x *, f(x *)) >- O.

This problem is known in the literature as the variational inequality problem.
Karamardian [10], [11] and Mor6 [15] noticed that the nonlinear complementarity
problem (NLCP), is actually a (VIP) if C is a polyhedral convex cone. They used
results from variational inequality theory to prove existence of solutions for the
(NLCP).

Questions concerning the existence of solutions for problems, in different fields
but representable as generalized equations, have been addressed in a somewhat
unrelated form; see for example [1], [7], [10], [11], [12], [13], [14], [15], [16]. With
the generalized equation setup, these questions are considered in a unified way, thus
covering a wide range of applications; see Robinson [19], [20].

The ideas presented here were developed in [17] as a theoretical ground to
establish a degree theory for generalized equations. Here we will devote ourselves to

* Received by the editors November 21, 1980, and in revised form March 10, 1982.
t Departamento de Matemiticas y Ciencia de la Computaci6n, Universidad Sim6n Bolivar, Caracas,

Venezuela.
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answering some questions about the global behavior of generalized equations. To be
more specific, let us introduce the perturbed generalized equation"

(GE,) O(x, p)+Oc(X)

where f: Nn x P Nn is a function, P is a topological space, and for some p0 e P, (GEpo)
is the unperturbed generalized equation.

Globally, we are interested in the "size" of the subset of P for which the
generalized equation is well behaved. It will be shown that under suitable conditions
three regularity properties, to be defined in 2, are generically satisfied--that is to
say, they are satisfied for all p in a residual set P0-P such that P\Po is of measure
zero in P.

We shall take advantage of the polyhedrality of C. The relative interiors of the
faces of C form a partition of C, and the relative interior of each face is a manifold
in Nn. We will use some results from differential topology to get more insight into the
nature of the solutions of the generalize equation. Thus, questions concerning the
behavior of the solutions are reduced to questions about the behavior of the zeros of
a vector field on a manifold.

Spingarn [23] has used the parametric transversality theorem, a consequence of
Sard’s theorem, to show the genericity of the optimality conditions for the general
nonlinear programming problem, and we shall use the same approach here for
generalized equations. Sard’s theorem is the cornerstone of several currently active
investigations in optimization; see for example Eaves and Scarf [2], Eaves [3], Saigal
and Simon [22].

As a consequence of the global behavior of generalized equations, we shall
establish a Sard theorem for regular values of the multivalued function F:N" x P-. Nn
given by

r(x, p):=f(x, p)+O’I,c(X).

2. Regularity properties. The concept of regularity of the solutions to problems
such as nonlinear programming, variational inequalities, complementarity and
mathematical economics, has been widely discussed in the literature, its relevance,
from both algorithmic and a theoretic point of view, comes from the necessity of
imposing conditions on the problem to ensure good local and global behavior of the
solutions. These concepts were extended by Robinson [18] in a natural way to
generalized equations, and it is the goal of this section to present them and to derive
some of their consequences.

DEFINITION 2.1. Let x* be a solution of (GE). We say that x* is a nondegenerate
solution of (GE) if and only if

x* ri F(x*),

where F(x*)={x C[(x-x*, f(x*))= 0}, and ri F(x*) is the relative interior of F(x*).
(It can be easily shown that F(x*) is a face of C.)

To give an idea of the meaning of the nondegeneracy property, let us consider
the complementarity problem, i.e., C _.

In this case

F(x*):={x O[xi 0 if fi(x*)>0}

and x* e ri F(x*) is equivalent to strict complementarity slackness.
As was shown in [17i. a more suitable way of characterizing nondegeneracy is

the following: x* is a nondegenerate solution of (GE), i.e., x*e riF(x*), if and only
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if-f(x*) ri 3qc(X*). From now on we will use interchangeably these two equivalent
forms of characterizing nondegeneracy.

It is a well-known result (see [21]) that the relative interiors of the faces of a
polyhedral convex set C form a partition of C. Moreover, the relative interior of each
face of C is a manifold in Rn. Thus the solutions of (GE) lie on finitely many disjoint
manifolds, and when we restrict ourselves to one of these manifolds, questions about
the behavior of the solutions of (GE) are reduced to questions about the behavior of
the zeros of a vector field on a manifold. Specifically, let x* be a nondegenerate
solution of (GE), and

r’riF(x*) T.(riF(x*)),

a function defined by r" II0f, where T,.(riF(x*)) is the tangent space of riF(x*) at
x*, f:=f]riF(x*) is the restriction of f to riF(x*) and II’Rn- T,.(riF(x*)) is the
orthogonal projection. The inclusion Oc(X*)_ T,.(riF(x*)) +/- implies that x* is a zero
of r. Thus, the behavior of x* as a zero of r gives us information about the behavior
of x* as a solution of (GE). Next, we connect the nondegeneracy property for (GE)
and the topological concept of nondegeneracy of the zeros of the vector field r.

DEFINITION 2.2. Let x* be a solution of (GE). We say that x* is a strongly
nondegenerate solution if:

(i) x* is a nondegenerate solution of (GE);
(ii) x* is a nondegenerate zero of -.
From the definition of nondegenerate zero of a vector field and a simple algebraic

argument, we get, in terms of a transversality condition on f, the following characteriz-
ation of strong nondegeneracy: x* is a strongly nondegenerate solution of (GE), if
and only if x* is a nondegenerate solution of (GE) and

f’(x*)[T.(riF(x*))]+ T.(riF(x*))+/-=

that is, when C ", we are dealing with a system of equations, f(x)--0. If x* is a
solution then F(x*)=", and so (i) is always satisfied and (ii) means that f’(x*) is
nonsingular. Thus, strong nondegeneracy is in this case the usual concept of regular
point.

The alternative way of characterizing strong nondegenerate solutions will allow
us to establish the genericity of the following important regularity property:

DEFINITION 2.3. Let x* be a solution of (GE). We say that the strong positivity
conditions (SPC) hold at x* for (GE) if, for all h # 0 such that

(i) (h, f(x *)) 0,
(ii) x* + h C,
(iii) Of(x*)+f’(x*)h +Oc(X*),

one has (h, f’(x *)h) > 0.
It was shown in [17] that the (SPC) are sufficient for a solution to be isolated.

Hence, the genericity of the (SPC) implies that isolation of the solutions of (GE) is a
generic property.

The next result is the bridge that allows us to prove genericity of the (SPC).
PROPOSITION 2.1. Letf" - be a function Frgchet differentiable at a nondegen-

erate solution x* of (GE). Then the (SPC) hold at x* if and only if x* is strongly
nondegenerate.

Proof. () If the implication is false, then from the definition of nondegenerate
zero of a vector field, there is some h 0 with

(1) h T,,(riF(x*))
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and such that -’(x*)h =0. Now, "(x*)= Ilof’(x *) so that II(/’(x*)h)=0, but this holds
if and only if

(2) -[’(x*)h T.(ri F(x*))-.
We know that T.(riF(x*)) +/- is the anne hull of Oqc(X*), and -f(x*)eri Oc(X*),
hence for A small enough

Of(x*)+f’(x*),h +Oq%(x*).

On the other hand, x* +Ah eF(x*) for I small enough, so that

o ((x* + h)-x*, f(x*)) (h, f(x*)).

Thus, Ah satisfies conditions (i)-(iii) of the (SPC), but from (1) and (2),

(h,f’(x*)h)=O,

which contradicts the assumption that the (SPC) hold at x*.
(@) Now, let us assume that x* is a strongly nondegenerate solution of (GE),

so that f satisfies the transversality condition

f’(x*)[T,(riF(x*))]+ T,.(riF(x*))+/-= ".

For any h such that x* + h C and (f(x*), h) 0, i.e., h T.(ri F(x*)), since
-f(x*)Oc(X*)C Tx.(riF(x*)) +/-, we have that

Of(x*)+f’(x*)h

if and only if f’(x*)h 0, but this holds if and only if h 0.
Hence, the (SPC) hold vacuously.
We finish this section by illustrating the meaning of strong nondegeneracy for

the nonlinear programming problem

(NLP) min {O (x )lg (x <- o, h(x)= 0},

where 0" " - , g" " " and h " are C2 functions. Let us consider the
generalized equation

(3) Oe f(w)+Oqc(W)

where C " x g, w (x, u, v)" " and

O’(x + ug’(x + vh ’(x 1)f(w) -g(x)
-h(x)

Now, w* (x*, u *, v*) is strong nondegenerate solution of (3) if and only if"
a) w* satisfies the Kuhn-Tucker conditions, i.e.,

O’(x*) + u *g’(x*) + v *h’(x*) O,

h(x*) 0, g(x*)<=O,

<u*, g (x*)) 0, u*>0"=

b) w*eriF(w*). Here, F(w *) {(x, u, v )[u >-_ O, u=0 for all i1}, where I=
{ilg(x*) =0}. Thus, w*eriF(x*) means that u* >0 if and only if g(x*)=0 for all
e/, i.e., strict complementarity slackness holds at x*.
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C) The (SPC) holds at w* for (3). In this case, the (SPC) reduces to: for each
h 0 such that

(gl(x*),h)=O, ieI,

(h i’(x*), h)=0, /’= 1, k,

one has (h, L"(w*)h) > 0, where

L(x, u, v):=O(x)+ug(x)+vh(x),

i.e., the second order sufficiency conditions hold for (NLP).
d) From the alternative characterization of nondegeneracy we have"

(4) f’(w*)[Tw.(riF(w*))]+Tw.(riF(w*))+/-="x"xk.
Here, Tw.(riF(w*))=N" xN xNk

Tw.(riF(W*))+/-=Ox (R)I x O, and

/ L"(w*)
f(w*) [-g’(x*)

\-h’(x*)r

From (4) we get that

g’(x*) (if) + (if)"

where Nt {u e ’[ ui O, I},

g’(x*) h’(x*)t

0 0

and h’(x*)r ([Rk) ,
i.e., the gradients of the active constraints are linearly independent.

Conditions (a)-(d) are what Spingarn [23], [24] calls strong second order condi-
tions (SSOC) for the (NLP).

3. Generic properties. With the parametric transversality theorem as a tool,
Spingarn [24] proved that the strong second order conditions (SSOC) for the nonlinear
programming problem are generically necessary for optimality. With the same
approach, we will extend Spingarn’s results to prove that isolation and nondegeneracy
are generic properties of the solutions of generalized equations. R. Saigal and C.
Simon [22], using transversality arguments on the function f, proved for the nonlinear
complementarity problem that isolation and nondegeneracy of the solutions are generic
properties. Our result is also an extension to generalized equations of Saigal’s and
Simon’s result. Next, we define the family of perturbed problems we are interested in.

DEFINITION 3.1. Let f P -, " be a function, P a topological space and p0 P
some base value at which f(x)=f(x, po) for all x , i.e., f(x, po) is the function in
the unperturbed problem. The perturbed generalized equation is defined for each
peP as:

(GEp) 0 f(x, p) +Oc(x).

The following result will give us the link, between our setup and the parametric
transversality theorem, to prove genericity of the properties we are dealing with.

THEOREM 3.1. LetX c_ and P c_ Ns be C manifolds. Let f Nn xP -+ " be a C
function such that the function p -+f(x, p) is of rank n at all (x, p) x P. Then there
is a residual subset Po c p, such that P\Po is of measure zero in P and for all p Po,
the vector fieM

r(. p): X-+ "is zero transversal on X, where

r(x, p):=rr f(x, p),
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N"7rx - Tx (X) is the orthogonal projection, and

Proof. Spingarn [23, Prop. 1.23] proved this result for f being the gradient of a
function F" N" xP- N, i.e., f(x, p) F’(x, p) where F’ denotes the derivative with
respect to the first argument. However, his proof extends to any function satisfying
the requirements of the theorem.

We can now state the principal result of this section.
THEOREM 3.2. Let C be a polyhedral convex set. Let P c be a C manifold

and f" " xP- a C function such that the function p f(x, p) is of rank n at all
(x, p) x P. Then there is a residual set Po P such that P\Po is of measure zero in
P, and for all p Po, if x is a solution of (GEe) then x is strongly nondegenerate (hence
also an isolated solution).

Pro@ Spingarn in his dissertation [23, Prop. 4.1], proved that there is a residual
set Q cp, such that P\Q is of measure zero in P and for all pdeQ and x0
C-f(xo, po) Oc(Xo) implies that -f(xo, po) ri Oc(Xo), i.e., x0 is a nondegenerate
solution of (GEpo).

Let Ci, 1,...,M, be the faces of C. By Theorem 3.1, for each 1,...,M
there is a residual set Pi such that P\Pi is of measure zero in P, and for all p Pi, the
vector field i(’, p)" ri Ci T(ri Ci) is zero transversal on ri Ci. This holds for all
x ri Ci here 7re(’ p) 7ri f( p) 7r - T (ri Ci) is the orthogonal projection
and f(., p):= f(., p)]ri Ci,

Let Po Q (’1 (("I/M=IPi); then P0 is a residual set such that P\Po is of measure zero
in P, and for each p P0 if x is a solution of (GEp), then x is a nondegenerate solution
of (GEp). Also, since x is a zero of -/(., p), for some e {1,.. , M} such that Ci F(x),
and -(., p) is zero transversal, we have that x is a nondegenerate zero of r(., p); that
is, for each p Po, the solutions of (GEp) are all strongly nondegenerate.

As we have mentioned before, now we can clearly see that the strong positivity
conditions are a generic property, and hence so is isolation.

4. A Sard theorem. Let C be a polyhedral convex set, P a C
and f" N"xP- N" a function. In this section, we will define the concept of regular
value and establish a Sard theorem for the multivalued function F’N
defined by

r(x, p f(x, p) + o,I, (x).

DEFINITION 4.1. With C, P and f as before, we say that p e P is a regular value
of F, if for all

x F(’,p)-a(O)={x[Oef(x,p)+Oc(X)}
x is a strongly nondegenerate solution of (GEp). Otherwise, we say that p is a singular
value of F.

THEOREM 4.1. Let C be a polyhedral convex set, P Ns a C manifold and
f:[" xP a C function such that the function p f(x, p) is of rank n for all
(x, p) x P. Then the set of singular values of F is of measure zero in P.

Proof. This is a direct consequence of Theorem 3.2. F]

Next, as an application of our Sard theorem, we establish for three well-known
problems that isolation and nondegeneracy are generic properties.

Problem 1. The nonlinear programming problem. Let us consider the family of
nonlinear programming problems

(NLPp) min {O(x, p)lg(x, p) O, h (x, p)= O}
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where 0 :n p- , g :,, x P " and h n xP - k are C2 functions, and P
_
s is

a C2 manifold. Spingarn [23], [24] additionally restricting x to be in a C2 cyrtohedron
(see [23] for a definition), proved that the (SSOC) are generically necessary for
optimality. In our case, the cyrtohedron is n, the (SSOC) reduce to conditions (a)-(d)
of2.

COROLLARY 4.1. Let P, O, g and h as before, f :rpr be a function
defined by:

[.L’(x,u,v,p))f(x, u, v, p):= / -g(x, p)
\ -h(x,p)

where r m + n + k, and L(x, u, v, p):= O(x, p)+ ug(x, p)+vh(x, p). If the function p -](x, u, v, p) is o[ rank r at all (x, u, v, p) Nr x P, then there exists a residual set Po c p
such that P\P’o is of measure zero in P, and for each p Po, if x* is a local minimizer

of (NLPp), there exist (u *, v *) s N" x Nk such that w* (x*, u*, v *) satisfies the (SSOC)
for (NLPp).

Proof. Let us consider the family of perturbed generalized equations

(GEp) 0 e f(w, p) + Oc(W),

where w (x, u, v) and C n R k.
From Spingarn [23, Thm. 3.27] and our Sard theorem, there is a residual set

Po c p such that P\Po is of measure zero in P, and for each p Po, if x* is a local
minimizer for (NLPo) there exist (u*, v*) [ such that w* (x*, u*, v*) is a
strong nondegenerate solution of (GEp). The result follows from the comment at the
end of2. 71

Problem 2. The nonlinear complementary problem (NCP). Let P_ s be a C
manifold and f""P" a C function, and consider the family of perturbed
nonlinear complementarity problems

(NCPp) x >-_0, #(x,p)>-O, (x,#(x,p))=O.

COROLLARY 4.2. Let P and f as before. If the function p f(x, p) is of rank n at
each (x, p) P, then there exists a residual set Po P, such that P\Po is of measure
zero in P, and for each p 6Po, if* is a solution of (NCPp) then:

(i) x* +f(x*, p)
(ii) The principal minor off’(x*, p) corresponding to the positive components of x*

is different from zero. Moreover, the solution set of (NCPp) is discrete.
Proof. Let us consider the family of perturbed generalized equations

(GEp) o e f(x, p) + o,I,(x).

By Theorem 3.1, there is a residual set P0 c P such that P\Po is of measure zero
in P, and for each p Po, if x* is a solution of (GEp), then x * is strongly nondegenerate,
i.e., x* ri F(x*) and the (SPC) hold at x* for (GEp).

Note that x* is solution of (GEp) if and only if x* is solution of (NCPp); also,
x* ri F(x*) if and only if strict complementarity slackness holds, i.e., x* +f(x*)> 0
holds.

Let A be an n n matrix, x [",/, J
_
N := {1, ., n }. Then Au denotes the

submatrix of A with elements air with /,/" J; and xr denotes the subvector of x
with components xi, iL Now, let I:={ilx* >0} and J:=N/L Any h satisfying
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conditions (i)-(iii) of the (SPC), is such that h 0 and f’(x*, p)h 0, which implies
that

(h, f’(x*, p)h= hi, f’t(x*, p)h- O.

Hence, the determinant of ft(x*, p) must be different from zero. Finally, the
(SPC) imply isolation, i.e., the solution set of (NCPp) is discrete. [3

Problem 3. Let P be a C manifold, and f" Rnx P--> Rn, a C function. If the
function p--> f(x, p) is of rank n at each (x, p) nxP, then, from Theorem 3.1, for
almost all p P, if x*f-(., p)(0) then x* is a strongly nondegenerate solution of
the system f(x, p) 0, i.e., f’(x*, p) is nonsingular. Thus, Theorem 3.1 reduces in this
case to Sard’s theorem for mappings.
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STABILIZATION OF LINEAR SYSTEMS BY NOISE*

L. ARNOLD,-, H. CRAUELS- AND V. WIHSTUTZt

Abstract. It is proved that the biggest Lyapunov number /max Of the system (A +F(t))x, where
A is a fixed d d matrix and F(t) is a zero mean strictly stationary matrix-valued stochastic process, satisfies

lid trace A-<_ A On the other hand, for each e >0 there is a process F(t) for which Anax---lid trace
A + e. In particular, the system k Ax can be stabilized by zero mean stationary parameter noise if and
only if trace A < 0. The stabilization can be accomplished by a one-dimensional noise source. The results
carry over to the case where A is a stationary process. They are also true for F(t)= white noise.

Key words, linear stochastic systems, stochastic stability, Lyapunov numbers

1. Introduction. LetA (t), R, be a (strictly) stationary measurable d d-matrix
valued stochastic process on a probability (pr.) space (f, , P) with finite mean (thus
locally integrable almost surely). This includes the case of a constant matrix A. All
notions and facts from the theory of stationary processes used in this paper, such as
the associated group of shifts Tt, R, invariant sets and variables, ergodicity etc., can
be found in Rozanov [13, Chap. IV]. The linear system

(1.1) =A(t)x, x(0) x0,

assigns to any initial random variable (r.v.) Xo the solution x(t; Xo)=Cb(t)Xo, where
(t) is the fundamental matrix with (0)=identity. We call the system (1.1) stable,

if its trivial solution x-=0 is exponentially stable, in other words if for any initial
random variable Xo the Lyapunov number

(Xo(to), to) lim 1_ log I(t, o)x0(o)l

of the corresponding solution is negative almost surely.
The aim of this paper is to find necessary and sufficient conditions for a system

(1.1) to be stabilizable by parameter noise, but without interfering in a deterministic
way. The idea behind our approach is to model how nature would stabilize a system
=Ax with constant A, say, by perturbing the parameters, i.e., the entries of A,

but keeping the average fixed and equal to the original value. More precisely, we look
for a stationary process F(t) with EF(t)= 0 such that

(1.2) (A(t)+F(t))x

is stable. The mean zero assumption excludes ’dishonest’ things like pole displacement
for a control system k Ax + u via feedback control u Fx, a method one typically
would apply to a system which is amenable to human interference. The interesting
problem of stabilization by stochastic feedback based on observation ( =Ax +
Bu, y Cx, u F(t)y) will be treated elsewhere.

For d 1, the ergodic theorem for stationary (A, F) implies

x(t)=xoexpt I0 (A(r)+F(r))d-

x0 exp tE(A(O)+F(O)Id),
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denoting the sigma algebra of invariant sets of (A,F). Since E(A(O)+F(O)I) < 0
and EF(O)= 0 entail EA(0)< 0, a one-dimensional system (1.2) can never be stable
unless (1.1) was already stable. Thus we can restrict ourselves to the case d => 2.

For d 2 Khasminskii [7] stabilized a particular system by applying two white
noise sources, while Arnold [1] showed (somewhat heuristically) that any deterministic
time invariant system 2(t)=Ax(t) with trace A <0 can be stabilized by one real
noise source. The main result of this paper is just a generalization and a rigorous
proof of the result in [1]. For general d and A(t)=A constant Willems and Aeyels
[19] state algebraic conditions on F leaving the stability properties of (1.1) unchanged.

Our approach is based on the following fundamental theorem of Oseledec [12]
(see Wihstutz [18] and Crauel [3] for more recent accounts):

THEOREM 1.1 (Multiplicative ergodic theorem). Let A(t) satisfy the conditions
mentioned above. Then we have for the system (1.1):

(i) State space decomposition according to growth: For P-almost all o f there
are numbers r=r(o),l<=r<=d, AI(o)<A2(o))<’’’<Ar(O) and linear subspaces
(’Oseledec spaces’) E(o),. Er(oo) with dimension di(to)= dim Ei(o) such that

and

Re= @

lim 1--logl(t, o))xo(oo)l Ai(o)) iff xo(oo)Ei(o)).
t---t-oO

(ii) Domain of attraction of Ei (o)"

lim 1-1oglO(t,w)xo(o))l=A,(w) iff xo(oo) V,(w)\Vi_(oo),
t--

where Vi(w)
(Note that all Lyapunov numbers are limits rather than lim sup’s).
(iii) Center of gravity ofLyapunov numbers"

r(to)

Y di(o),(o)= E(trace A(0)1o)= trace E(A(0) 1o),
i=1

being the sigma algebra of invariant sets ofA (t).
(iv) Invariance properties" The r.v.’s r, X and d, 1,..., r are shift invariant

(thus constant i[A is ergodic), while (t, m)E() TtE(), Tt being the group o[shi[ts
associated with the stationary process A.

COROLLARY l. 1. For the biggest Lyapunov number At 0 (1.1) we always have

1
X trace E(A (0) 1) r a,s.

[ act, At <X WOUM imply = dAi < trace E(A(O)IN) contradicting Theorem 1.1 (iii).
Note that for a deterministic A the Lyapunov numbers of (1.1) are the real parts

of the eigenvalues of A, while the Oseledec spaces are its generalized eigenspaces.
Of course, (1.1) is exponentially stable if and only if At < 0 a.s.

The projection s(t)= x(t)/]x(t)l of a nontrivial solution x(t) of (1.1) onto the unit
sphere S- satisfies the nonlinear equation

h (A, s), h (A, s) ( q (A, s))s, s (0) Xo/iXol,
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with

s,A’+Aq(A,s)= s
2

(prime denoting the transpose), while

[x(t)l lxol exp t-[ q(A(’), s(r)) dr.

Thus the Lyapunov number of x (t; Xo) has the form

A (Xo, w) lim -1
-. q(A(r), s(r)) dr,

which by the ergodic theorem is equal to

E.q(a(o), s(0))= [[ q(a, s)d(a, s)
dxdxad--1

provided (A, s) is stationary and ergodic with one-dimensional distribution on
dd

If A(t) is a Markov process, we restrict ourselves to so-called Markov solutions
of (1.1), i.e., those solutions x such that the pair (A, x) is a Markov process. This
amounts to restricting the admissible initial values (see Arnold and Kliemann [2]).
For example, (A, x) will’ certainly be Markov if A is a diffusion and x0 depends only
on the past history of A(t) for 0. In general, Markov solutions will not be able to
attain all Lyapunov numbers existing by Theorem 1.1. On the contrary, typically only
the biggest Lyapunov number A can be realized.

2. The main result. Let us first assume that A is deterministic. The general case
will be reduced to this particular one later in Remark 2.2.

Our main result is as follows.
THEOREM 2.1. Given the system Ax, A a fixed d d matrix, and the system

=(A+F(t))x parametrically perturbed by a stationary ergodic measurable dd
matrix valued stochastic process with finite mean:

(i) For any choice of F(t) with trace EF(t)=0 we always have for the biggest
Lyapunov number Amax(A +F) of the perturbed system

1
d

trace A (A +F).

(ii) For any e >0 there is an F(t) with EF(t)= 0 such that

1 1
d

trace A (A +F) trace A + e.

In particular, a linear system Ax can be stabilized by zero mean parameter noise

ff and only ff trace A < 0.
Proof. (i) By Corollary 1.1 and the ergodicity of F(t), traceA=

trace E(A +F(t))dAmax(A +F).
(ii) The idea of the proof is as follows: Note first that rotational invariance of

the Lebesgue measure a on Sa-x implies

fs 1 1
_q(A,s)d(s)=traceA, q(A,s)=s’(A’+A)s.
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We now pick for each e >0 a noise process F(t) with state space Y in the set
of skew-symmetric matrices (whence q (A +F, s) q (A, s)), such that (F, s) has
invariant probability tz on Y Sa-1 and

hmax(a +F)= fl q(A, s) dlz.
ys

We are done if we could show/z --> p h weakly as e --> O, p some probability on Y,
since then

q(A, s) dl q(A, s) d(p A)
a-,

q(A, s) dA (s) trace A.
ysd-1 y><sd-

Step 1 (Choice of noise). Let (t) be a stationary ergodic diffusion process on a
compact connected analytic Riemannian manifold M of nonzero dimension with
invariant probability p whose generator G is defined on the C functions on M. Take,
e.g., (t)= Brownian motion on M with generator G- A/2, A Laplace-Be]trami
operator on M (see McKean I0] or Dynkin [4, p. 159]). Let F: M-S(d) be an
analytic mapping of M into the linear space of skew-symmetric d d matrices S(d)
such that tF() dp (y) 0 and with additional constraints to be specified later. Define
a stationary S(d)- valued process F (t) by

F(t)=IF(G(t)), G(t) =().E

Then of course EF(t)=O, q(A+F,s)=q(A,s) and G/e generates G. The pair
process (G, &), where (A +q(A, &)I)& +F(t)s h(&)+F()&/e, is a diffusion
process on M Sa-1 with generator

1 1
L H +-L +-G,

E E

where H=(h(s),graG), L=(F()s, grad). We have CcD(H)fqD(L/e)fq
D(G/e D (L). Due to compactness,L has at least one invariant pr. tx onM Sa-a,
and any sequence of tz ’s has a subsequence (t.) that converges weakly to a probability
#o onM Sa-x with marginal probability p on M. Our aim is to identify tzo with p .

Step 2 (o is invariant for L + G). The L-invariance of tz implies

O= e f Lfd e f Hfdz + f Lofdz, Lo=L + G,

for all f D(L). Thus for e, 0 we obtain

f Lofdo 0

at least for all f C D(eL). We proceed similarly to Echeverria [5] and observe
that R,CC, R, (aI-Lo)- the resolvent operator of Lo, from which

I R,Lofdlxo I LoR,,fdtxo 0 for f C

follows. This entails

I fd/xo= I(oRa-R,Lo)fdo=a f Rafdtxo, all a> O,
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or

T, being the semigroup generated by Lo, whence CoocH {f: f bounded and fdtzo
Ttfdtxo}. Since Coo is closed under multiplication and H is closed with respect to

both pointwise monotone and uniform convergence, the monotone class theorem (see
Williams [20, p. 49]) yields that H contains all bounded measurable functions on
M Sa-1. Therefore, tz0 is an invariant probability for Lo.

Step 3 (txo is unique). The pair (sO, s) with generator Lo=L +G, where g =F(sC)s,
s generated by G, is certainly a sample-continuous Feller-Markov process with state
space M Sd-1. We have a unique invariant probability for (s, s) if the associated
deterministic control system

g F(u (t))s, u continuous control with values in M,

is completely approximately controllable (see Arnold and Kliemann [2]). This will be
satisfied if we have even complete controllability (i.e., for every s Sd- the positive
orbit is equal to Sd-) using only piecewise constant controls. In other words, we need
a collection of values sci s M, s/, such that the control system given by the family of
vector fields (F(si)s)ix on Sd- is controllable. As we have conservative vector fields
on a compact Riemannian manifold, a result of Lobry [9] applies" We have controlla-
bility if and only if

rank (F(i)s)iex =d- 1 on Sd-1.
Here rank (Xi)t at a point s is defined as the dimension of the subspace in the tangent
space TsSd-, generated by the smallest family of vector fields containing (Xi)i, and
being closed under the Lie bracket operation.

As we are only concerned with existence at that point, we can choose, e.g.,
M =! =unit sphere in the linear space S(d) of d d skew-symmetric matrices,
F identity, which will certainly satisfy the rank condition, so that tzo is unique.

Step 4 (/xo =p x). p xh is invariant for Lo if and only iffor all f D (Lo)

o fMxs-1L]Cd(P XA)= IM (Isa-L[dA(s)) dP(se)+ Isd-1 (IM (]’dp()) dA (s).

As in Step 2, it suffices to check this for/" s C.
The generator L (F()s, grads) corresponds to the process (, s) with so(t) sc

const and =F()s. Thus T,f(,s)=f(, U(t)s) with orthogonal U(t)=exptF(se)
leaving the Lebesgue measure on Sd- invariant. Therefore

dsfa-I Ttf(, s)dh (s)=
*ISfd-1 f(’ S)dh (s) and

asfd-, Lf(j, s)dA (s)=0

for each fixed sc M. On the other hand,

s) (sc) 0 for each fixed Sd-dp s

because p is invariant for G. Thus p h o is the unique invariant probability for
L0, and any convergent subsequence of (tz) tends to Ix0.

Step 5 (t is unique). Since L and eL =eH +Lo have the same invariant
probabilities it suffices to show that the pair (sO, s), g=eh(s)+F()s,h(s)=
(A +q(A, s)I)s, has a unique invariant probability tz on MSd-1. This will again
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follow from complete controllability of the associated deterministic control system
eh(s)+F(u)s, u continuous control with values in M. We can look at this system

as a perturbation of the system g F(u)s which we assume to be completely control-
lable by means of finitely many vector fields (F(l)s,"., F(n)s), ,iM (see the
choice made in Step 3). As for e 0

X eh (s) +F()s X F()s (j 1,..., n

in the Ck topology of the set of n-tuples of C vector fields and since the set of
completely controllable n-tuples is open in this topology (cf. Sussmann [17]), we have
complete controllability for all e small enough, provided we have complete controlla-
bility for e 0.

Step 6. Since p x weakly,

q(A+F,s)d= q(A,s)d q(A,s)d(pxa)=traceA.
The proof will be completed if we can show that

am, (A +F)= q(A, s) d,.

If we choose the initial r.v. x; s(0) such that (s(0), (0)) is independent of the
Wiener process driving and distributed according to , then the corresponding
solution of 2 (A +F (t))x is a Markov solution with exact Lyapunov number

h h (x;) f q(A, s) d.

We would be done if h (Xo) h for any initial r.v. Xo. Let e, , ea be the canonical
basis in a and Xo ae. By an elementary property of Lyapunov numbers

h (Xo) max h (e).

The law of large numbers (see Arnold and Kliemann [2]) yields Pz (E) i for -almost
all zM x Sa-, where

E= ’lim- q(A,s)dr=

We would have P (E) 1 for all z eM x S- if (, s) were strongly Feller, whence
for 1,..., d

( (el P(,,(p( .
But the strong Feller property of (, s) follows from condition (E) of Ichihara
and Kunita [8], which is satisfied if we make the choice of M, and F, e.g., as
in Step 3.

Remark 2.1 (Choice o[ noise). In the proof of Theorem 2.1 stabilization was
accomplished by a noise source of dimension N =d(d-1)/2-1. However, we can
do the same for any d with a one-dimensional noise source. In fact, chooseM S c N,
(t) Brownian motion on S with generator /2 and invariant probability I, described
by the Stratonovich equation in N

d (Id- ’) dW,
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W Wiener process in 2, (1, 2)’ 2. Let F: S1" S(d) be the polynomial

2(d-1)

F() E FksC]k+l, 1[--1, 1], f, eS(d),
k=O

of degree 4d- 3 satisfying

FZ(0) 0, F(Z+l)(0) G, k =0,... ,d-l,

F(f/d) +Di, 1,..., d- 1.

The Gk S(d) are picked to yield condition (E) in Ichihara and Kunita [8] at c (0, 1)’ 6
S and some So Sd-1. The analyticity of S Sd-1 and of all vector fields involved
guarantees condition (E) at each point of SaSd-a, thus (, s) is strongly Feller.
The DiES(d) are picked to guarantee complete controllability of g =F(u)s, u
C(+, S a), which entails uniqueness of/x. This is ensured for

0 0

/’th column

-jth row, j=l,...,d-1.

Finally, F(-j) =-F() guarantees EFt(t)= 1/e s,F()dh(:)=0. Therefore, all
steps of the proof of Theorem 2.1 go through with this choice of M, : and F.

Remark 2.2 (Parameter-excited systems). The theorem remains true if A(t) is a
stationary process with finite mean rather than a constant matrix. Let Fo((t)) be the
stationary zero mean process with Markovian j(t) reducing the growth of the system
2- (EA(O))x which exists according to Theorem 2.1. Then the zero mean process
F(t)=Fo((t))-(A(t)-EA(O)) has the same growth reducing effect on 2=A(t)x
which becomes

(A (t) + F(t))x (EA (0) +Fo((t)))x

now driven by the Markovian :(t). This procedure has the drawback of coupling F
too much to A. However, if A(t)=A(l(t)), /(t) a nice diffusion on a compact
connected Riemannian manifold of nonzero dimension, A a nice function from that
manifold into the space Ndd of all d d matrices, we can choose the noise F(t)-
F((t)) as before, but with : independent of /. Then the proof of Theorem 2.1 goes
through with : replaced by (, n).

Keeping in mind Theorem 1.1 (iii), we have thus proved the following corollary.
COROLLARY 2.1. The system =A(t)x, A(t) a measurable stationary process

with finite mean, can be stabilized by stationary zero mean parameter noise F(t) if and
only if

trace EA (0) < O.

The white noise case. The result is also true for white noise. The reasoning is
pretty much the same as in the real noise case with some simplifications, so that we
can skip many details.
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Parametric perturbation of Ax by white noise means that we have to study
the (Stratonovich) stochastic differential equation

(2.1) dx Ax dt+ Y Crx odWr,
r=l

W=(Wx," ", W,)’ m-dimensional Brownian motion, C1,’",C, fixed dd
matrices, or, equivalently, the Ito equation

dx=Axdt+ Y. CrxdW, A=A+ Y. C2.
r=l r=l

The projection s x/Ixl onto Sd-1 is a diffusion process governed by

(2.2) ds (A -s’As)s dt + (C--S’CrS)S odW,
r=l

while

Ix(t)l=[xolexptA(t), Aft)= 7 q(s(r))dr+o(t),

q (s s’As + 1/2 _, (s’ 2Crs + $ CrCrs 2(S’CrS)2)
r=l

(see Khasminskii [7] and Arnold and Kliemann [2, IV. B]). Thus, as in the real
noise case, the Lyapunov numbers (of the Markov solutions) of (2.1) are determined
by the long term behavior of q(s) along the (Markov) solutions of (2.2). If s were
ergodic on Sd- with invariant probability Ix, supp tz spanning d, the law of large
numbers tells us that the Lyapunov number for any solution starting in a fixed So Sd-

is equal to

AmaX= fsa_ q(S) dl(S)

for -almost all So Sd- (for the exceptional set of So’S we have A (So) <=/max).
THeOReM 2.2 (i) For given A and for any choice of C,..., C, the biggest

Lyapunov number A Of (2.1) satisfies
1
trace A =< A

d

(ii) For any e > 0 there is a choice of m d 1 matrices C ]:or which

1 1
< traceA+e.

d
trace A _<- A

In particular, a linear system Ax can be stabilized by white parameter noise if and
only if trace A < O.

Proof. (i) Let (t) be the fundamental matrix of (2.1) (i.e., the collection of
solutions q, , qd starting in ex, , ed, resp.). Then (R)(t) =det (t) satisfies

dO (trace A)O dt+ Y, (trace Cr)(R)dWr, 19(0) 1,
r=l

whose solution is

(R)(t) =exp ((trace a)t + Y (trace Cr)Wr(t)),
r=l
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SO that (log O(t))/t trace A almost surely. On the other hand

d d/2

for some c > 0 entailing

trace A lira
,-, ,-,oo

log IIq/(t)ll

d max A (e/) d,max,

which proves (i).
(ii) Choose Cr Dr/e, e > O, r 1,. , d- 1 m, where Dr is as in Remark 2.1.

2Note that because s’Crs 0 and s Crs =--s’C’rCrs we have q(s)= s’As independent
of the Cr’s, and (2.2) simplifies as follows:

ds (A s’As )s dt +- , Drs dW,
Er=l

The deterministic nonlinear control system on Sa-1 given by

(A s’As)s +- , urDs,
Er=l

continuous with values in [,

is completely approximately controllable for each e >0, because the rotations rep-
resented by Y’.I urDr can move the system to any point so fast that the nonlinear part
(A s’As)s is dominated. Thus s is ergodic with unique invariant probability having

Sd-1supp and

s’As dlz

is the (maximal) Lyapunov number for tz-almost all starts So Sa-. Now we conclude
with arguments similar to the ones in the real noise case that for e 0/x /x0 weakly,
where/x0 is the unique invariant probability of the process on Sa- governed by

with generator

ds= Z DrsdWr
r=l

d a 02

Lo (As, grad + 1/2 Y’. Y’. b/,
/=1 k=l OS OSk

A 1/2ED z (b/k) Y’. Drss’D’
r=l r=l

One easily checks that Lo* 1 0 whence o A Lebesgue measure on Sd-. The proof
is completed by observing that

h nax -,
s’As dh (s) trace A (e

Remark 2.3. Note that we need d- 1 independent noise sources, in contrast to
the real noise case, where stabilization can be realized by a one-dimensional noise
source.



460 L. ARNOLD, H. CRAUEL AND V. WIHSTUTZ

3. Examples.
Linear systems. The harmonic linear oscillator with random damping and random

restoring force

(3.1) ; + (2/3 + 2(t))3 + (0) 2 + 1(t))y 0,

/3, 0)2 R/, (l(t), 2(t)) stationary with values in Y c R2 and ECl(t) E:2(t) 0, or,
equivalently, 2 A (t)x with x (y, 3)’ and

0
A(t)

-0) -l(t)

has been dealt with in numerous papers. For a survey see Arnold and Kliemann [2,
IV. C]. There one can find a plot of the function /max’--max(, 0"2) for the case

0)2= 1, 2---0, 1 an Ornstein-Uhlenbeck process with variance 0"9.. In particular,
/max(0, 0"2) ) 0 (cf. MolSanov 11 ]).

Typically, the system (3.1) becomes unstable if the noise is "turned on". However,
because trace EA(t)=-2/3 the system can be perturbed by a zero mean noise F(t)
to have -fl _-< max(A +F)_-<-fl + e for any e > O. Take, e.g.,

( 0 r/(t)’F(t)=
ja(t)-rt(t) 2(t)]’

nice fast diffusion with Er/= 0 and big variance. This gives

0
A(t)+F(t) 2

-0) rl

1+ r/(t)
-2/3 /"

The result is a stability improvement even for the deterministic case a250 and
/3 > 1 because hmax(A)= -fl +x/fl 2- 1- 1/2/3 0 (/3 oo), while Amax(A +F) -fl.

Nonlinear systems. If we linearize a nonlinear system

(3.2) 2 f(x, ), stationary noise,

around a stationary solution x we obtain the multiplicative noise linear system

(3.3) A (x(t), (t))y, A (x , ) xx o"

If x is stationarily connected with :, then A (t)= A(x(t), (t)) is a stationary process.
Therefore, we have Oseledec’s multiplicative ergodic theorem (Theorem 1.1) for (3.3).
The stable manifold theorems of Ruelle ([14], [15]) tell us that we have locally the
same situation for the original nonlinear system (3.2)around the solution x . In
particular, if all Lyapunov numbers of (3.3) are negative almost surely, .then the
stationary solution x of (3.2) is exponentially stable, and x can be stabilized by noise
if and only if trace EA(t)<0. The stabilizing noise can have the form F(t)(x-x(t))
added to the right-hand side of (3.2), with F(t) appropriately chosen.

As an example, we treat the:
Mathematical model of the hypercycle. The hypercycle is a mechanism introduced

by Eigen and Schuster [6] to describe prebiotic evolution. Schuster and Sigmund [16]
proved that the hypercycle, described by the nonlinear system

/’=1,...,d,
d

flI(XI," Xd) 2 kx,x_l, Xo =--Xa, k >= O,
r=l
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has a unique equilibrium point in the interior of the (invariant) concentration simplex
xj->0, Y__lXr 1, given by klxa=k2xl kaxa-. This equilibrium point is
asymptotically stable if and only if d -< 4. However, as the eigenvalues of the linearized
(d- 1)-dimensional system (after scaling) are

hj=Kexp(2zrif/d), ]=l,...,d-1, i=/Z1, K>O,

we have trace A ya-1 ,. =-K < 0. Thus, by appropriately perturbing the reaction
rates kr by random noise, the hypercycle can be stabilized for d > 4 so that all its
Lyapunov numbers around the equilibrium point are close to -Kid < O.

Note added in proof. S. M. Meerkov considers the problem of stabilization by
deterministic periodic parameter-excitation, which he calls vibrational control. See
S. M. Meerkov, Principle of vibrational control: theory and applications, IEEE Trans.
Automat. Control, AC-25 (1980), pp. 755-762. Under an observability condition he
arrives at the same criterion:

trace A < 0.
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A LYAPUNOV-LIKE CHARACTERIZATION OF ASYMPTOTIC
CONTROLLABILITY*

EDUARDO D. SONTAGt

Abstract. It is shown that a control system in R" is asymptotically controllable to the origin if and
only if there exists a positive definite continuous functional of the states whose derivative can be made
negative by appropriate choices of controls.

Key words, stabilization, controllability, Lyapunov functions, nonlinear control

1. Introduction. Lyapunov techniques have long been used in studying control
problems for a system k(t)=f(x(t), u(t)): Controlling so as to diminish the value of
a suitable positive definite function is an obvious way of achieving stabilization, and
feedback laws can be analyzed through the use of such a function--see for instance
the books Barbashin [1970], Lefschetz [1965] and Letov [1961]. Sometimes one
considers Lyapunov functions in conjunction with other techniques, like the analysis
of sliding modes--see for instance Utkin [1977]; in these and other applications, the
natural Lyapunov functions are often nondifferentiable.

In this paper we deal with the relation between the property of asymptotic
controllability (every state can be driven, asymptotically, to a desired state "0", plus
a local condition) and the existence of a positive definite continuous function V whose
derivative can be made negative by appropriate choices of controls. If not only is the
system asymptotically controllable but in fact there is a (suitable smooth) feedback
law K(.) such that the closed loop system (t)=f(x(t),K(x(t))) is asymptotically
stable, then an inverse Lyapunov theorem can be applied to this closed loop system
in order to obtain a V as above. Inverse Lyapunov results for classical (no control)
systems have a long history themselves, with important contributions by Persidski,
Malkin, Massera and others; a good reference is Hahn [1978]. In general, however,
a continuous K fails to exist, even for very simple systems--see for instance the
discussion in Sontag and Sussmann [1980]mso such an argument cannot be applied
to conclude the existence of V.

The main result of this paper is that, for asymptotically controllable systems, a
V as above always exists. We allow relaxed ("chattering") controls when testing the
derivative of V. (Since relaxed directions belong to the convex hull of ordinary ones,
the latter suffice in the C case.) The proof will be based on a combination of some
basic optimal control concepts and classical Lyapunov techniques (in particular, those
of Zubov [1964]). For results somewhat related to this note, the reader may wish to
consult the references Tokumaru et al. [1969] (gives a sufficient Lyapunov-like
condition), Jacobson [1977] (gives a local necessary and sufficient criterion for a
special class of systems), and Vinter [1980] (gives a time-varying functional charac-
terizing nonreachability from a given point). Both the results and the techniques used
here, however, are different from those in these references.

2. Definitions and statement of results. The systems to be studied are given by
differential equations

(2.1) (t) f(x(t), u(t))

* Received by the editors May 18, 1981, and in revised form May 7, 1982. This research was supported
in part by U.S. Air Force grant AFOSR-80-0196.

t Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903.
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with states x(t) in X := R, and input values u(t) in a locally compact metric space
U for which the balls {uld(tx, u)<-r} are compact for each u in U (d =distance in U).
A special element "0" is distinguished in U, and the state x 0 of X is an equilibrium
point, i.e., f(0, 0)= 0. The map f is locally Lipschitz in (x, u). The set of (ordinary)
controls U is the set of measurable and locally essentially bounded functions u" R/ - U.
Here R/ denotes the set of nonnegative reals; sometimes (depending on the context)
R/ denotes positive reals. By abuse of notation, we shall use the same terminologies
for controls defined only on a finite interval; these may be extended arbitrarily outside
the interval of interest. Solutions of (2.1) are assumed to be unique and to exist locally
(in t) for all controls; suitable Carath6odory-type conditions insure this. (Note that
we do not wish to impose the (somewhat unrealistic) assumption that the solutions
are always defined for all _-> 0, i.e., that there are no finite escape times.)

Given the distinguished "zero" input value 0, let I/x[ := d(/x, 0) for /x in U.
The set Ur consists of all those /x with ]/x[-<r, and Ur is the set of all measurable
u:R+ Ur, seen as a subset of U. The set of generalized control values is the set
W W(U) of probability measures on U; the subset of those measures supported
n U is Wr. The set W may be topologized using the weak topology, and one introduces
then the space of relaxed controls W as the set of measurable functions w:R+ W.
For the topology on W see th,e references below; we shall only need to know the
continuous dependence factsmentioned later. The subspaces Wr correspond to the
relaxed controls w(t) which are in W a.e.; each of these subspaces is sequentially
compact andmidentifying in U with the Dirac measure concentrated at
contains (densely) the corresponding Ur. A bounded relaxed control w is one belonging
to some W; the infimum of the r for which w is in Wr is denoted by [[wl[. Note that,
for ordinary controls, [[u[[ becomes the essential supremum of the values [u(t)[, in R.
(The notation Ilx will be used also for the Euclidean norm on X, but this should cause
no confusion.) For details on relaxed controls, see Warga [1972], or the (very clear)
presentation in Gamkrelidze [1978]; the paper Arstein [1978] summarizes most of
the needed facts.

There is a natural definition of solution of (2.1) when relaxed (rather than ordinary)
controls are used; see the above references for details. The solution at time for the
initial condition x(0)= : and control w will be denoted by x(t; , w) or just by x(t)
if both : and w are clear from the context. For any given : and w there is an open
set Y :-I xN xM containing (0, , w) such that x(t; q, v) is well-defined for any
(t, r, v) in Y. Further, if this solution is known to be defined for 0 <-t <_-T, then the
map (t, rl, v)x(t; q, v) is continuous on [0, T]xN xM, for some open N,M.

We are now ready to introduce our definitions and state the main result.
DEFINITION 2.2. The system (2.1) is asymptotically (null-) controllable (a.c., for

short) if and only if the following properties hold:
(i) (global part) for each : in X there exists an (ordinary) control u such that

x(t)=x(t;, u) is defined for all t=>O and x(t) 0 as tco;
(ii) (local part) for each e > 0 there exists a 8 > 0 such that for any state with

I1’11< there is a u as in (i) such that also IIx(t)ll<_- for all t>=O;
(iii) (bounded controls) there exist positive r and k such that, if the in (ii)

satisfies also I1 11 < then the control u can be chosen with Ilu II--< k,
The above seems to be the obvious definition of a.c. if one is to model the usual

uniform asymptotic stability notion in the controlled case. (Or intuitively, if the given
system is to be seen as the open-loop part of some abstract closed-loop stable system.)
The requirement (iii) of a bound on magnitudes of inputs required for controlling
small states seems physically (and mathematically) reasonable. In fact, in order to
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model "regulation with internal stability" one adds the requirement that u(t) 0 as
oe; see Sontag [1982]. Analogous results would hold in that case. Observe that

both of the (local) parts (ii) and (iii) would hold, for instance, if U= R’n, f is
differentiable at (0, 0) and the linearization of (2.1) at the origin is stabilizable in the
usual sense.

Given a function V:XR, a state , and a relaxed control w defined on an
interval containing 0, let

(2.3) I)w(C) := lim 1-[V(x(t. ,, w))- V()].
t-O

Consider the following four properties of such a function V"

(2.4a) V is continuous;

(2.4b) V(:)>0 for :>0, and V(0)=0 (V is positive definite);

(2.4c) the set {]V()<r} is bounded, for each r (V is proper);

(2.4d) f,or each in X there is a relaxed w with l)’w()< 0, and there are positive
numbers k and r/ such that w can be chosen with Ilwll < k whenever

The following is an easy consequence of the above"

(2.4e) for each e >0 there is a 0>0 such that V()<0 implies

In the next section we prove"

TI-IFORZM 2.5. The system (2.1) is asymptotically controllable i[ and only i[ there
exists a V satisfying properties (2.4a)-(2.4e).

The definition (2.3) of the (Dini) derivative along a trajectory is one immediate
generalization of that used in the standard (no control) case; see for example Rouche
et al. [1977]. (We could have used in in this definition a lim sup instead of a lim inf;
in that case Theorem 2.5 still holds: The sufficiency statement becomes weaker, while
the necessary part can be proved in exactly the same way.)

(3.1a)

(3.1b)

(3.c)

Let

(3.2)

3. Proof of Theorem 2.$. We first establish the easy part:

A. Sufficiency. Let V, k, r/ be as in (2.4), and let e >0. Take a 0 as in (2.4e)
such that V()< 0 implies that I111 < min {r/, e}. A state x will be called nicely reachable
from a given state " if and only if there exists an (ordinary) control u and a time
T >- 0 such that:

x =x(T;,u);

V(x(t; , u)) < 2V() for 0-<t =< T;
if V(’) < 0 then also Ilu < k,

a() := inf {V(x)lx nicely reachable from c}.
Either c (c)= 0 for all c or a (:): 0 for some .

Case I. a()= 0 for all . Pick any , and choose a 1 nicely reachable and with
V(1) < V(sC)/2. Iterate the construction starting with ’1. One obtains in this way a
sequence {’i} with V(i)0 as ioe (hence also i- 0) and such that i =x(ti; , w)
for an increasing sequence {t} and a fixed w (obtained by concatenation). Let
T := sup {ti}; then V(x(t))O (for x(t):= x(t;, w)) as t T. If T<oe, extend w by
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w(t) := 0 for => T; in any case one concludes that x(t)O as oo, with all x(t) nicely
reachable from :. This gives the first part of the a.c. definition. Pick now a 3 > 0 such
that Ilxll < implies V(x)< 0/2. If I111 < eor the above 5, then all x (t)in the obtained
trajectory satisfy V(x(t)) < 2 V() < 0. It follows that IIx(t)[[ < e, as required in (ii) of
the a.c. definition. Finally, part (iii) is satisfied by construction, using the same k and
any rt’> 0 for which I111 < n’ implies V() < 0.

Case II. a(:)>0 for some :. We shall derive a contradiction. Let {x,} be a
sequence of nicely reachable states with V(x,)a := a(). All these x, belong to the
compact set

(3.3) {xlV(x) <= V(:)};
replacing {x,} by an appropriate subsequence we may assume that

(3.4) x, - ’, V(’) c <= V(sC).

By property (2.4d), there is then a sequence ti 0+ and a relaxed w with V(x (ti; G w)) <
V(r) c for each ti. Further, if V(sc) < O then also V()< O so one may pick such a
w with Ilwll<k. It follows from the continuity of V(x(t; , w)) on that there is an
such that (with := ti) also

(3.5) V(x(s;Gw))<V(C) for0-s-<t.

Thus for (w’, ") sufficiently close to (w, sr) it holds that

(3.6) V(x(s;(’, w’))<2V(:) for0<-s-<t.

Pick an ordinary control w’= u such that this holds and such that also

(3.7) V(x(t;Gu))<a.

If V(sc) < 0, require also that Ilull< k, (Recall that ordinary controls are dense in Wk.)
Let now z, :- x (s; x,, u). For large enough n, (3.4)- (3.6) give a z. nicely reachable

from sc and with V(zn)< a. This contradicts the minimality of a.

B. Some bounding functions. We now start proving that a.c. implies the existence
of a V as above. We shall need a sequence of basic lemmas. In order to simplify
notations, g(:i:) will mean limp_,+/- g(p), and g(0):= limp_,o/ g(p) for a function
defined on positive reals only. A fixed asymptotically controllable system is assumed
given; the numbers k and r/are as in the a.c. definition.

LEMMA 3.8. There exist a positive numberpo < 1 and maps r,
R+ andK X - U, where qb, tx and m are continuous, m is strictly decreasing, & is strictly
increasing and tx is nondecreasing, such that the following properties hold:

a) rn (-co) +oe, m (+oo) 0, m (0) 1;
b) p <- (p for all p, (0)=0;
c) r(p)=0 for O<=p_-<po;
d) Ix(p)= k for O<-p <-po, /x(+o)
e) for each j O, with x(t) := x(t; , K()):

(i) IlK ()11--< (1111),
(ii) IIx (t)ll--< (llll) for >-- O,
(iii) x(t)O as ,
(iv) for >-- r(llll),

Proof. Part 1. We shall first construct sequences of nonnegative numbers {ei},
{T} and {b}, in Z, such that: {e} is strictly increasing, e0 (resp. +oe) as i+-oo
(resp. +oo), and so that for each c for which I111< , there is an (ordinary) control u
satisfying Ilull < b, and IIx (t; , u)ll <+ for all =>0 and also I[x (t; , u)ll<e-i for _-> Tg.
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Let e0 := 1/2. By induction on Definition 2.2 one concludes the existence of a sequence
of numbers ei, i<-_-1, such that: for each : with Illjll<-_ei_ there is a control u with
Ilull--< k, IIx(t; , u)ll<ei and x(t)O as c; one may take the {eg} strictly decreasing
and approaching 0 as -c. Further, one may assume that e_ <-ft. Consider now
a fixed < 0 and take a : with I1:11--< eg. There is then an u as above and some T T()
such that IIx(T)ll<e-2 for the corresponding solution. By continuity of x(. ;., u) there
is an open neighborhood H() of such that, for each z in H(lj),llz(t)ll<ei+x for
0-_<t_-< T and IIz(T)ll<ei_2, where z(t) := x(t; z, u). By construction of e-2, there is
for each such z (T) a control v with Ilvll < k (not necessarily the same u) such that

(3.9) [Ix(t; z(T),  )11 < _->0.

Concatenating the restriction of u to [0, T] with this v, one concludes that for each
z in H(c) there is some (ordinary) control with the resulting trajectory having
Ilz(t)ll<,-1 for all t>= T() while keeping [Iz(t)ll<,/a for all t. (Note that the input
to be applied in order to achieve this depends on the particular z; for the original u
there may be no neighborhood on which this controllability is achieved.) The H()
cover the ball of radius e; pick a finite subcover. Let T := largest of the T() for this
subcover. With all b := k the sequences {eg}, {be}, {Ti} satisfy the requirements for < 0.

We now define the sequences for -> 0, by induction on increasing i. Assume that
eg, b_ and Tg_l have been already defined (recall for the first step that e0=1/2). By
property (i) in the definition of a.c., it follows that for each : with I1 :11--< , there exists
some u and some T= T(:) with Ilx(T)ll<e,-=. By induction, it is possible to control
x(T) in such a way as to stay in the ball of radius e-l. These further controls can be
chosen with Ilvll<b,-1. An argument like the one in the previous paragraph gives a
fixed T such that each state as above is controlled to by appropriate
choice of controls. Further, all these controls are obtained by concatenating one of a
finite number of controls u. (finite subcover argument) with controls with
Let be be larger than b_ and all llu;ll, To complete the induction step we need to
define e+. Consider the set

(3.10) {x(t; :, u)l]l:ll_-< /, Ilull<-bi, O<-t<-_ Ti}.

Since this set is compact, it is contained in the interior of some ball of radius ei/a.

For simplicity of future arguments, we shall assume that the sum of the Ti, < 0, is
infinite; larger Ti’s can always be chosen in the above constructions. This completes
Part 1.

Part 2. Let b:R+-> R be any continuous strictly increasing function such that
(0)= 0 and, for all

(3.11) da(p) :> ei+l for p in [ei-1, eli.
Let po := e_. Take Ix’R+--> R to be any continuous nondecreasing function having
(p) bo for 0 _-< p _-< po, tx (+c) +, and such that, for all i,

(3.12) tz(p)>=b forp in (e_,e].

Denote to := 0 and t := T_ +.. + T_ for > 0. Let m be as in a) and satisfying, for
i=>0,

(3.13) m(t) > e_ for in Its, t+x].

Let " be the step function with value 0 for p _-< Po and for _-> 0,

(3.14) ’(p) To +" + T for p in (ei-a, ei].
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The open-loop "choice" function K is introduced merely for notational convenience;
no smoothness of any kind is required. Given a state , say with ei-1 < I111 <- ,, find a
control ul sending to =x(Ti; sc, u) with Ilull<b, I111< e-, and all intermediate
states with IIx(t)[l<,+. Repeat with , finding a u2, so2. Iterating this construction,
let K (sc) be the concatenation of all the uj thus obtained. The corresponding trajectory
satisfies x(t)O as t. By construction, Ilg(sc)ll<bi, which is less than (llscll) by
(3.12). Also, IIx(t)ll < +1 for all t_->0, and by (3.11) also

We now need only establish property (iv). Assume first that I111 < , with i=-1.
Then r(llll) 0, and the above construction insures that IIx (t)ll < e_; when is in [tj, ti+].
By (3.13), property (iv) holds. If i<-1, the trajectory has Ilx(t)ll<e- when is in
[ti-Li, ti+x-Li], where

(3.15) Li := T_I +’ + T/I,

for any f>--i-l, and Ilx(t)ll</l for all t->0. If is in [tj, ti+l], f<-i-1, then
IIx (t)ll < e- by the latter fact; if i => -i 1 then => tj > t. L, gives again that [Ix (t)ll < e-.
Again by (3.13), property (iv) of (3.8c) holds. There remains the case i->0. In that
case, after time

(3.16) T T / T_x /... / To (1111)

a state x (t) with [[x (t)ll < e_ is reached, and after that the trajectory has states bounded
by m (t- T) (by the case -1).

LEMMA 3.17. (The notations of the previous lemma still hoM). There exist con-
tinuous strictly increasing functions N, , u: R+ R+, with N(O) O, N(+) +o, such,

that the following properties hold. For any state and for any relaxed cantrol w, let

(3.18) R(, w):= [ N([[x(t; , w)ll) dt +max {[[wl[-k, 0}
J0

if the solution is defined for all >- 0, and R (, w) :=
(a) R (, K()) <
(b) if [[[l_-<po then R (,
(c) if R(, w)<R(,K()) for some w, then [Ix(t; , w)[[_-<O([[[[) for all t>-O and

Ilwll_-< (1111);
(d) for each a > 0 there is a 0 > 0 such that ifR (, w) <
(e) for each > 0 there is a > 0 such that I111> implies that R (, w)> t3 for

Proof. Let n := m-l" R/ R be the inverse function of m. Define the function

(3.19) NI(p) := p exp [-n (p)].

Both N1 and exp[-n(.)] are strictly increasing continuous functions, NI(0)=0,
NI(+(x3)-

For each triple of positive numbers (a, b, c), choose the quantity "y(a, b, c)> 0 in
such a way that the following property holds" if w is any control with I[w[I--< a, and if
:1, 2 are any states with

(3.20) 2 x(T; 1, w)

for some T > 0 and the trajectory having

(3.21) b IIx (t; 1, W)II c for 0 -< T,
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then

(3.22)
T

fo N(llx(t)ll) dt >= y(a, b,  =11.

Such a quantity always exists, because the integrand is bounded below by Nl(b) (so
that the left side is at least T. Nl(b)), while is bounded by TB, where B is
a bound on the values f(x, t) for Ilxll-< c and Itzl=< a.

We shall define inductively a nondecreasing sequence of maps Nj, ]-> 1, starting
with (3.19), and will then let (pointwise)

(3.23) N := lim Nj.

This limit will be finite because the following property will hold by construction for
each j"

(3.24) p -<(f) implies N.(p) =N./l(p) (=N(p)).

(Note that (j) +m as/" c.) Further, all the functions N. (hence N itself) will be
continuous (or even C if desired). Assume then that Ni has been defined for all -</’,
in such a way that (3.24) holds for 1, ., f- 1. Introduce the quantities

(3.25) r. := N.( (f))r(j) + & (j),

(3.26) L.(, w):= J0 N/(l[x(t; :’ w)l[)dt

with L.(:, w) := + if there is a finite escape time.
Take now any with I1:11 <- J. When >- r(j), it follows from Lemma 3.8e(iv) that

(3.27) Ilx(t; ,g())ll<m(t-z(llll))<-_m(t--(i))
and hence also ]lx(t)ll<m(O)-- 1 <(1) for these t. Thus,

(3.28) / N,.(l[x(t)ll)dt I Na(llx(t)l[) dt
(i) J,r (j)

(by (3.24)), and by (3.27) this is less than

(3.29) (1) | exp [-n(m(t-’(])))] dr,
(i)

which equals (1). Since IIx(t; :, g(:))ll <&(]) for all _->0 (again from Lemma 3.8e),
one has the bound

(3.30) L(, g()) <= r.
Define also

(3.31) 3’; := v(r+t(j)+k, (])+ l, (])+2).

Let g. be any continuous nonnegative function from R/ to R which vanishes outside
the interval [ (]), (]) + 3] and such that

r. + tz.(3.32) g(p) :=

for p in the interval [ (/’) + 1, (/’) + 2]. The induction step is provided by the definition

(3.33) Ni+(p) := (1 +gi(p))N.(p).
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Note that (3.24) indeed holds. This completes the construction of N.
Finally, pick any 0 and u continuous, increasing, and such that

(3.34) u(p) > r. + (f) + k,

and

(3.35) O(p) >(/’) +2,

whenever p is in [/"- 1, f].
We now prove that (a) to (e) hold. Define L as in (3.26) but using N in the

integrand. Pick a 5 with I1:11 < ]. The trajectory corresponding to the control K (:) has
IIx(t)ll<(f) for t_>0, so, by (3.24), L(,K())=Li((,K())<ri. Thus

(3.36) R (, K()) <- r. +/x (f),

and in particular (a) holds. Assume that f was chosen so that [lll >f- 1. Suppose now
that w is a control for which R (, w) <R (:, K ()). By (3.36),

(3.37) Ilwll r; + (f)+ k < (llll),

as wanted in (c). Now assume that for the corresponding trajectory there would be
some with IIx(t)ll > (1111)> (f)/ 2. There are then times tl < t2 such that IIx(t)ll

(]) + 1, Ilx (t2)[I (]) + 2 and

(3.38) (i) / 1 II/(t)[[ (f) + 2

for t t2. Hence

R (, w) e N([[x(t)[I) dt e N+e(llx (t)ll) dt
(3.39)

(1 +g((f)+ 1)) Nl([[x(t)ll)dtr+(f)R(,g()).

This contradicts the choice of and w. So (c) holds. To prove (b), let I111 No. Then
(ll[I) 0 and IlK ()ll k, so, for w K(),

(3.40) R(,g(e))=o Nl(llx(t)ll)dt([ll[) o e-’dt=(llell).

We now establish (d) and (e). Given a > 0 choose any integer ] > 0 so that a + k < (]).
If R(, w)<a then Ilwll<.(f). We claim that I111<0 := ()+2. Otherwise, IlVlle
(])+ 2 implies that there exist t <t2 with IIx(tl)ll ()+ 2. IIx(tz)ll ()+ 1. and all

II2 (t)ll bounded by these values for tl N N t2. By an argument similar to the one used
above, R (, w) can be proved to be larger than ri + (]) > a, a contradiction. Thus (d)
holds. Assume now that I111>. and let y’ := y(k + 1, a/2, a). Let w be given. If
Ilwll > k + 1 then R (, w) > 1; otherwise R ($, w) > 87’/2. With

(3.41) := min k + 1
’2/’

(e) is also established.

C. The function V.

(3.42) V(:) := inf {R (:, w)lw relaxed control}.
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Note that V(0)= 0, so by (3.18b) the function V is continuous at zero; V is always
finite by (3.18a). By (3.18d), the sets {lV(:)<c} are always bounded. By (3.18e),
V() > 0 for # 0.

LEMMA 3.43. Let (n, wn)(, w) as n oo, and assume that all R(n, wn) and
R (, w are finite. Then R (, w) <- lim R (n, wn).

Proof. Let xn(t):= x(t; n, wn) and x(t):= x(t; , w). ThenN(llxn(t)ll) converges to
N(llx (t)ll) for each t. By Fatou’s lemma,

(3.44) J0 N(llx(t)ll)dt-<lim Jo N(llx(t)ll)dt.

If the measures w(t) are all supported in some Ur, for some subsequence {w.}, then
aso Ilwll--< r. It follows that

(3.45) Ilwll =< lirn IIw.ll.
Thus also

(3.46) max (llwll-k, 0)=<lim (max (llw.ll-k, 0),

and the conclusion follows from (3.44) and (3.46) and the elementary fact that always
lim an + li___m_m b, _-< lim (an + b,).

LEMMA 3.47. For each there is a w* with R (, w*)= V().
Proof. Let {R (, w,)} be a minimizing sequence. By (3.18d) we may assume that

all [[wnll <-- (1111) =: r and

(3.48) lix, (t)ll-<- 0 (l[ll) for -> o.
By sequential compactness of Wr, (a subsequence of) {wn} converges to a control w*
in W. The solution x(t):= x(t; , w*) is defined for all t, because (3.48) implies that
IIx(t)ll is bounded independently of t. By (3.43),

(3.49) R(sc, w*)-<lim R(, wn) V(),

so V(:)= R(:, w*), as wanted.
LEMMA 3.50. V is lower semicontinuous.

Proof. Let {n} be a sequence converging to :, and write V(’,)=R(:n, wn). For
a suitable subsequence one may assume that wn w, for an appropriate w. (All
are bounded by (1111)/ , some 8.) Thus

(3.51) V()<-R(, w)<=lim R(n, wn) =lim V(:).

LEMMA 3.52. V is continuous.

Proof. We only need to establish upper semicontinuity. Pick e >0. Choose a
positive 8 <p0 so that

(3.53) p <8 implies &(p) <.
Pick any state , and let R (, w)= V(:). Since x(t) := x(t; , w) necessarily converges
to zero, there is some T with IIx (T)il < . There is also a neighborhood H of such
that, for each z in H, and for the above w, T,

T T

(3.54) N(llz(t)ll) dt < N(llx(t)ll) dt +-
for the corresponding solution with z(0)= z, and such that also IIz(T)ll, By (3,53)
and (3.18b) (continuity at 0), V(z)< V()+e. This proves upper semicontinuity.
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We are only left with establishing (2.4d). Let sc be any state, V()=R(sc, w).
Take any z x(t) in the trajectory, and let w’ be the translation of w by (-t), so in
particular IIw’ll--< Ilwll. It follows that

(3.55)

So

(3.56)

V(z) -< R (z, w ’) -< It N([Ix (s)ll) as + max (llw

lim I[V(z)-V()]< lim I( Io’ ),-,o+ ? ,-,o+ ? N(llx (s)ll) ds -N(IIII) < 0,

Further, Ilwll is bounded by (1111), This completes the proof of the theorem.
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ON THE RELATION OF ZAKAI’S AND MORTENSEN’S EQUATIONS*

V/CLAV E. BENEgt AND IOANNIS KARATZAS$

Abstract. The problem of optimal control for partially observable diffusion processes is studied by
the dynamic programming in function space approach first proposed by R. E. Mortensen. The density of
the conditional distribution of the (unobservable) signal given past and present observations, which satisfies
the Zakai equation of nonlinear filtering, is viewed as the new state of the system. A verification result is
established for the corresponding Bellman-Hamilton-Jacobi equation, known as Mortensen’s equation.

1. Introduction. For some time now, research in stochastic control has concen-
trated on understanding the case of partial or incomplete information, especially on
extending the so-called separation principle to cases other than that of linear dynamics.
Heuristically, the idea is to replace the system state by its conditional distribution
(usually, density) given past observations, and to use the latter as a new state in a
problem with complete information. The usual separation theorem really does this
already, although its exegeses do not always make this fact clear. One is thus led at
once to measure- (or density-)valued stochastic processes, and to stochastic control
problems with an infinite-dimensional state space.

Credit for the original suggestion in this direction clearly belongs to R. E.
Mortensen, although some of his ideas were presaged by Kushner [10] and Shiryaev
[16]. In a brilliantly prophetic paper [14] published in 1966, he mapped out the
structure of such a program for signal processes and observations obeying a pair of
stochastic differential equations in Euclidean space forced by two independent Wiener
processes, and in particular, he wrote down the appropriate nonlinear Bellman
equation for the value function (equation (6.10) of the present paper). This is the
equation we call Mortensen’s, and it is a natural generalization of the classical
Bellman-Hamilton-Jacobi equation used in the control of finite-dimensional systems
with complete observations. In addition, he saw clearly that since the new state was
to be the conditional density, the new dynamical equation would have to be (essentially)
Zakai’s equation (4.6) for the conditional density. Actually, he was the first to derive
formally this equation. At this point (1966) his insights were blunted by lack of
progress in nonlinear filtering; the only example that could be done was the well-known
linear dynamics case leading to the Kalman-Bucy filter, and even this example was
limited to Gaussian initial densities. Thus, Mortensen’s equation has lain unused, if
not unnoticed, for some fourteen years.

We are glad to report that recent progress in nonlinear filtering should place
Mortensen’s equation in the central position it deserves: it is the key to the separation
principle. For years, many workers in stochastic control have entertained or advanced
the idea that nonlinear filtering was the key to optimal control in the case of incomplete
information. The problem was to find the lock into which the key fit. Here is a sketch
of that lock; a parallel approach, constructing the nonlinear semigroup corresponding
to Mortensen’s equation, can be found in recent work by Fleming [6] and Davis-
Kohlmann [3]:
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(1) One can prove a verification principle for a version of Mortensen’s equation,
to the effect that a solution of it is a lower bound on the achievable cost. Such a
principle was already envisaged by Mortensen; a proof is sketched in 6.

(2) Zakai’s equation is for an unnormalized density, which is a linear functional
of the initial density. It is not hard to see that normalization induces a linear fractional
dependence on the initial density (Theorem 4.1).

(3) Expected cost can be calculated by integration of its conditional expectation.
But the dependence on p it inherits, under this integration, is actually linear. Thus,
for any admissible control law u, the cost Vu(r, p) of operating over [0, -], starting
in "state" p, i.e. with all information summarized in the density p, is linear in p (relation
(5.1) in text) under expectation with respect to an appropriate probability measure.

(4) For a constant control u, the cost V (r, p) satisfies the Hamilton-Jacobi form
of a simplified Mortensen’s equation, with the minimization left out and u constant
put in. This is proved directly in 5. The linear dependence makes it possible to
calculate the first and second functional derivatives with respect to p that occur in
the equation.

2. Formulation, assumptions and notation. We start with a probability space
(12, F,/) and with an (r + m )- dimensional Wiener process {(wt, y,); 0 -< =< T} defined
on it; in other words, {wt; 0<-t =< T} and {yt; 0=<t-< T} are independent Wiener
processes, of dimensions r and m, respectively. We also consider an Rr- valued random
variable x0 defined on the same space, with probability distribution having a density
p in the space of functions

for some k-> 1; under the indicated norm, Ek is a normed linear space. Let Xo be
independent of o’{(wt, yt); 0 -< -< T}, and

(2.2) Ft&o-(xo, ws, ys;O<=s<=t), O<-t<=T,

be the basic increasing family of r-fields, satisfying the usual conditions (right con-
tinuity and completion by negligible sets), with F---FT.

We make the following assumptions"
Assumption A1. The function f(t, z) :[0, T] Rr--> R is continuous in t, con-

tinuously differentiable in z, with gradient satisfying the condition

IVf(t, z )l-<- K, (t, z 6 [0, T] R,
for some constant K > O.

1,2 RAssumption A2. The function h (t, z)" [0, T] R --> R is in C t.z ([0, T] ), with
gradient and Laplacian satisfying the boundedness condition

IVh (t, z)[ + IAh (t, z)l <= g

and time derivative satisfying the linear growth condition

[hl(t, z)]-<_g(1 +lzl)
for all (t, z) e [0, T] 11.

Under Assumption A1, the stochastic differential equation

(2.3) dx,=f(t,x,)dt+dw,, O<=t<=T, x(0) Xo

has a pathwise unique solution {x; O<-_t<-_T} on (12, F,/5; F,) which is an Rr-valued
Markov process. If Ps (respectively, Ps.x) is the measure induced by the process
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{xt;s <= <= T} whenever xs has the distribution of x0 (respectively, whenever xs x
Rr), then we evidently have

(2.4) P(A) IirP,x(A)p(x) dx, VA F, Vs [0, T).

Dependence on s is dropped when s 0. Now consider a compact subset U of R
We say that the U-valued "control" process u {ut;0-< =< T} is admissible if it is
progressively measurable with respect to {F; 0 -< _-< T}, with F __a o’(ys; 0 -< s -<_ t). The
class of all admissible control processes is denoted by

For any control process u A, we define

(2.5) L(u)&exp {uodwo+h’(O, xo)dyo}-- {lUo +lh(O, xo)12}do,

(u) Lo(u), and introduce a new measure through

(2.6)
deu
aP (,o) (u).

The Girsanov theorem (Girsanov [9], Beneg [1], [2, Appendix]) states that pu is a
probability measure on (f, F) and that

w:’] 0_-<t_-<r,(2.7)
l b J

h (s, Xs) d

is a Wiener process on (lq, F, P; F). On this new probability space we have thus
constructed a (weak) solution of the system of stochastic equations

(2.8) dx=[(t, xt)dt+utdt+dw, O<-t<-T, x (0) Xo,

(2.9) dy h (t, xt) dt + db, 0 <- <- T, yo 0,

as follows from (2.4), (2.7). Equations (2.8), (2.9) constitute our basic "system model":
X {xt; 0 <- <- T} is the "signal" process and is not directly observable; the controller
observes the process Y ={y,; 0-<_t_-< T} which is a nonlinear transformation of X
corrupted by additive white noise, and on the basis of his observations tries to control
the evolution of the signal through the "control" process u ={u; 0_<-t_-< T}. His
objective is to minimize a cost functional of the form

T

over all u e A,, for suitable terminal and running cost functions g(z) and b(a, z),
respectively.

For each a e U, we consider the backward differential operator

(2.11) L7&A +{1"+ a}’.

along with its formal adjoint, the forward operator

(2.12) L,*--a 1/2 A- {1" + a}’ 7- tr [7].

Corresponding to a control process u e A, we also consider the family of operators
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It is proved in 4 that a proper unnormalized version p,(z) of the density of the
conditional distribution PU(x, B[F), B Borel exists and satisfies the stochastic
partial differential equation

(2.13) dpt(z)=L*Upt(z)dt+h(t,z)o(z)dy,, O<=t<=T, po(z)=p(z),

which is the basic equation of nonlinear filtering (see Liptser and Shiryaev [11, Chap.
8], and Zakai [20]).

Mortensen’s suggestion [14] was that pt(z) should be viewed as the state of a
new, infinite-dimensional but completely observable system governed by (2.13), and
that the control problem should be formulated in the following equivalent form’ to
minimize

[io
over all u A, with the notational convention: (, B) " a (z)13 (z) dz. We will refer
to this as the separated formulation of the control problem.

Inspired by an obvious analogy with control problems in finite-dimensional state
space, Mortensen also proposed the following form of a Bellman-Hamilton-Jacobi
equation in function space"

(2.14) Vl(’r,p)=1/2Vz2(’r,p)[hr_,p, hT._,p]+min{Vz(’r,p)[LrL-p]+(,b(a, "), p)},
aU

(2.15) V(O,p)=(g,p).

In the present paper we address the task of elucidating some of Mortensen’s
pioneering ideas. In the sequel, for reasons of notational simplicity, we confine
ourselves to the case of one-dimensional observation processes" m 1. Everything
extends, however, to the general multidimensional case, upon replacement of products
by scalar products and squares by squares of norms.

3. Summary. In 4, we study the basic equation (2.13) of nonlinear filtering,
first obtained formally by Mortensen and Duncan and rigorously by Zakai [20]. We
employ the "pathwise" method of constructing a solution to the Zakai equation, first
introduced by Rozovsky (see Liptser and Shiryaev [11, p. 327]), that reduces the
stochastic equation to a nonstochastic partial differential equation, in which the
observation sample path enters parametrically through the coefficients. The use of
forward and backward equations was inspired by the work of Pardoux [15]. It is seen
that the dependence of the unnormalized conditional density on the initial p is linear,
whence a kind of linear fractional dependence on p for the normalized density
(Theorem 4.1).

Using an observation of M. H. A. Davis, also made by the referee, one can show
that the cost of a policy u is actually a linear function of p; this fact leads to
simplifications, and is exploited in 5 in proving that the cost V (-, p) under a constant
law ut-=a U(0<t < T) satisfies a second-order equation with functional partial
derivatives in p (equation (5.3)’), which is equivalent to the Hamilton-Jacobi form of
the Mortensen equation, without the minimization, and free of the nonlocal terms
present in (2.14).

Finally, in 6 we establish a form of Ito’s rule for functionals on density-valued
processes. We use this rule in proving a verification principle for the simplified
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Mortensen’s equation, which states that a solution of the latter is a lower bound (in
fact, the greatest lower bound) on the expected total cost during [0, T] incurred under
any admissible control process. This justifies statistical sufficiency of the density process
for control.

We conclude in 7 with some remarks and open questions. A principal open
problem is to define the state and observation process when control depends only on
the conditional density process.

4. Forward and backward partial differential equations associated with the non-
linear filtering problem. In this section we are concerned with the estimation (filtering)
problem associated with the partially observable system (2.8)-(2.9), namely the prob-
lem of characterizing the conditional distribution P (x B IFt), B e Borelr. It is shown
that this distribution has a sufficiently smooth density on (0, T], satisfying the basic
equation (2.13), and that its dependence on the initial density p is linear fractional.

THEOREM 4.1 (linear fractional dependence of the conditional density on p). With
the assumptions of 2, consider the probability space (l), F, pu; Ft) and the solution of
the system of stochastic equations (2.8)-(2.9) defined on it. Then for each s [0, T)
there exists a random function {q(t,z;s,x); s <t<-_T}, with (z,x)6R Rr, which is a

fundamental solution of the Zakai equation:

(4.1) dtq(t,z;s,x)=L*Uq(t,z;s,x)dt+h(t,z)q(t,z;s,x)dyt, s<-_t<=T,

(4.2) lim q(t, z" s, x) 6(z -x)
tSs

a.s. P", for any u A, where 6 (.) is the Dirac delta function. Ifnow q,(z x) q (t, z O, x ),
the random function

[irq,(z;x)p(x)dx
O<t<__T,(4.3) p,(z) IR I qt(z x)p(x) dx dz’

is a version of the density of the conditional distribution PU(xt e B[FtY); B Borel, i.e.,
for any bounded continuous function g(z :R R with compact support,

(4.4) E[g(xr)IFYT] Iirpr(z)g(z) dz, a.s. pu

where E denotes expectation with respect to measure pu.
Proof. Suppose q(t, z;s, x) is a solution of (4.1), (4.2). Then it is easily checked

that the random function

(4.5) O,(z) Iiq,(z x)p(x) dx

satisfies the so-called Zakai equation [20] for the unnormalized conditional density:

(4.6) dta,(z) L*tUp(z) dt + h (t, z)p,(z dy,, 0 < <- T,

(4.7) p0(z) p(z).

On the other hand, we have for any t, 0 _<- =< T, the "Bayes" rule

E[g(xt)lFt
’[g(xt)Lt(u)lFY] A wt(g)

/[L,(u)IF,’] 7r,(1-’ a.s. P or PU,



ZAKAI’S AND MORTENSEN’S EQUATIONS 477

and since the processes {xt; 0 <= <= T}, {yt; 0 =< <- T} are independent under P, the
path {xt; 0 <_- <_- T} can be "integrated out" to yield, a.s. P,

,’a(g) l[g(x)Lt(u)lFYt] E[g(x)Lt(u)] JirEz(g(xt)Lt(u))p(z) dz

by virtue of (2.4).
Therefore, in order to prove (4.4), it suffices to establish

(4.8) E[g(xT)LT(U)]= IrpT(z)g(z) dz, a.s.

For a given observation sample path Y A{yt; 0<=t <= T} C[0, T], consider the
random function { (t, z); 0 -< -< T} defined by

(4.9) O(t,z)&pt(z)’exp{-h(t,z)y,}, O<=t<-T.

An application of Ito’s rule in conjunction with (4.6), (4.7), yields the (nonstochastic)
forward parabolic equation for 6 (t, z)’

(4.10) atO=L* +e , (t,z)e(O T]xR,

(4.11) O(O,z)=p(z), z ell,
where

(4.12) L,*" a A + {y,. Vh (f + ut)I’V + {yt h tr[Vf]},

(4.13) e(t,z) 1 alX7hl =gYt y,(f + u,) 7h 1/2h 2 y,h 1.

Equation (4.10) is parabolic with constant diffusion, linearly growing drift and quadrati-
cally growing potential terms, in view of Assumptions A1-A2, with the sample path
Y entering parametrically through the coefficients. Consequently, for any y e C[0, T]
(not just in a subset of the full Wiener measure), equation (4.10) has a unique, positive
fundamental solution F(t, z; s, x) satisfying

Iz-xl 0-<lml2(4.14) [D F(t,z,s,x)l<c(t-s)-(r+l"l)/Zexp-tx
t-s

for some positive constants c,/x depending on Y, while the Cauchy problem (4.10)-
(4.11) has the classical (C1.2 ((0, T]x Rr)) solution

(4.15) 0(t, z) [ F(t, Z; 0, dx,

which is positive (by the maximum principle) and unique among those satisfying an
exponential growth condition in the space variable; see Eidel’man [4], Friedman [7].
It is now easy to verify that

(4.16) q(t,z;x,s)Aexp[yth(t,z)-ysh(s,x)].F(t,z;s,x), O<-_s<t<T,

solves (4.1)-(4.2), a.s.Pu, and that 0t(z)= O(t, z). exp {h(t, z)y,}, 0 <- <= T, is the a.s.-P
unique solution of the Zakai equation (4.6) under (4.7).
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Consider now the adjoint equation to (4.10), namely

(4 17) 0r--+e.C+’C =0, (t, z) [0, T)xR,
Ot

(4.18) ff(T,z)=g(z)exp(yrh(T,z)), z eRr,
with g(.) as in (4.4) and

(4.19) .,, _a (., t,,), 1/2A + {f + u,- y,. Vh }’. V- 1/2y,Ah.

Equation (4.17) is a (nonstochastic) backward parabolic equation, with the observation
sample path y again entering parametrically through the coefficients. We propose to
show that, if the random function v(t, z) is defined through

(4.20) v(t, z) & E,.z[g(xr)Lr (u)],

then

(4.21) ((t, z)A-v(t, z).exp [y,h (t, z)]

solves the Cauchy problem (4.17), (4.18). Indeed, with L, the backward operator
associated with (2.3)"

L, =1/2a+f’(t,z).V,
an application of Ito’s rule gives (a.s. Pt.z)

T

yth(t,z)-yTh(T, XT)=--It {yLh(s, Xs)+yhl(s, xs)}ds

+ y(Vh (s, x))’ dw + h (s, x) dye,
and substitution into (4.21):

T

(4.22) ((t,z)=E,.z[g(xr)exp(y,h(T, xr)).exp{Itl(s, xs) ds}.(u)]
where:

LtT(u) &exp {us-ys’Vh(s, xs)}’ dw-- ]u-ys.Vh(s,x)[2 as

l(t,z) a 1/2y2[Vh(t,z)]2 yt[LOth(t,z)+hl(t,z)+u .Vh(t,z)] 1/2h2(t,z)
In (4.22) we recognize the familiar Feynman-Kac formula [8] for the solution of the
backward partial differential equation

Ot
+L+ 1( O, (t, z) e [0, T) R,

((T,z)=g(z)exp[yrh(T,z)], z Rr,
where &1/2A+{f(t,z)+ut-yt.Vh(t,z)}’.V; noting +l(t,z)=L/+e(t,z), we
verify that ((t,z), defined through (4.20), (4.21), satisfies the Cauchy problem
(4.17), (4.18).

Now we check that the process A,=g((t,z)$(t,z)ds is constant on [0, T],
because by virtue of equations (4.11) and (4.17),

d ((t, z)O(t, z) ds {-0[LTff+e(]+([LUO +e0]} dz =0
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for any O<t<=T. But Ao=llrEz[g(XT)LT(U)]p(z)dz=E[g(xT.)LT(X)] and AT-
llr g(z)pT-(z) dz, so (4.8) is actually true for all y 6 C[0, T], not merely on a subset of
full Wiener measure.

PrOPOSITION 4.1 (stochastic PDE for the normalized conditional density
(Stratonovich [18], Kushner [10])). The random [unction pt(z) introduced in (4.3)
satisfies the stochastic partial differential equation a.s. pu:

(4.23) dpt(z) Lt*Up,(z) dt +[h -(h, p,)]pt(z) du/, 0<t =< T,

(4.24) po(z) p(z),

where ,/ & yt-E’[h(s, xs)lF] ds =Yt- (h, ps) ds, O<=t <= T, is the "innovations
process" and is Wiener under P". In addition, )Cot all y C[0, T]:

(4.25) pt(z)Ek, L*pt(z),[h-(h,p,)]p,(z)Ek_l

lor all 0 < <= T.
Proo). Equation (4.23) follows from (4.6i, by an application of Ito’s rule to

pt(z) p,(z). (llrO,(z) dz)-l. (4.25) is a consequence of Assumptions A1-A2 and
(4.24). Q.E.D.

Remark. Because of (4.25), the function g(.): R R in Theorem 4.1 can be
taken to be continuous and to satisfy the growth condition

(4.26) Ig(z)l<=g(x /lzl), all z R’, l<=k.

PRor’osITION 4.2. With g(’) as above, the random function v(t,z) defined by
(4.20):

(i) admits the representation

(4.27) v(t,z)=Illrq(T,;t,z)g()d, (t, z) [0, T]xR,
[or all y C[0, T], with q (t, z; s, x) the fundamental solution of the Zakai equation;

(ii) satisfies the backward stochastic partial differential equation
(4.28) d,v + L, dt + hv dy, =0, 0 < <T,=

(4.29) v(T, z)= g(z)

a.s. 15, where the stochastic differential appearing in (4.28) has to be interpreted as the
differential o) a backward Ito integral, the process {37, yt-yT-; 0<= <= T} being a
backward Wiener process.

Proo). Recall the fundamental solution F(t, z s, x), 0 =< s < =< T, of the forward
PDE (4.10); the adjoint equation (4.17) has the unique solution

’(t, z)= f F(T, ; t, z)g() exp [yT-h (T, )] d:

and so (4.27) follows by virtue of definitions (4.16), (4.21).
On the other hand, the backward stochastic differentiation rule (McKean [13,

p. 35]) gives

d (exp [-yth (t, z)]) -exp [-yth (t, z )]. [{1/2h 2(t, z) + yth l(t, z)} dt + h (t, z

and when applied to v(t, z) ((t, z).exp [-y,h(t, z)] it eventually yields (4.28), after
a bit of simple calculus.
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5. Hamilton-Jacobi equations with functional partial derivatives associated with
the nonlinear filtering problem. We now return to the cost functional VU(T,p)
introduced in (2.10) and impose the following condition on the cost functions g(z),
(u, z):

Assumption A3. g (z) R R+ and (a, x) U R R+ are continuous on their
domains of definition and satisfy, for some positive numbers K and <_-k- 1, the
growth condition

g(z)+(a,z)<=K(l+lz[) V(a,z)eURr.

It can be checked easily from (4.8) that, with 0 < _-< T,

zrt(1) zrt(1)J zrt(1)J

Consequently, the cost functional in (2.10) .depends linearly on the initial density p,
when we integrate with respect to measure P’

T

yu(T’P)--’[f
0

(Y fRr(Llt’z)qt(z’x)D(x)dxdz) d
(5.1)

Use of this lorm for the value" of u leads to a form of Mortensen’s equation
free of nonlocal terms. Our aim in this section is to show directly that the functional
V(r, p)’[0, T]xE N, representing the expected total cost incurred during the
time interval IT-r, T] under the initial condition pr-,(z) p(z) E and the constant
control u a U for all 0 N N T, satisfies the Hamilton-Jacobi form (5.3’) below of
the Mortensen equation, without the minimization.

We start with the case 0"
TOaM 5.1 (Hamiltonian-Jacobi equation for V (,p)( =0)). Under the

assumptions o[ 2, consider the probability space (,F,P; F) corresponding to a
constant control process ua U, T-rNtNT, and the solution to the system
o[ equations (2.8)-(2.9) dened on it [or the time interval IT-r, T]. Suppose also
that xr-, has a distribution with density p E, and dene a continuous [unction
V (r, p)" [0, T] x E N by setting

(5.2) V(z,p)AEr_,pg(xT.)=l f YRrg(Z)q(T,z; T-’,x)p(x)dxdz

where g(. satisfies Assumption A3. Then V (z, p) is once continuously differentiable
with respect to r, twice continuously Frchet differentiable wit.h respect to p, and satisfies
the following Cauchy problem for the Hamiltonian-Jacobi equation:

(5.3) V (r, p) 1/2 V2 (r, p)[hT_p, hT--p + (L_V (r, p), p), (r, p) e (0, T] x Eg,

(5.4) V (0, p)= (g, p), p e Eg.

Proof. Introducing the notation Nt(x) &w g(z)q(T, z t, x) dz, s A T-z, we write
V (z, p) in the form V (z, p) (N, p). Then we define the linear functional

(5.5) V (z, p)[] [ V(z,p)(x)(x)dx, (’) e E-I,
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with

(5.6) V2 (r, p)(x) Ns(x),
and the bilinear form

22 P 22 T dxdx’; /(’), 0(’) Ek-1

with

(5.8) v). (, p )(x, x’) 0

as the first and second, respectively, Fr6chet derivatives of the function V (r, p) with
respect to p; see, for the definitions, Lusternik and Sobolev [12].

Let us now evaluate the left-hand side of (5.3). According.to Proposition 4.2,
Nt(x) satisfies the backward stochastic differential equation, a.s. P

dcD +Lb dt + hb dy, O, T-r <- < T,

subject to the terminal condition Nr(x) g (x).
Consequently

T T

I (L’]Nt, p)dt+ | (hiNt, p)dyt,(Ns, p) (g, p)+
aT aT

and by taking expectations with respect to/, one gets

T

Va(r,p)=(g,p)+E* fr (LNt, p)dt.

The initial condition (5.4) is obviously satisfied; on the other hand, differentiation
with respect to - gives

VT(r,p)=E*(LN,p).
Equation (5.3) follows by virtue of relations (5.6), (5.8) and the fact that, for a constant
control u a U, T-- <- _-< T,

(LV2(r, p), p) f LVz(r, p)(x).p(x) dx ’(LN, p). Q.E.D.

Similarly, one can do the general case:
THEOREM 5.2 (Hamilton-Jacobi equation for V (r, p)). Under the same assump-

tions as in Theorem 5.1, the cost functional
T

with the unctions g(z ), 4)(u, z) satisfying Assumption A3, solves the Hami#on-Jacobi
equation

V (T, p)--21-V22(T, p)[hT-,p, hr-,p]+(Lr-,V2(’, p ), p)
(5.3’)

+ (6 (a,.), p), (r, p) (0, T] Ek,

(5.4’) V(O,p)=(g,p), peEk,

for any fixed a U.
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6. A verification theorem for Mortensen’s equation. In this section we establish
a verification principle for Mortensen’s equation, saying essentially that a solution to
this equation is a lower bound on the achievable expected cost Vu(r, p) under any
admissible control process u cA (Theorem 6.2). To this end, we need a version of
Ito’s rule valid for functionals on density-valued processes, similar to the classical Ito
change-of-variable formula (see e.g. Skorokhod [17]).

DEFXNXnON 6.1. Consider a probability space (,F,P;Ft) and an Ek-valued
stochastic process {,(z); 0 _-< _-< T} adapted to the increasing family {F, ;0 _-< =< T} of
r-fields, with _-> 0. If

(6.1) E ,(l+lzl)l,(z)ldz dt<o,

we say that sC,(z) belongs to M/a[F,].
THEOREM 6.1 (Ito’s rule for functionals on density-valued processes). Let the

Ek-valued process p,(z satisfy the relation

(6.2) dpt(z at(z dt + mt(z dwt, 0 <= <= T,

where {w,; 0 <- <= T}" is a Wiener process on (fl, F, P; Ft) and the El-valued processes
at(z), rot(z) belong to

M.,EFt] f’l Ml.zEFt] and M.zEF,] 71 ml,4[Ft],
respectively.

Consider also a [unction V(r, p):[0, T]E - R1, possessing continuous first
derivative Vl(r,p) in r and first and second Fr&het derivatives Vz(r,p)[’] and
V22(r, p)[’," with respect.to p in the form of a linear functional and a bilinear form,
respectively"

P )[’0 dR[r V2(T, p)(x )T (X dx, (’)V2(r,

Vzz(r, p )[’r/, 0 Ia Vzz(r, p)(x, x ’)r (x)0 (x ’) dx dx ’, r/(’), 0(’)G Et,

with kernels V(r,p)(x), V22(r,p)(x,x’) continuous in their arguments and satisfying
the following conditions:

(6.3) Iv2(, p)(x)l<-_x(, llplll)(l /lx]’),
(6.4) [v22(r,p)(x,x’)l<=,2(r, llpll,)(l +lxll)(l +lx’l)
where ul and u2 are continuous functions on [0, T] R+.

Then the process {V(t, p,); 0 <- <-_ T} admits the stochastic differential:
dW(t, p,) {V(t, pt) + W2(t, pt)[a,]+ 1/2V22(t, p,)[m,, m,]} dt

(6.5)
+ V_(t, p,)[m,], dw,, 0 -<- <- T.

Proof. From the assumptions on a,(z), m,(z) it is seen that liP, Ill is finite for all
[0, T], a.s.P.
In order to prove (6.5) we have to show that for any 0 < _-< T.

(6.6)

V(t,p,)= V(O, po)+ {Va(s, ps)+ V2(s, ps)[as]+ Vzz(s, ps)[ms, ms]}ds

q- IO V2(S, Ps)[ms]" dw, a.s. P,
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where poEt. We take a partition 0"-O’1<O’2<""" <O’N+ =t of the interval [0, t],
denote its mesh by Io’l maxl_<,__<r Io’,/l-r,I, and write

N

v(t, p,)- v(0, po)=
n=l

N N

n=l n=l

N

(6.7)
n=l

N

+ 2 Vz(.,p.)[p.+-p.]
n=l

+ 2 V::(,, p. + ,(p.+-p.))[p.+-p., P.+I-P.]

by the Taylor-Volterra formula (Lusternik-Sobolev 12]), where v, and ft, are numbers
in (0, 1). From the continuity of V(t, p) it follows that the first sum in the last member
of relation (6.7) converges a.s. to ; V(s, p) ds as I1 0. As for the second term, we
have

V2(n,p.)[p.+l-p=.] =.21 g2(n, p.)(z) as(Z) ds dz
n=l

N

fR+ E v:(., p.)(z) ms (z) dw dz

=I +I:.

By Fubini’s theorem, since IIar (1 +lzl)la(e)l dz ds <, a.s. P by assumption,, we
have

l fo N(s) ds,

whe;e

Now
fr(s) a_ Vz(tr., p.)[a]. 1......1)(S),

fu (s) f(s a__ Vz(s, p)[a

for almost all s in [0, t], by continuity of V2(z, p) in its arguments and of p,(z) in t.

On the other hand, by assumption,
T T

Io [/N(s)[ ds, Io If(s)[ ds -<- o=_rsup ,(s, IIpll,),

and
T

a.s. P, so by the dominated convergence theorem,

IO" V2(s, ps)[as] ds.I1
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Similarly, by a Fubini-type theorem for stochastic integrals (Szpirglas [19]), we
can write

I2= f(s) dws,

where IN(S) A. V2(o-n, p.)[ms]" 1[......1)(s), since, by assumption,
T 2

Again,/rr(s) a.s., T(S) V2(S, ps)[ms], for almost all s in [0, t], and
I15o

I/,,(s) as, I(s)l= as sup (s, IIpll,)" (1+ Il’)lms(z)l ds ds.
OsT

Therefore, by the Ito dominated convergence theorem (Skorokhod [17, p. 19], we have

o V(s, ps)[m] dws.

Finally, the third term in (6.7) can be decomposed in the form

with

h fl= V(O’,,, p,,., + ,.’,,(p,,.,,+,_--p,,.,,))(Z, Z’)

(I )(Ias(z) ds as(z’) ds dz dz’,

h E v(o-,,., po.,, + ,.,,,. (p,,.,,+,.-po.,,))(z, z’)
n=l

(I: )(I O’n+l

m(z) dw m(z’) dw dz dz’,

h E v:.,.(o-,,, p,,.,, + ,.,,, (po.,,+,.-po.,))(z, z’)
rt=l

a(z) ds m(z’) dws dz dz’.

We see that

2r
t) )1 ds dzIhl -< max /22(s, IIpll)" E (a /lzl la(z

0Ns N

0=<1[’ o==,max u2(s, IIpllt)"

by virtue of the Fubini theorem, the Cauchy inequality and the assumption
T 2
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Similarly,

and so

[Is[max 2(s,[[psll)n2 (l+[zl g) la,(z)lds dz
O<=st =1 crn

max ,(s, llps[l)" (l+lzlt)las(z)ldz ds.J
o-<__ _-<. krl$O

because the term

J--" n21= / (l+[zl’) ms(z) dws dz

is bounded in probability, uniformly over all subdivisions of [0, t] by virtue of the
assumption m, (z M,z[F,].

Therefore, in order to complete the proof of Theorem 6.1, it remains to show that

/4 1150 V22(S, ps)[ms, ms] ds.

However, as is easily seen,

2 V22(O-n, p. + u.(p.+l-p.))(z, z’) ms(z)ms(Z’) ds dz dz’
=1

Io V22(s, Ps)Ems, ms] ds,

and

P
max Vzz(r., p. + Pn(P.+I--p.))(Z, Z’)-- g22(o’n, p,.)(z, z’)l 0,
l=nN

uniformly on compact subsets of R2d, by continuity of V22(r, p) in p and of p(.) in
s. Therefore, it suces to establish the convergence

N p

(6.8) Z J. O,
n=l Il+o

]. Vzz(g., p.)(z, z’) ms(Z) dw ms (z’) dw

’n+l

ms (z)ms (z ’) ds dz dz ’.

We introduce the process x(t) a___ l{sup=<,llpslhcI, c 0 arbitrary but fixed, and observe that

(6.9) E J.>e <-P x(r,)Jn>e +P _sup_llp,l[l>C
n=l ttl

The sum Y’..=I X(cr.)J. converges in probability to zero, as [r]-, 0; in fact, with m <n,

E[X (r.,)J.," X (r.)J.] E[X (r.,)X (o’.)Jm’ E(J. IF..)] 0
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since

E(Jn]F.) I fR
:E ms(z)dws" ms(z’)dw

m(z)m (z’) dsIF dz dz’

=0 a.s. P,

and therefore E(, X(q,)],): N.=I E[X(,)]. By repeatedly applying Fubini’s
theorem we write , in the form

g(s, O) dwodw g(s, s) ds,

where

gu(s, O) a= V22(cr., p,.)[m, mo]" 1[...... 1)(s)" 1[......,(0),
and it is easily checked that, with L __a

SUpo<,-<T,IxI_-<c Uz(T, X),

X(O’n)IgN(S, O)[<-L (I,r(l + lz]t)]m(z), dz)
.aa(f (1+ ,z,t),mo(z), dz)/1 [,.,,.+1)(s). 1 ......1)(0),

So"
2

E[X (o’.)J2]-<_ 2 E[X(o’.)g(s,O)]dOds+ZE X(o’.)gN(s,s)ds

<=2LZ.E{ (l+[zlt)lm(z)l dz ds

O’n+
/ 21o1 E[x(o-,,)g(s, s)] ds,

and by using the Cauchy inequality once more, we get

2 E[x("n)J2n] 4L2"E (l+lzlt)lms(z)l dz ds.ll-O
n=l

as I150.
Consequently, (6.9) implies that, for any e > O, c > O,

lim P J, > e _-<P[ sup lip, Ill > c],
I,rl$0 ONt=T

whence:

limP J.>e =0 for anye>0,

which establishes (6.8). Q.E.D.
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We are now in a position to prove the basic result of this section, which elucidates
Mortensen’s "dynamic programming.in function space" approach"

THEOREM 6.2 (a "verification lemma" for Mortensen’s equation). Consider any
admissible control process u {ut; 0 <= <-T} in A, along with the corresponding weak
solution (xt, Yt, W, bt; 0 <- <-_ T) on the probability space (f, F, P; Ft) of the system
of equations (2.8)-(2.9), under the assumptions of 2. Consider also the cost functions
g(z), c(a, z), introduced in 5 and satisfying Assumption A3, for some number l,
<-k 1, fixed henceforth.

If the Mortensen equation

(6.10)
gl (7-, p) 1/2 V22(T, p)[hT.-p, hT-p

+ min {(L,_. Vz(’r, p)(" ), p) + ( (a,.), p)},
aU

(’, p) (0, T] + Ek,

(6.11) V(O,p)=(g,p), p Et,,

has a solution V(z, p); [0, T] Ek - R which satisfies the conditions of Theorem 6.1,
then V(z, p) is a lower bound on the achievable expected cost; i.e., for any u A,

T

(6.12) VU(z,p) a=Er_.p[g(xT.)+ | 4)(ut, xt) dt] > V(z,p)
aT

for any (z, p) [0, T] Ek.
Proof. We apply Ito’s rule (Theorem 6.1) to the process V(T-t, pt), where pt(z)

is the unnormalized density of the conditional distribution, under P, of xt given F,
T-z <= <- T. According to Theorem 4.1, pt(z) solves the stochastic equation (4.6) for
T-z < _-< T under the initial condition PT-t P, SO we have, a.s./,

dV(T- t, pt) {- Va(T- t, pt) + Vz(T- t, pt)}[L*t pt]+ 1/2V22(T- t, pt)[htpt, hpt] dt

+ V2(T t, pt)[htpt]" dyt

_->-( (ut, "), pt) dt + V2(T-t, pt)[htpt]" dyt,

by virtue of the minimization in (6.10). Upon integrating the above differential
inequality over IT-z, T] and taking expectations with respect to measure/, we get
in conjunction with (5.1)’

T

=E da(ut, z)q(t,z; T-’,x)p(x) dz dx dt

V (r, p). Q.E.D.

7. Cld|g erkso We have presented and explained some aspects of a
dynamic programming in function space" approach to the problem of control of
partially observable diffusion processes. In particular, we have shown the relevance
of the Mortensen equation to reducing the global optimization problem of choosing
a law to a pointwise minimization.
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Future progress along these lines will depend on establishing the existence and
uniqueness for solutions of this equation in the class of functions satisfying the
conditions of Theorem 6.1. Under proper assumptions on the running cost function
4(a, z), the minimization in (6.10) would then suggest a natural candidate for the
optimal process in the separated form

t7 {tTt (T t, p,); 0 _-< <_- T}

where

( (’, p) arg min {L-_,Va(’, p)(. ), p)+ ((b (a,"), p)}
aU

(7.2)

arg min { a’Iier VV2(r,p)(z)p(z)dz+fi c(a,z)p(z)dz}.
Indeed, the verification Theorem 6.2 would establish the optimality of as in (7.1),
(7.2), provided it is shown that the latter is admissible, i.e., that the Zakai equation
(4.6) is strongly solvable for an F-adapted random function O,(z), with ut=-(T-t,
pt/(p,, 1)).

Let us define the class of separated controlprocesses as consisting of those processes
{u,; 0 _-< -<_ T} for which there exists a measurable function

c(r,p); [0, T]xE-U

such that

P[u, T t, p, 0 -< <= T] 1.

If the question of admissibility for the separated control processes, or some subclass
thereof, is answered to the positive, one might be able to establish the Hamilton-Jacobi
form (5.3)’ of the Mortensen equation for such controls as well, not just for the
constant ones.

A "separated" problem for partially observed, controlled diffusions has also been
formulated recently by W. H. Fleming and E. Pardoux [5] and by W. H. Fleming [6].
They use a convexified setup in which an admissible control law amounts to a measure
on (y, u) paths such that y projects to Wiener measure, and the past (y, u) is indepen-
dent of the future of y. If u can be obtained from y by a causal functional, they call
the corresponding law strictly admissible. This subclass coincides with our admissible
control laws. Also, Davis and Kohlmann [3] have recently refined the nonlinear
semigroup approach by using results from convex analysis, which allow them to deal
directly with our class A of admissible controls. By using their approach, it may be
shown that V(r, p) is actually the greatest lower bound on the performance of laws
in A.

Acknowledgments. The use of " in (5.1) to get rid of the awkward normalizer
7rt(1) was suggested by M. H. A. Davis in personal correspondence, and also by the
referee; we thank them both.
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VECTOR-VALUED DYNAMIC PROGRAMMING*

MORDECHAI I. HENIG+

Abstract. Dynamic programming models with vector-valued returns are investigated. The sets of
(Pareto) maximal returns and (Pareto) maximal policies are defined. Monotonicity conditions are shown
to be sufficient for the set of maximal policies to include a stationary policy, and for the set of maximal
returns to be in the convex hull of returns of stationary policies. In particular, it is shown that these results
hold for Markov decision processes.

Key words, dynamic programming, multicriterion decision-making, Markov decision processes,
monotone operators, convex analysis

1. Introduction. We study here a vector-valued analogue of the dynamic pro-
gramming model proposed by Denardo [2]. The standard maximization is replaced
by maximization with respect to a cone. The results can be applied to problems with
several objective functions.

The model consists of a countable number of stages at which a decision has to
be made. Policies are introduced, and each policy has a return which is a vector-valued
function. Of special interest are the stationary policies.

Our main concern is to characterize the set of maximal returns. We introduce a
monotonicity condition which suffices for the set of maximal returns to include the
return of a stationary policy. Under stronger conditions we show that each maximal
return can be obtained as a convex combination of returns of stationary policies. This
result leads to an algorithm which approximates the set of maximal returns.

Specifically, we show that Markov decision processes with several objectives fulfil
these requirements and, thus, the set of maximal returns can be approximated by
multicriteria mathematical programming.

Lately, dynamic programming models with multicriteria have been applied in
several areas: in fishery management by Mendelssohn (cf. [8]), in hospitalization by
Schmee, Hannan and Mirabile [12], in budgeting by Grinold, Hopkins and Massy [4]
and in scheduling by Kao [7].

Apparently the earliest results for dynamic vector-valued models are those of
Brown and Strauch [1] for a finite horizon model in which they showed that the
principle of optimality holds with respect to Pareto maximal returns. Furukawa [3]
obtained similar results for maximization with respect to a convex cone in the Markov
decision process.

The special cases of Markov decision processes with a finite number of decisions
were analyzed by Viswanathan, Aggarwal and Nair [15], Nair and Aggarwal [10],
White and Kim [17], Hartley [5] and Shin [13]. They developed efficient algorithms
for finding the maximal stationary policies.

Ordinal and lexicographic optimization are two concepts that are related to
multicriterion maximization. Ordinal dynamic programming was analyzed by Mitten
[9] and Sobel [14]. Denardo [2] commented on lexicographic maximization. In these
cases an optimal policy among the stationary policies can be found. However, this
policy need not be (Pareto) maximal, as Example 6.2 shows.

* Received by the editors January 8, 1982, and in revised form May 25, 1982. This research was
supported by the National Science Foundation under grant Eng-76-15559.

+ Faculty of Management, Tel-Aviv University, Ramat-Aviv, Israel.
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The paper is structured as follows: In 2 we formulate the decision process and
introduce boundedness and contraction conditions. In 3 we introduce the maximi-
zation concept. A monotonicity condition is assumed under which we are able to
transform the return functions into the set of real functions. Thus properties of
one-criterion dynamic programming are used to obtain some preliminary results. In
4 the main theorem is presented. It characterizes the set of maximal returns in terms

of the maximal returns of stationary policies. This is used in 5 to approximate the
set of maximal returns. Three examples, one of them a Markov decision process, are
given in 6.

2. The vector-valued dynamic programming model. Consider the contraction
dynamic programming model introduced by Denardo [2]. Let S be a nonempty set
of states. For each s s S, let D (s) be a nonempty action set. Let the decision set D be
the Cartesian product of the action sets. A Markov policy is an infinite sequence
7r (61, 2, ") of decisions 6t s D for all t; the collection of all such policies is denotei
by D*. A stationary policy is a Markov policy where 6t 6 for every t; the collection
of all stationary policies is denoted by D.

Let I {1, 2,. , n } where n is fixed. Let W be the set of all bounded real-valued
functions on S ! with the supremum norm

Ilwll- sup {Iw(s, i)[: s S, 6 I}.

The elements of I can be interpreted as the criteria. For each I let hi be a
function that assigns a real number to each triplet (s, a, w) with s S, a D(s) and
w s W. Call

h(s, a, w)=[hl(S, a, w), h,(s, a, w)]

the local return in state s s S, if action a D (s) is taken and w W is given.
For 6 D, let Ha be defined by

[n(w)](s, i)= hi(s, 6(s), w).

Accordingly, let

[H(w)](s) h(s, 6(s), w).

Given a policy rr s D* and given w s W, define 0H=w inductively by H=w w and
H -1=w H (Ha,w)

The following assumption is sufficient to ensure that each HwW"
Boundedness. There exist constants kl and k2 such that [IHwll<=k+k211wll for

all w W and 6 D.
The return ]:unction of 7r D* is defined as w= lim_, H=w, when the limit is

well defined and independent of w W. A sufficient condition for w= W is tile
following assumption"

Contraction. There exists a constant c, 0=<c < 1, such that for all w, v W and

IIH w -H vll<-cllw
The proof that w s W uses the arguments that the sequence {Hw} is Cauchy

and that W is a complete metric space with respect to the sup norm. The proof is
standard and can be found in [6].

Throughout the paper, we assume that the contraction and boundedness assump-
tions are satisfied. However, contraction can be replaced by T-contraction (see
definition in [2]), and boundedness can be relaxed by introducing the weighted sup
norm (see definition and analysis in [16]).
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3. The optimization criterion and preliminary results. The standard maximization
criterion is usually not valid in the vector-valued case. Instead, quite frequently, a
Pareto optimal policy is sought; i.e., we are looking for a policy A such that, for every
s sS, if for some policy 7r w(s, i)>=Wa(S, i) for all el then w(s)= Wa(S).

The main goal here is to characterize the set of Pareto optimal policies. We
preferred, however, to maximize with respect to a larger class of criteria, in the
following sense.

DEFINITION 3.1. Let Y and A be subsets of R n. The set of maximal elements
in Y with respect to A is M(YIA)= {y e YI Y’X + AVx Y}. The subset A is called
a domination set and we shall say that x dominates y if y x + A.

When A {a (a 1, , an) R n]ai <- 0Vi, a {0}} then M(YI A) is the Pareto
maximal set in Y.

Given a state s, let w(s)=[w,(s,i),..., w,(s,n)] be the return when policy
TroD* is used. Let V(s)={w(s)lreD*} and V={w,lTrD*}. Notice that V(s) is
a subset of R n.

DEFINITION 3.2. A policy 7r D* is maximal for s e S (with respect to A) if
w,(s)eM(V(s)lA). A policy 7r D* is maximal if it is maximal for each s eS.

Let U be the set of all bounded functions from S to the reals. The main idea in
this section is to transform the returns which are elements of W into elements in U
and then use properties of one-criterion dynamic programming.

Given a R n, let T be the linear transformation from W to U defined as"

[Tow](s) W(S)Ol --2 0liW(S, i).

Given a e R n\{0} let L be the linear transformation from U to W defined as:

u(s)
[Lu](s, i)--a.*,y, lail’

where a -Icil (c* -0 when O "--0).

Notice that [T(Lu)](s)= u(s) so that TL is the identity function. The following
condition generalizes the monotonicity condition in Denardo [2].

DEFINITION 3.3. For a R n, Ha is said to be an a-monotone operator if T (w 1) -->
T (w2) implies T(Haw 1) -> T(Hw2) for any w 1, w2 W. We shall say that a-monoton-
icity is satisfied if Ha is a-monotone for every 6 D. For A

_
R ", A-monotonicity is

said to hold if a-monotonicity is satisfied for every a A.
Notice that T,w IxTaw for every tz e R and therefore A-monotonicity implies

/xA-monotonicity for every/x R, i.e., monotonicity is always satisfied for a union of
subspaces of R n. In the case of n 1, the monotonicity assumption introduced by
Denardo [2] is equivalent to {1}-monotonicity which implies R 1-monotonicity.

In 6 we shall show that Markov decision processes with multicriteria satisfy the
R "-monotonicity condition.

DEFINITION 3.4. For a fixed a R n\{0} and each 6 D define the operator G
on U by

Gu =- T[HcCL (u )].

For 7r (61 8z, )eD* and ue U define G’ inductively by Gu u and G
Gt-I(G,u)

Notice that G depends on a, and [Gu](s) is a weighted sum of [H(Lu)](s, i).
For convenience, the subscript a will be suppressed if a is fixed. Also H (or G) will
be used when a property of Ha (or G) is true for every 6 e D.

LEMMA 3.1. Given a R , ifH is an a-monotone operator then G is a monotone
operator in U satisfying the boundedness and the contraction conditions.
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Proof. Observe that Lu W and IILull Ilull/El  l for every u U. Boundedness
and contraction can be easily verified.

To prove monotonicity let u 1, u2 U with u >- u2. Since TL is the identity function,
TLu >- TLu2 whereLu
implies T(H(Lul)) >- T(H(Lu2)) for every 6 6D. Bythe definition of G, Gul >- Gu2
for every 6

As a consequence, the fixed-point theorem in complete metric spaces can be used
(see [2]) to obtain a unique v U for every 6 D such that v Gv.

DEFINITION 3.5. Let f supo v where the supremum is taken pointwise.
Denardo [2, Thm. 3] shows that f is the unique solution for v supo Gv, v U.

Furthermore, f can be approximated by some return. These results are summarized
as follows:

LEMMA 3.2. (i) For every 6 D there exists a unique v U such that v Gv
limt-> Gtau =-va where A (6, 6,. .)D and u U.

(ii) f- sup/ Gf.
(iii) For every
In the following lemma we show that T(w=) can be obtained by using the operators

G’
LEMMA 3.3. Given a R n, ifH is an a-monotone operator, then for every 7r D*,

u Uand 1, 2,

G=u T(Ht(Lu)) and limGu T(w=).

Proof. Notice that Tw=TL(Tw), and by the c-monotonicity assumption
T(Hw) T(H(LTw)). Fix t. The proof of the first identity is by decreasing induction.
By definition G,u T(H,(Lu)). Suppose that for some -, 1 <r <=t,

G.G&+I O,stu T(H,%H,%+I""" H,(Lu)).

By definition and the above result,

G._I (G. G,u)= T(H._IL(T(H. H,(Lu))))= T(H._IH. H,(Lu)).
Hence the argument is true for --1 and by induction the claim is true for -= 1, as
required.

By the continuity of T

limG ())u lim T(H’ (Lu )) T lim H’ (Lu T(w). 71

By combining the two lemmas, we can show now that a sequence of stationary
policies can be found whose limit of transformed returns achieves fi

LEMMA 3.4. Given t R n, if H is an t-tnonotone operator, then there exists a
sequence {At} of stationary policies such that

lim T(WAj) fi
j->oo

Furthermore
lim T(WA,)_--> T(w=) for any .n" 6D*.

Proof. By the previous lemmas, for every e > 0 there exists A D such that

By [2, Thm. 5]

[IT(wD-fll Illim OXu -fll Ilva-fll < .
t->X3

f > lim G,u T(w=) for any 7r s D*
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The limit can actually be attained in certain conditions, as in the following result
which can be proved by standard methods.

COROLLARY 3.5. Suppose for each s S and w W that h (s, ., w) is a continuous
function in a topology for which D(s) is compact; then f T(WA) for some stationary
policy A

Remark. Under reasonable assumptions, as shown in Henig [6], Lemma 3.4 can
be extended to include policies which are not in D*, as history-remembering and
randomized policies.

4. The sets of maximal returns and policies. We shall show when every maximal
return can be expressed as a linear combination of returns obtained by stationary
policies.

DEFINITIONS AND NOTATION. A set A
___
R is a cone if A A_ A for every A R,

A>0.
The polar cone of Y is yO= {a]ya <= 0 for all y Y}.
The strict polar cone of Y is Y* {a]ya < 0 for all y Y\{0}}.
The recession cone of Y is 0+Y {aly + Aa Y for every y Y and A >-0}.
A cone A is strictly supported if A*
Define Ex(Yla)={y Ylya >yoa ’qyo Y\{y}}. This set is either empty or a

singleton and is then called an exposed point (see Rockafellar [11]).
For A

_
R" define Ex (YIA) 13A Ex (Y] a).

For simplicity we assume that V(s) is closed (or closure of V(s) replaces V(s)).
We also assume that V(s) is convex (or convex hull of V(s) replaces V(s)). This
means that any convex combination of returns can be obtained by some policy (e.g.,
by initial randomization among policies).

When a state s S is given we shall write C =- V(s).
The first result will give sufficient conditions for the set of maximal policies to

contain a stationary policy.
THEOREM 4.1. Given a state s S, let A be a cone in R . Suppose A-monotonicity

holds for some A _R such that A A* . Then there exists a sequence {h.} of
stationary policies such that

lim WAj(S)M(C[A).

Proof. Pick any a cA (qA*. As a consequence of Lemma 3.4 there exists a
sequence {A.}, Aj D such that

lim WAj (S )a >-- Xa /X C.

Let x0--limi WAj(S) and suppose that xogM(C[A). Then there exists xl C such
that Xo-Xl A. By definition of the strict polar cone, a(Xo-Xa)< 0 and aXo <aXl
which is a contradiction. Hence lim. WA,(S)M(CIA).

We should remark that the theorem makes sense only if A* which is satisfied
if and only if A is contained in a homogeneous open half space (excluding perhaps
the origin).

In the last theorem, the sequence of stationary policies may depend on s S.
However, if A is fixed for each s S, Lemma 3.4 can be used to conclude that for
every s $,

lim Wa(s)eM(V(s)[A).

This proves the next result.
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COROLLARY 4.2. Under the assumptions of Theorem 4.1, if A is the same for
every s S, then there exists a sequence {A.} of stationary policies such that

lim wa, XssM(V(s)lA).
j-cx3

Moreover, there exists a stationary maximal policy if the conditions of Corollary 3.5 are

satisfied.
Two lemmas will now precede the main result of the section. The first will show

that every exposed point of C can be approximated by a stationary policy. The second
will present the directions of recession of C.

LEMMA 4.3. Let y Ex (Cla). If the a-monotonicity assumption is satisfied, then
there exists a sequence of stationary policies {Ai} D such that

lim WA,(S)= y.
j-c

Proof. Since yC, by Lemma 3.4 there exists {A.},A.D, such that
lim._, wa, (s)a >- ya. Clearly, lim._,o wa (s) C.

If lim. wa (s) y then, since y is an exposed point, ya > limi wa, (s)a which is a
contradiction. Hence lim. wa (s) y.

LEMMA 4.4. Suppose A-monotonicity holds for some AR. Then O/C
_
(A).

Proof. Let k 0/C and choose any x C. By definition x + hk C for every h _-> 0.
By Lemma 3.4 sup{(x +hk)alh->0}< for every a cA. Since xa is fixed, then
sup {hkalh >-0} <-0 and ka <-0 for every a A. Hence by definition k

Notice that monotonicity is always satisfied for a union of subspaces of R ".
Therefore co(A)=R" for some m-<n. By Lemma 4.4 if co(A)=R" then 0+C
(R") {0} and by [11, Thm. 8.4] C is compact.

Let F(s) denote the elements of V(s) which can be obtained by stationary policies.
The theorem claims that if the appropriate monotonicity condition is valid then the
following is true" For a given state s S a return is maximal only if it is a maximal
element in co (F(s)).

THEOREM 4.5. Given s S, let A be a strictly supported convex cone. Let F
___
A {0}

be a closed convex acute cone and suppose that F*-monotonicity is satisfied, then
M(CI A) ___M(co P(s) A).

Proof. Consider the subset C / F. By Lemma 4.4 0/(C)_ (F*)= F and since F
is acute we get 0/(C) -F ={0}. By [11, Corollary 9.1.2] C +F is closed and convex
and 0/(C + F) 0+(C) + F F. Hence 0+(C + F) f3 -0+(C + F)

__
F fq -F {0} and C + F

contains no lines.
Let xoM(C+FIA). By [11, Thm. 18.5] Xo=x+d where xx=i= Ag., d=

Y.=/+ Ad., each g (d.) is an extreme point (direction) of C + F, A. > 0 for every/" and

= A 1. Notice that d 0/(C / F) F which implies Xo-X F A {0}. Since
xoM(C +F[A) it means that Xo=X and Xo is in the convex hull of the extreme
points of C + F.

By [11, Thm. 18.6] M(C +FlA)_co E-- (C +FIR"). In matter of fact it can be
shown that M(C +F[A)___ co Ex (C +F[F*) as follows. Let a R" and xoC +F be
so that Xoa > xa for all x (C + F)\{Xo}. Choose any/3 F\{0}. Clearly Xo +/3 C + F
and Xoa > Xoa //3a. Hence/3a < 0 for every/3 F\{0} and by definition a F*. It is
easy to verify that M(C + rl A) M cl and Ex (C + rl Ex A) and so
M(CIA)___ co (C]F*). By Lemma 4.3 and the assumption that M(elA)_co(s).
Since co (/(s))__ C we getM(C[A)_M(co(s)lA).

The theorem suggests that the search for maximal elements in V(s), for a fixed
state s, can be limited to a smaller subset, namely co (F(s)).
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Notice that for A {0} we get M(YIA)= Y, so that the following corollary is
immediate.

COROLLARY 4.6. IfR n-monotonicity is satisfied then for every s S

V(s)=co(F(s)).

When V(s) is not convex the theorem is not necessarily true. The theorem then
states that a maximal return is dominated by a convex combination of stationary
returns. The corollary states that V(s)

___
co (F(s)).

5. Approximations for the sets of maximal returns and policies. A procedure to
approximate M(C[ A) is now presented. Basically the procedure suggests that for each
a A*, we must find a stationary policy, whose transformed return is maximal. Each
of these returns can be approximated by an algorithm which prevails in one-criterion
dynamic programming.

Let Y
_
R and a R n. The support subset of Y with respect to a is defined as

For A
_
R n, let

supp (Via) ={y Y]yc _-->y0aVY0 Y}.

supp (VIA)= LA supp (Yla).
otA

The main result is a corollary of Theorem 4.5.
COROLLARY 5.1. With the same conditions presented in Theorem 4.5

M(CI A)
_
co (supp (P(s) F*)).

In particular if A is closed then

M(CI A)
_
co (supp (if(s) A*)).

Proof. In the proof of Theorem 4.5 we showed that M(C]A)__ co Ex (C[F*). It
is clear that xoeEx(CIF*) implies XoeP(s)fqC and therefore x0eEx(/(s)lF*).
Since the support subset contains the exposed points the result is proven. [3

The corollary suggests that supp (if(s)la) should be approximated for each a e A*.
Using now the notation of 3, for fixed a A*, we can write

supp (P(s)la)={w(s)P(s)[(rw)(s)>-(rwo)(S)VWo V}.

By Lemmas 3.2 and 3.3 we can write

supp (/(s)] a)= {w(s)[ T(w)=f sup Gff}.
8D

Since G is a contraction and monotone operator in U, the usual optimization
schemes in dynamic programming will approximate T(w) f. Moreover, these schemes
also provide a stationary policy whose return approximates f. Thus, for every e > 0,
a stationary policy, A, can be found such that

II/- T(w)II < .
The following theorem uses this information to approximate the maximal set of

returns and policies.
THEOREM 5.2. Under the same conditions as in Theorem 4.5, let a A*, and

suppose that

I[f-T(wa)ll<-e forsome ADande >=0.
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Then for a fixed s S and any [3 -h

E
wA(S) +

Proof. By definition of strict polar cone,/3a > 0 so (e/[3a) is well defined. Suppose
wzx(s)+h C for some h >e/fla. Then

l(s)>=(w(s)+h) w(s) +h > w(s) +e,

which is a contradiction. Hence wa(s) +
By this theorem, if a maximal element of C exists along the ray wa(s)+ then

its distance to wa(s) is less than
In certain processes, particularly when the sets of states and decisions are finite,

we can find AeD with T(wa) =f. It is clear then that wa(s)sM(V(s)lA) for every
s S.,Otherwise wa(s)+/3 =y for some y V(s) and /3 cA, which contradicts the
theorem. This proves the following result:

COROLLARY 5.3. If the assumptions of the theorem hoM with e =0 then wa(s)
M(CIA).

6. Examples. Example 6.1. A common model is the infinite-horizon discounted
Markov decision process, with countable sets of states and decisions. The local return
function for w W and 8 D is

Haw ra + c Paw, where w W, ra W, c >- O, Pa R ss and Pa --> 0.
The boundedness and contraction assumptions are satisfied in several cases (e.g., c < 1
and Pa is substochastic).

To show R n-monotonicity, suppose that for a fixed

Then

T(w) >- T(w2) for any w, W2 Wo

T(Haw1) T(ra -/- cPaW l) T(ra + cPaT W l) >- T(ra + cPaT wz)

T(Hawz) for every 6 D.

This is true for any a R n; hence R n-monotonicity is satisfied.
Consider M(C[ A) where A {fl[fli-<_0/i /,/3 0}.
Then A* {alcei > 0i). By Corollary 5.1 we should look for

supp (ff’(s)la) for every a A*.

The operator Ga" U U is defined as

Gau =- T[HaL(u )] T,(ra) + cPau.
A known method to approximate f is by mathematical programming (see Denardo [2])"

f min u such that T (ra) + c Pau <- u for every 6 D.

When the sets of states and decisions are finite we have a linear programming model
whose dual is:

max (Y’. xaT(ra)) suchthat

xa(I-cPa)=l and xa_->0

for every 6D, where xaR ls and 1=(1,..., 1).
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This program, solved for every a A*, locates the set of all maximal solutions
of multiple linear criteria defined over a polyhedron. Efficient ways to solve the dual
program for each a A* were suggested in Viswanathan, Aggarwal and Nair [15],
Hartley [5] and Shin [13]. More recently, White and Kim [17] suggested successive
approximations and policy iteration techniques to solve the finite decisions case.

Example 6.2. Let n=2, S={1}, D={I0=<6-<l} and Hw=(max[&cwl],
max [1- 6, cw:]) where w e W R 2 and 0 <-c < 1. It is easy to verify that this model
satisfies the boundedness and contraction conditions.

The fixed point w Hw is w (& 1 6), 0 _-< 8 -< 1. Consider the nonstationary
policies F1 (61 =0, 6 l’t _->2) and F2 (6 1, 6, =0, Vt _->2). It is easy to verify
that Wr=(1, c) and w (c, 1). Clearly, if A={/3 R2]/3 =<0,/3 {0}} then (6, 1-6)
is dominated by some linear combination of wr and Wry_, so that no stationary policy
can be maximal. We shall note also that lexicographic maximization over the stationary
policies will produce the policy 1 for every t, giving us a dominated policy.

It can be shown that A-monotonicity in this case is satisfied only for A
{a ER2IoI a2 0}. Since A* ={a ERnlai >0i 1, 2} we have A* (’l A which vio-
lates the condition in Theorem 4.1.

Let A={/3 R2lta <0}, then A* {c R2laa >0, a2=0}

and A f-1A* which assures the existence of a stationary policy maximizing the
first criterion.

Example 6.3. Let n 2, s {1},D {61, 62}, Hlw (1, 1) + 1/2(w2, wl) and H2w
(1, 2) +1/2(Wl, W2).

Boundedness and contraction are satisfied, and it can be shown that A-monoton-
icity is satisfied forA {a s R21o1 c2}. The fixed points ofHr andHr2 are: w (2, 2)
and w2 (2, 4). When A={/3 R:l/3g _-<0,/3 {0}} then A fqA* and Theorem 4.1
implies that w2 is a maximal return. However A*-monotonicity is not satisfied and
the set of maximal policies cannot be expressed as a linear combination of the stationary
policies.
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IDENTIFIABILITY OF LINEAR SYSTEMS IN HILBERT SPACES*

SHIN-ICHI NAKAGIRIt

Abstract. The identifiability problem is discussed for linear dynamical systems described by first and
second order evolution equations in Hilbert spaces. The unknowns are the initial values and the operators
appearing in the system equations and a number of identifiability conditions are established within the
framework of linear operator theory. These are applied to various classes of partial differential equations
on bounded and unbounded spatial domains to obtain the constant and spatially varying parameter
identifiability conditions for such systems.

Key words, identifiability, distributed system, semigroup, eigenfunction expansion, system theory

1. Introduction. The present paper studies the identifiability problem for linear
systems in Hilbert spaces. In order to determine unknown parameters or operators
in a given system, the model reference method is usually employed, that is, the method
of minimizing the difference between the system outputs and the model outputs. In
the final stage of this process, there arises the problem of whether or not the parameters
or operators in the model system coincide with those in the true system when the
error between the outputs of both systems becomes zero. This problem, the so-called
identifiability problem, is of considerable interest and importance in the field of control
engineering and also gives rise to interesting questions in applied mathematics (see
[3], [16], [23], [24], [27] and the references cited therein). The purpose here is to
solve the problem in distributed systems in some abstract manner.

In recent years, there have appeared a number of papers which deal with the
identifiability of (constant and spatially varying) parameters in specific classes of
distributed systems of parabolic type [5], [16], [20], [21], [23], [26], [27]. In particular,
Kitamura and the author 16] proposed a method of solving the identifiability problem
which largely depends on the uniqueness of Dirichlet series. By applying the method
to various systems, many identifiability conditions are established for constant para-
meters in [5], [16], [21], [23]. Pierce [23] has sharpened the method in a satisfactory
way and has obtained an interesting identifiability result for spatially varying para-
meters with the aid of the Gel’fand-Levitan theory. Some complementary results to
[23] are also obtained by Suzuki and Murayama [26] and Suzuki [27] without using
the Gel’fand-Levitan theory directly. However, most results are limited to systems
described by 1-dimensional parabolic partial differential equations on bounded
intervals.

In this paper we consider the abstract systems represented by first and second
order evolution equations in Hilbert spaces and provide a formulation of the
identifiability problem by using their model systems. In the problem formulation, the
unknowns to be identified are initial values and an operator, which is assumed to
generate a semigroup or a cosine family, appearing in the system equation. We treat
the problem within the framework of linear operator theory and give a number of
abstract identifiability results under the basic assumption that the operator acting on
the state is selfadjoint (more generally, normal) with compact resolvent. This assump-
tion implies the existence of eigenvalues and eigenfunctions of such an operator, and
this enables us to treat the problem considered in [16]. Because of the generality of

* Received by the editors July 15, 1980, and in final revised form June 20, 1982.
t Department of Applied Mathematics, Faculty of Engineering, Kobe University, Rokkodai, Nada,
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our treatment, our results can be applied to a wide variety of dynamical systems
including those in [3], [16], [20], [21], [23], [26] (see examples in 4 and 5).

We enumerate the contents of this paper. In 2, the notation used throughout
the paper and a formulation of the identifiability problem in Hilbert spaces are given.
The representations of system states and preliminary results are given in 3. Section
4 is concerned with the unique identification of eigenvalues. For a bounded observa-
tion, some identifiability conditions of all eigenvalues are established in Theorems 4.1
and 4.2 for first and second order systems, respectively. Theorems 4.3 and 4.4, in
which the observation is not necessarily bounded, are for the identifiability of two
constant parameters in operators and are deduced from the coincidence of two
eigenvalues. Section 5 is concerned with the identifiability of the whole system, in
other words, the unique identification of the initial values and the operator (i.e., its
eigenvalues and eigenfunctions). To identify the system requires finite numbers of
zero output errors. For the whole domain observation, the rank conditions for
identifiability are established in Theorems 5.1-5.4. The rank conditions named the
compatibility conditions are expressed in terms of the known (model) quantities only.
In 6, an extension of Theorem 5.1 is given, and the relations between identifiability
and observability and controllability are discussed. Applications to identifiability for
some parabolic and hyperbolic partial differential equations on bounded and
unbounded domains are given in Examples 4.1-4.3 and 5.1, 5.2. Detailed investiga-
tions of the practical identifiability problems are made in these examples, requiring
some additional knowledge of such equations. In Example 4.1 the identifiability of a
spatially varying coefficient in some 1-dimensional hyperbolic equation (of normal
type) is established via the Gel’fand-Levitan theory. Examples 4.2 and 4.3 give the
constant parameter identifiability conditions of N-dimensional parabolic and hyper-
bolic equations, respectively. The identifiability of coefficients in a second order elliptic
differential operator (on a bounded domain) by means of initial and forcing inputs is
established in Example 5.1. Example 5.2 treats the identifiability of a potential in the
Schr6dinger equation.

2. Basic notation and statement of the problem. We use the following notation
throughout this paper.

R + [0, );
R r, the Euclidean N-space;
R R " Cr, the complex N-space"
X, the underlying complex separable Hilbert space with inner product (.,. (the

corresponding norm is denoted by
Y, a Banach space;
L(X, Y), the space of all bounded linear operators with domain X and range

in Y;
C(J; X), J R, r 0, 1, 2, ., the space of all r-times (strongly) continuously

differentiable functions from J into X;
Lp (J; X), J c R, p _-> 1, the space of all equivalent classes of (strongly) measurable

functions from J into X which are p-Bochner integrable on J;
C(R +’, X)= C(R +’, X);

loc +Lp (R ;X) ("lt>o Lp([O, t]; X);
Lp(J) Lp(J; C1), J c:: g
LlOC +) llc Cp (e (R +

G, a (closed or open) domain in gN"

G, the closure of G;
OG, the smooth boundary of G;
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Cr(G)(Cr(OG)), r 0, 1, 2,. , the space of r-times continuously differentiable
functions on G(OG) with values in C 1.

C(G) C(G)’C(G), f’l r=0 C (G)
C(oG) fq C--o (oG)
C(G)(Co(G)), the set of all functions in C’:":’(G)(C"(G)) having compact

support in G ,gG

L2(G), the complex Hilbert space of all square Lebesgue integrable functions on
G (its inner product and norm are denoted by (.,. }a and I[" I[, respectively);

H,(G), the Sobolev space on G of order m.
The spaces Lp([a,b]), C"([a,b]), etc. on [a,b](a <b) are denoted simply by

Lp[a, b ], Cr[a, b ], etc.
Consider the following first and second order linear systems on X"

(2.1) $1" 2(t)=Ax(t)+f(t), x(0) Xo;

(2.2) $2: 2"(t)=Ax(t)+f(t), x(0)=Xo, 2(0)=yo,

where x(t)eX, Xo, yoeX, f(’)Ll2C(R/;X) and A is a closed linear operator with a
dense domain D(A)cX. In the systems S1 and $2, the initial values Xo, yo and the
forcing function (. are considered to be system inputs. The observation of the system
state x(t) of $1 or $2 is

(2.3) y(t)=Bx(t), t>-O,

where B L(X, Y) is the observation operator. The function y(t) is called the system
output.

We assume throughout this paper that the following conditions are satisfied for
the identifiability of the systems $1 and $2’

I. The operator A is unknown except that"
(i) A in the system $1 generates a strongly continuous semigroup {T(t):

R +}, and
(ii) A in the system $2 generates a strongly continuous cosine family {C(t):

tR}.
II. The operator B is a priori known.

III. The initial values Xo, yoX are unknown but the forcing input (.)
Llc(R +; X) is known.

A and Xo, yo are unknown quantities to be determined.
From I and III (more generally, from the weaker condition that Xo, yoeX,

f(. LllC(R +; X)), it follows that the functions

(2.4)

and

xl(t)= T(t)Xo+ T(t-s)f(s) ds

(2.5) x2(t)=C(t)xo+S(t)yo+ S(t-s)f(s)ds

make sense as the sums of a continuous function and a Bochner integral in X and
are strongly continuous on R +, i.e., xl(’), x2(’) C(R +’, X). Here the operator S(t)
is defined by

(2.6) S(t)x C(s)xds, x X, tR.
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The function xl (resp. X2) is called the mild solution of $1 (resp. S2). In this paper we
treat the identifiability problem by means of the mild solution.

For the given systems $1 and $2, we also consider the model systems $7’ and
which are given by replacing A, Xo and A, Xo, yo in $1 and Sz by A" satisfying I(i),
x’ X and A" satisfying I(ii), x, y eX, respectively. The corresponding mild
solution of S is denoted by x (t) (f 1, 2). All quantities suffixed by are assumed
to be known.

Let J be an interval in R +. The difference

(2.7) e(Si, ST;t)=yi(t)-yT(t)=Bxi(t)-BxT’(t), teJ,

is called the output error between Sj and $ on J.
Now the identifiability problem for $1 (resp. $2) can be stated as follows:
Under what conditions do A A" and/or x0 x (resp. A A" and/or Xo x,

yo y) follow from the zero output error on J

e(S, 87; t) 0 (resp. e(S2, 87; t) O) in Y, J?

Remark 2.1. The assumption I(ii) is equivalent to the existence of a unique weak
solution of $2. That is, for any Xo, yo X and f(. L]C(R +’, X), there exists a function
x (.) C(R +; X) such that for any v 6 D(A*) (A* denotes the adjoint of A), (x (t), v
is differentiable on R+-{0}, (d/dt)(x(t), v) is locally absolutely continuous on R +

and (x (t), v satisfies

d2

dt(x(t), v)=(x(t),A*v)+(f(t), v) a.e eR +

x(0) =Xo,
d
<x(0), v>=<yo, v>.

Furthermore, the weak solution x (t) is given by the right-hand side of (2.5). Recently
a similar fact for the system Sx in a general Banach space has been established by
Ball [2].

Remark 2.2. Let A satisfy I(ii) and let f(.)eCa(R+;X), Xo{X eX: C(.)xe
C(R;X)}, yoe{X X: C(.)x C(R;X)} be satisfied. Then the mild solution x2(t)
defined by (2.5) is a unique strong solution of $2, i.e., x2(" ) C2(R+;X), x(t)eD(A)
for each e R +, and Xz(t) satisfies the equalities in (2.2) (el. Travis and Webb [29]).
See also the next section.

Remark 2.3. Under the assumption I(ii), A generates an analytic semigroup T(t)
on the half plane {t e C: Re > 0} which is given explicitly by

(2.8) T(t)x =t exp - C(s)xds, x eX, t>0.

For more important properties of cosine families, we refer to the fundamental papers
by Fattorini [8] and Sova [25].

3. Spectral theory and representations of mild solutions. To discuss the
identifiability by using the general theory of spectral decompositions, we suppose that
the operator A and its model operator A satisfy the following assumption (H)
throughout the paper.
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(H). A is selfadjoint with compact resolvent.
Under the assumption (H), the next general fact on the eigenfunction expansions

for A holds (cf. Kato [14, p. 277], Triggiani [30, p. 323], [31, p. 857]).
There exists a set of eigenvalues and eigenfunctions (h,, &,.’/" 1,..., m,, n

1, 2,...} of A such that:
(a) The spectrum r(A) {h, n 1, 2,...} c R and

(3.1) +oo>C>-_hl>h2 >.. .>1,>..., lim h, =-oo.

(b) The system {4,"/’ 1,..., m,, n 1, 2,...} is a complete orthonormal sys-
tem in X, i.e., the following unique expansion holds:

x E E (x, ,n;),.;,
n=1]=1

xX.

(c) Ax, x D(A) and R(, A)y, y X, h o’(A) are given respectively by

mn
(3.2) Ax E . E (x, cni)4).i,

n=l /=1

(3.3) O(A) x x: E I.12 2 I<x, .;>1= < o
n=l ]=1

and

(3.4) R (A A)y (A A)-ly E 1 E (Y, b,j)b,i.

(d) If A satisfies I(i), then the semigroup T(t) generated by A is given by

(3.5) T(t)x E e x"t Y (x, 49.i)d., x X, R +.
n=l /=1

(e) IfA satisfies I(ii), then the cosine family C (t) and the sine family S (t) generated
by A are given respectively by

?tin

(3.6) C(t)x Y cos 4Z-h.t E (x, b..)b.i, x X, R,
n=l j=l

and

(3.7) S(t)x , sin

4-X.
(x, bn.)b.., x e X, e R.

Here we remark that if . =0 for some n, the term (sin #t)/# in (3.7) is
replaced by t.

The following propositions are evident.
PROPOSITION 3.1. The miM solugon (2.4) ofS is given by

n=l ]=1
(3.a)

+ e (f(s), ) as , e R +.
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(3.9)

PROPOSITION 3.2. The mild solution (2.5) of S2 is given by

’" sin 4S-A.t /’tln

X2(t) E COS x/t E (Xo, O.i).i +.E 121-= i= -h

.a ,’ (Io’ sin /-S-.(t-s) (f(s), da.i) ds)d.i, t R +.+
4-

Similar representations hold for the mild solutions of models.
Let k be a nonnegative integer. Define the space H, (R +; X) by

H, (R +’, X) {f(. )LC(R +’, X)" f(t) D(A k) for a.e. R +

and A ’f(. L(R +; X)}.
It is proved by direct calculations that if xoD(A) (resp. x0, y0D(A)) and f(.)
HC (R +; X), then xa(t) in (3.8) (resp. Xa(t) in (3.9)) is the strong solution of Sa
(resp.

By (3.1) and (3.8), it is verified that the mild solution xa(t) of Sa belongs to D(A)
for each > 0 if x0X and f(. )Hk (R +; X). In the case of Sa, the circumstances
are slightly different. That is, the mild solution xa(t) of Sa belongs to D(A) for each
=>0 if Xo, yoD(A) and f(.)H (R +’, X).

Now we consider some restrictive, not necessary bounded, observation operator
B. Assume that:

(3.10) B is a continuous linear functional on D(A k) (so that Y Ca).

Here the topology of D(A)is induced by the graph norm

IIxlID(A--Ilxll+llAxll for x eD(A).

Then we have the following propositions which will be used for the case of pointwise
observation in the next section.

PROPOSITION 3.3. Let xoX, f(’)H(R+;X) and let B satisfy (3.10). Then
the output yl(t) orS1 is given by

(3.11) yl(t) E E (Xo, &,i)B&, eX"t + E eX"(’-) (f(s), Cni)BO, ds
n=l j=l n=l /=1

for >0. Moreover, the first series in (3.11) converges uniformly on [, ) for any fixed
> 0 and the second series converges uniformly on any compact set in R +.

PROPOSITION 3.4. Letxo, yoe D(A), f(. )eH (R+; X) and letB satisfy (3.10).
Then the output y2(t) of $2 is given by

y2(t) E (xo, .)B. cos 4.t
n=l

(3.12) + 2 (Yo, ,i)B,i
sin (t

n=l 1=1 2hn

fo sin ,(t-s)( " (f(s), &i)N&,i)ds, t R +.

Moreover, all series in (3.12) converge uniformly on any compact set in R +.
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4. Identifiability of eigenvalues. In this section we discuss the identifiability of
eigenvalues of unknown operator A. Since the operator A and its model operator
A satisfy the assumption (H), there exist the sets of eigenvalues and eigenfunctions
of A and A satisfying (a), (b), (c) in 3, which we denote by {A,, b,.:/’ 1,..., rn,
n 1, 2,...} and {An, (:I:)m’: f 1,..., k,, n 1, 2,...}, respectively. The set {An, nj}
is considered to be known. Let Xn (X:’) be the eigenmanifold corresponding to the
eigenvalue An (An) and let Pn (P’) be the associated eigenprojector, i.e.,

Xn Ker (A, -A) (X7 Ker (An -A’)) and

/=1 /=1
xX.

Here mn= dim Xn (resp. kn dim XT) and m sup {mn n 1, 2, .} (resp. k
sup {kn: n 1, 2,...}) is called the multiplicity of A (resp. A").

DEFINITION 4.1. The eigenvalues {An: n 1, 2,...} of A in S. are said to be
identifiable on J if the zero output error e (S., $7 t) 0 in Y, s J, implies An An for
all n 1, 2,.. (f 1, 2).

Let the space of observations Y be C 1. Then by Riesz’s theorem, the observation
operator/3 is given by

(4.1) Bx (w, x) for some w sX and for all x X.

For a less restrictive observation operator in specific cases we refer to the examples
in this section.

From (3.8), (3.9) and the continuity of inner product (or from (3.11), (3.12) with
k 0) it follows that the output errors e ($1, $7’ t) and e ($2, S’ t) are represented by

e(S1, $7; t) E (w, Pnxo)e x"’ E (w, P’x’)e
n=l n=l

(4.2)
+ e Pnf(s)) ds- e -S)(w, P’f(s)) ds,
n=l =1

t6R +

and

(4.3)

e(S2, S’ t) Y (w, Pnxo) cos /---.t- E (w, P’x’) cos
n=l n=l

+ 2 (w, PnY0)
sin /--.t_ 2 (w, PTY 0

sin /AA.t

I0tsin 4--L-n(t-S)(w, Pnf(s)) ds+ .E=
(w, P’f(s)) ds, R +,Isin /LAn(t-s)

respectively. It is clear that e ($1, S] ), e ($2, $7 C(R +).
Using the expression (4.2) and the uniqueness of Dirichlet series, we obtain the

following result which gives an abstract version of the result by Pierce [23, Thm. 1]
to linear systems of first order. However, our result does not include Pierce’s result
as a special case, since ours is for distributed observation, while his is for pointwise
observation.
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THEOREM 4.1. Let the observation operator B be given by (4.1). The eigenvalues
{An" n 1, 2,. .} o[A in $1 are identifiable on J in the following two cases"

-loc +i) If J is of positive measure, f(. O in (R X) and if (w, P,xo) O,
(w, P’2x’) 0 for all n.

ii) If J [0, T], T > 0 (resp. J R /), Xo x’g 0 in X, f has the form zog(t),
zoX, g(’)e L(R +) such that g(. O in L[O, T] (resp. g(. O in Ll(R+))
and if (w, Pnzo) O, (w, PTzo) 0 for all n.

Proof. Case i). In this case the output error e on J is given by

e(S1, S1; t)= Cnehnt- 2 CeA"t, SJ,
n=l n=l

where c, (w, Pnxo}, cn (w, Pnxo ). Assume that e(Sl, Sl t) 0 for all in J. Since
J is of positive measure and both series of e converge for all in R +, we see by the
analytic continuation that e($,$’; t)=0 for all in R +. Then if c 0, cn 0 for
all n, we have hn hn and c, c for all n by the unique expansion of Dirichlet series.

Case ii). Since xo x’ 0, the output error e on J is given by

e(S, St; t)= 2 hne h"(t-)- 2 g(s) ds
n=l n=l

h(t-s)g(s)ds, tel

where h=(w,P,zo), h’2 =(w,P’zo). Let J [0, T], T>0 and let e(sl, s’c; .)=o in
C[O, T]. It is clear that h(t) is continuous on [0, T] (and analytic on (0, T]) and
g(’)eLa[0, T]cLI[0, T]. Then by the extended Titchmarsh’s theorem [28, Thm.
151, pp. 324-325] there exist two nonnegative numbers t and t satisfying tl + ta T
such that h(t)=0 for all e f0, tl] and g(t)=0 for almost every e f0, t]. Define a
number tg->_0 by tg =sup{t" g(s)=0 for a.e. s e[0, t]}. Then the condition tg<T is
equivalent to g(.) 0 in L[0, T], and this implies h(t)=0 on [0, T-tg), so that
h (t)= 0 on R /

by analyticity. Therefore, as in Case i) the identifiability of eigenvalues
{h" n 1, 2,...} on J [0, T] follows from h, -0, h : 0 for all n. If J R +, then
the conclusion follows immediately from Titchmarsh’s theorem [28, Thm. 152, p. 325].

For linear systems of second order, we establish the next theorem.
THEOREM 4.2. Let the observation operator B be given by (4.1). The eigenvalues

{An" n 1, 2,. .} ofA in S2 are identifiable on J in the following cases"

i) IfJ is ofpositive measure, f(. 0 in LC(R +; X) and if
(w,Pxo)O, (w,P’x)O foralln orif
(w, Pnyo) 0, (w, PTy’) 0 for all n.

ii) If J [0, T], T > 0 (resp. J R +), Xo=Xo yo y o =OinX, fhastheform
zog(t), zoX, g(.)LzC(R +) such that g(.)#O in L2[O, T] (resp. g(.) 0 in L(R+))
and if

(w, P,zo) # O, (w, Przo) 0 for all n.

Proof. Assume that for each in J,
,oo sin x/L-,t sin /Z-t

(4.4) Y c, cos x/---,t- c cos x/-Ant+ Y d, - d’ =0,
n=l n=l n=l x/Lh, ,=

where c, (w, P,xo), c, (w, P,xo and d, (w, P,yo), d, (w, P’yo ). Assume also
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that J is of positive measure. Then by analyticity of sine and cosine functions on R,
the equality (4.4) holds for all in R. Therefore, by using the same argument contained
in [31, p. 857], we obtain that

and

c (t) Y, c cos x/----,t E c7 cos /ZAnt 0,
n=l n=l

sin 4----.t sin
d(t)= E d, E d7 =0, t0.

Since c (t) is bounded by a function of exponential order (finite numbers of eigenvalues
may be positive!), the integral transformation of c(t) can be taken to obtain that

(4.5)
( exp c(s)ds= n=lE Cnex"t- n=lE CeA"t=O, t>0.

Next differentiating d(t) and taking the same integral transformation, we have

(4.6) dnex"t- E d7eA"t=O, t>0.
n=l n=l

The equalities (4.5) and (4.6) prove this theorem in Case i). The proof of Case ii) is
similar to that of Theorem 4.1.

The above theorems require some information on unknown functions. For
example, in Case i) of Theorem 4.1 the condition that (w, P,xo) 0 for all n, in which
all Pxo are unknown, is necessary for the identifiability of eigenvalues. If the condition
is not satisfied, however, the coincidence of all eigenvalues does not follow. Actually,
let (w, PTx) 0 for all n and let (w,Pxo)=O for some n (say no). Then the zero
output error implies {A,: n 1, 2, .} c {h, n 1, 2, .} and A,o h,o, which means
the nonidentifiability of {h, :n 1, 2,...}.

In some classes of linear systems described by 1-dimensional partial differential
equations, such conditions (of unknown functions) are automatically satisfied (see [23,
Thm. 2], [26], and the following example).

Example 4.1. Consider the system described by the hyperbolic partial differential
equation

a () + b ()x, > 0 (0, 1)(4.7)
Ot

with boundary and initial conditions

(4.8)

(4.9)

OX
aox(t, 0)-(1-ao)-(t, O)=ax(t, 1)+ (1-al)-(t, 1)=0,

x(0, )= xo(), (0, )= yo(), (0, ),

where a(), b() are real functions and ao, a are constants such that 0<_-ao, O1 -< 1.
For the system (4.7)-(4.9) we assume the following conditions (which are weaker than
those used in [16], [23], [26]):

(IV) the spatially varying coefficients a(’) and b() are unknown except that
a()>0 for [0, 1], a(.) C1[0, 1] and b(.) C[0, 1];
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(V) the boundary coefficients ao, a and the initial conditions Xo(’), yo(’)
L2[0, 1] are unknown.

By the model we understand the system (4.7)-(4.9) in which a(), b(), ao, ax, Xo()
and yo(:) are replaced by a"(:), b’(:), a, aT’, x (:) and y () satisfying the same
conditions as in (IV) .and (V), respectively.

We denote by A the realization in L2[0, 1] of the Stfirm-Liouville operator
(O/O)(a()O/O)+b() with the boundary condition (4.8), i.e., the operator A is
given by

D(A) z L[0, 1]’ z H[0, 1], a-o-H[O, 1] and

Oz Oz }4.0 ozt0- o)0) zI+ t a) o,

Ax=-o- a() x +b()x forxD(A).

Similarly the realization of model is denoted by A". Then the system (4.7)-(4.9) and
its model can be written by the following evolution equations in L[0, 1]:

S: (t)= Ax(t), x(0) Xo, 2(0) yo,

S: (t)=A’x(t), x(0) x, 2(0) y.
Since A and A satisfy I(ii) and (H), there exist two sets of eigenvalues and eigenfunc-
tions {h, &, :n 1, 2,...} of A and {A, , :n 1, 2,...} of A" (the multiplicity is
1) such that the mild solutions x of $ and x" of S" are given respectively by

x(t, ") E
n=l

(4.)
x/-h,t

+ E (Yo, 4,)o,ll
sin

b, ("),

x(t, , (x’, ,)o, cos x/-A,t, (.)
n=l

(4.12)

+ Z <Y, (I)n>[0,1]
n=l

where (u, v >[o,a o u (()v (:) d.
It is also known [11, pp. 270-273] that

sin 4---
x/-mn

(4.13)

and

b,, ,, n 1, 2, , are uniformly bounded on [0, 1

where C and C" are constants depending only on a and a’, respectively.
Then ifa=a ,wehaveC=C.
The substitution and elsewhere x(t, ) of : in (4.11) has sense as a continuous

function in for almost every [0, 1]. This function x (t, ), which defines an element
/-loc +in 2 (R L.[O, 1]), is the weak solution of (4.7)-(4.9) in the sense of Ito [13, Chap.
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IV]. It is verified that x(t, j) satisfies (4.7) in the sense of distribution (cf. Lions and
Magenes [19, pp. 292-294]). Next we consider the strong solution of (4.7)-(4.9). Let
Xo, yoD(A). Then by (4.13) and (4.14), we have

I<X0, 6n>[O,116n ()l Cl[[Axo[[[o,a]/n2,
I(yo, 6.)o,,,. (:)[ c2llAyollto,/n z

for large n, where Ca, C2 are constants not depending on n. Hence the substitution
and elsewhere x(t, ) of in (4.11) has sense and converges uniformly on any compact
set in R / for all [0, 1]. In this case the mild solution x(t,.) is the strong solution
of S (see Remark 2.2 and 3). The function x(t,) on R/x[0, 1] is also called the
strong solution of (4.7)-(4.9) (in the sense of Ito). It would be interesting to note that
the strong solution x(t, ) is the classical solution of (4.7)-(4.9) if Xo, yoD(A2). The
analogous fact holds for the model solution.

We now consider the two different types of observation on J c R +’

(i) Observation by distributed measurement:

(4.15) y(t)=(w,x(t, ")>[o,1], tJ, wL2[0, 1].

(ii) Observation by pointwise measurement"

(4.16) y(t) x(t, G), J, G e [0, 1].

The type (i) observation is for the mild (or weak) solutions and type (ii) is for the
strong solutions.

COaOLLAaY 4.1. Let a a’.
In the system (4.7)-(4.9) the eigenvalues {hn: n 1, 2,... } ofA given by (4.10)

are identifiable on J of positive measure in the following cases:
a) If the observation is given by (4.15) and if

or

or

(x’, n)Eo,al (w, n)Eo,al # 0 for all n

(y’, n)o,a (w, n)to,a # 0 for all n.

b) If the observation is given by (4.16), Xo, yoD(A), x, y D(A’) and if
(x’, cbn)o,a (G) 0 for all n

<Y, (I)n >[0,1 ](I)n (G) 0 for all n.

Proof. In both cases the output error is bounded by some function of exponential
order. Then, as in the proof of Theorem 4.2, the zero output error implies that

(4.17) Cne x’t ’. Ce A’t, > O,
n=l n=l

and

(4.18) Z dne"’= , d7eA"t t>0
n=l n=l

where c, <Xo,
<w, 4’,)o.,, d’ <y, ,)to. <w, ,)to. in Case a), and c, <Xo, 0,>to.aO,(G), c’
<x’, ,)o.,,(G), dn <yo, &n)o.alOn(G), d7 <yU, ,)o.al,(G) in Case b).
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If c;’ 0 for all n or d;’ 0 for all n, then by (4.17) or (4.18) we have {An: n
1, 2,...}={h,: n- 1, 2,...}.

This inclusion and the asymptotics (4.14) of hn and An mean that hn An for all
n, since C

In Case b) the assumption of unknowns that Xo, yoeD(A) is required. But the
assumption is satisfied if Xo, yoe C[0, 1] (or, ao, al are known, Xo, yoe Ca[0, 1] and
Xo, yo satisfy the boundary condition (4.8)).

In what follows we assume the following condition (VI).
(VI) b, ao, a l, Xo, yo are unknown but it is known that a()= 1 for all (e [0, 1],

b(.)e Ca[0, 1], 0_-<ao, al< 1 and Xo, yoeD(A) (or Xo, yoe C[0, 1]).
For the strong solution of (4.7)-(4.9) we consider the following observation on J of
positive measure’

(iii). Observation from boundary:

(4.19) y(t)={x(t, O),x(t, 1)}, eJ.

Differently from the above corollary it is assumed that the eigenfunctions
are normalized so that

(0) n (0) 1 (since ao, a 1, a, a 7’ < 1).

We put pn =llenll[o,1], Kn =l[n[I[o,1], n 1, 2,.... Let <x, (I)n)[0,1]0 for all n or
<y, ,>[o,1] 0 for all n. Then as in Corollary 4.1 we see that the zero output error
by the type (iii) observation implies that

(4.20) hn=An, 0n(1)=n(1), n=1,2,.’’,

and

(4.21)
(Xo, 4)n)[O,1]/Pn (X, dPn)[O,1]/Kn, (YO, (n)[O,1]/Pn (Y", dPn)[O.1]/t.,

n=1,2,....

As shown in Murayama [20] it follows from (4.20) that 0n n, n 1, 2,.... Since
the spectral characteristics {hn, pn: n 1, 2,...} determine b(:) and ao, a uniquely
(Gel’fand-Levitan theory [9], [23, p. 498-499]), we have by (4.20) that

b(’)=b"(’) for all " e [0,1] and ao=a’, al=aT.
Thus {n: n 1, 2,...}={n: n 1, 2,...}, and hence by (4.21),

Xo(:) x’ ((), yo(() y (:) for all (e [0, 1].

Therefore we have the following corollary:
COROLLARY 4.2. Let the condition (VI) be satisfied in the system (4.7)-(4.9) and

let the observation be given by (4.19). Then the coefficient b($), the boundary coefficients
so, a and the initial values Xo(), yo($) are identifiable on J of positive measure if
(x’, (Pn)[o.1] # 0 for all n or (y’, cPn)Eo.1 # 0 for all n.

We now consider the identifiability of constant parameters in operators. In the
systems 81 and $2, it is assumed that the initial values Xo, yo are known and the
unknown operator A has the form

(4.22) A aAo + b.

Here a and b are unknown real constants, but it is known that a > 0, b R and Ao
is an a priori known operator satisfying (H). We denote the set of eigenvalues and
eigenfunctions of Ao by {zn, On"/’- 1,..., rn, n- 1, 2,...}. It is also assumed that
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Ao in S. satisfies I(i) if/’ 1 and I(ii) if/" 2, so that A in S1 satisfies I(i) and A in S2
satisfies I(ii).

The new feature here is that we can test a priori whether or not the system is
identifiable, because we already know Ao and thus its projections pO (see Theorems
4.2, 4.3 and Example 4.2 below). This is not the case for the previous theorems.

In the following we consider some restrictive class of observation operators. Let
the observation operator B satisfy (3.10) with A =Ao (we write this by B
LF(D(Ao))). For any (a,b)(R/-{O})R and fixed xoX (resp. Xo, yoD(Ao)),
f(.) Hk (R /’, X), the output yx(a, b’, t)=Bx(a, b’, t)(resp, y2(a, b’, t)=Bx2(a, b’, t))
defines a continuous function on R/-{0} (resp. on R/), where xj(a,b; t) (/’ 1,2)
is the mild solution of S. with A aAo + b. For any interval J we define the nonlinear
map

K’ (R+-{0}) R - C(J) by

K(a, b)(s) y.(a, b; s), s J (/’= 1, 2).

The following definition does not require any information on the model systems.
DEFINITION 4.2. The pair of parameters (a, b) in S is said to be identifiable on

J if K is an injection (/" 1, 2).
The above definition implies that the parameters a, b in Si are identifiable on J

if and only if a a’ in R /-{0} and b b’ in R follows from

e(Si, S t)= K(a, b)(t)-K(a’, b’)(t)= O,

Let f=0 in LC(R+; X) and B LF(D(Ao)). Then it follows from Propositions
3.3 and 3.4 and (4.22) that

o -e ), t>0,(4.23) e(S1, S’ t)=
n=l

and

(4.24)

e(S2, S’ t)= E B(P,xo)(cos /-/xnt-cos
n=l

+ , B(P,yo)(sin-/-tz"t-sin4ztxnt R+,

where Ix. =az. +b, /x’ =a’z, +b’ and P,x= (x, 4,)4,,, x X, n 1, 2,....
In (4.24) it is assumed that Xo, yoD,-,, so that
2n__l [B (e,yo)[ <

Concerning the output errors (4.23), (4.24), we have the following propositions’
PROPOSITION 4.1. Let {,}n=l, {/-/, ,}= be strictly monotone decreasing sequences,

and let ., ’.tc,e’"’, Y,= c,e converge uniformly on [, 0o) for each 6 > O. Then

(4.25) Y’. c, (e ""t e "’"t) O, > O,
n=l

if and only if

(4.26) c, (/x, -/x ,) O, n 1, 2,.. .
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PROPOSITION 4.2. Let Y=l[Cl<oo and 2__l[dl<c and let (/L/,n}7= and
{z’n}.=l be strictly monotone decreasing sequences. Then

E c(cos 2,t-cos -t)
n=l

(4.27)

(sin4Wnt sin 4Zt)+ d, =0, t>0,

g and only g
(4.28) c.(.. -..) dn(n-..) 0, n , ,. ..

Proof of Proposition 4.1. This proposition is first stated in [16, Lemma 3] but the
proof is not given there. We give here a simple proof which is similar to [30, Rem.
3.5]. It is sucient to show that (4.25) implies (4.26). First we prove that c (> > 0
by contradiction. Suppose on the contrary that Cl 0 and > > (we let >1 > > ).
Multiplying both sides of (4.25) by e-"", we obtain

(4.29) Cl--Cle
("-"*}t + Cn(e (""-")t --e (";-"Or) O.

n=2

The second term of (4.29) converges to 0 as +m. Since the third term of (4.29)
converges uniformly on [1, m) and each subterm of the third term converges to 0
because of >n <> for all n 2 and > <> for all n g 1, then the third term itself
converges to 0 as + m. Then we have c 0, which contradicts the assumption. Next
suppose that c (> > c(> >) 0, m g 2. Then the sum of first m terms
of (4.25) equals zero, and hence by similar arguments as above we see that c+1(>+1-
>re+l) 0. This proves (4.26) by mathematical induction.

ProofofProposition 4.2. Since E= Ic,[ < m, the first trigonometric series in (4.27)
is bounded by a function of exponential order. Then as in the proof of Theorem 4.2,
we see that (4.27) implies

(4.30) E c, (e ""t e "’"t) O, E d, (e ""t- e "’"t) 0, > 0.
n=l n=l

Hence as shown in Proposition 4.1, (4.28) follows from (4.30).
For any x, y e X, we define rank {B (Px)" n 1, 2, .} and

rank {B (Px), B (ey). n 1, 2,...} by e {n" B (ex) o} and {n" B (Px) 0 or
B(Py) 0}, respectively. Here {...} denotes the potency of the set {...}, i.e., the
number of elements in {...} (this permits m).

The following Theorem 4.3 extends our previous results [16, } 4] to abstract
systems of first order.

THZOaZM 4.3. Let A in S have the form (4.22) and let B LF(D(A)).
i) If xoeX is known and [(.)= 0 in L(R+; X), then the pair of parameters

(a, b) in S is identifiable on J ofpositive measure g and only g

(4.31) rank {B (Pxo)" n 1, 2,...} >= 2.

ii) If xo=O in X andf has the form zog(t), zoD(Ao), g(.)eLlzC(R +) such that
g(.) 0 in L2[O, T], T>O (resp. g(.) 0 in LlzC(R+)), then the pair of parameters

[16, Result 12, p. 798] is incorrect. A corrected statement of the result was given by Courdesses [33].
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(a, b) in Sa is identifiable on [0, T] (resp. on R +) if and only if
(Pnzo)’n 1, 2,.. "}->_2.(4.32) rank {B o

Proof. Case i): We shall show the "if" part. Let (4.31) be satisfied. It then follows
0 othat there exist two distinct numbers n a, n2 such that B(PnlXO)0, B(Pn2xo)0.

Assume that e(S1, S’; t)=0, eJ. Then by (4.23), meas (J)>0 and Proposition 4.1,
Since ’,1 z,2, these equalities imply (a, b) (a’, b’)andtz, :.we have tZnx tz ,1

This shows the identifiability of the pair (a, b). The proof of the "only if" part is the
same as given in 16, Result 10].

THEOREM 4.4. Let A in $2 have the form (4.22) and let B LF(D(Ao)).
i) If Xo, yoD(Ao) are known and f(.)=0 in L2c(R+;X), then the pair of

parameters (a, b) in $2 is identifiable on J of positive measure if and only if
(P,xo),B(e,yo)’n 1, 2,...}_->2;(4.33) rank{B o o

ii) If Xo yo 0 in X and f satisfies the same condition as in Case ii) of Theorem
4.3, then the same conclusion holds for the system $2.

This theorem follows from Proposition 4.2 and the representation (4.24) of the
output error e (6’2, S; t).

It is worth noting that the finiteness of the multiplicity of A is not necessarily
required for the identifiability in Theorems 4.1-4.4 as distinct from the case for finite
controllability as studied in Fattorini [7].

Remark 4.1. Consider the identifiability of l+ 1 constant parameters ao,
a at in the operator A =_t/=0 ai(-Ao) Assuming that (a0, al, a)
R (R/)t- (R/-{0}), A0 is negative and satisfies (H) and I(i) or.I(ii), 0= ko<
kl " kl are known constants, Theorems 4.3 and 4.4, in which the pair (a, b) and
the (rank) number 2 in (4.31), (4.32), (4.33) are replaced by (ao, aa," ", al) and + 1,
are also true.

Example 4.2. Let G be a bounded domain in RN with smooth boundary
We consider, on the domain G, the following system described by the initial boundary
value problem of a parabolic partial differential equation’

0x
(4.34) -(t,j)=aAx(t,,)+bx(t,j), jG, t>0, (a>0, b’constants),

OX
(4.35) a()x(t,7)+(1-a(l))-;---(t, rt)=O, rt6OG, t>0,

or/

(4.36) x (0, )= Xo(), e G.

Here A is the Laplace operator and O/On denotes the outward normal derivative. It
is assumed that o(.)C(OG) and 0_-<a<=l everywhere on OG. For the system
(4.34)-(4.36) we assume that the initial value Xoe L2(G) and the boundary coefficient
c (r/) are a priori known while the diffusion coefficient a > 0 and the radiation coefficient
b R (or the size b R of a uniform feedback Fx bx) are unknown. We denote by
Ao the realization in Lz(G) of A under the boundary condition (4.35). Since A0
satisfies (H) and I(i) (also, I(ii)), there exists a set of eigenvalues and eigenfunctions
{-,, On."/" 1, , rn, r/= 1, 2, .} (known quantities!) of A0. That . C(d) for all
n, f is also known 1 ], 12], 13 ]. The function

?’it

(4.37) x (t, ) Z ea’"+b)’ (Xo, O,’),(C), > 0, ( G,
n=l /’=1
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is a weak solution of (4.34)-(4.36) in the sense of Ito [13] or Ladyenskaya,
Solonnikov and Ural’ceva [17]. It is shown in [13, Chap. II] that x(t, ) in (4.37)
converges uniformly on [8, )x G for each 8 > 0 and satisfies (4.34) and (4.35) in
classical sense. By considering this weak solution x(t, ) as a function x(t,.) L2(G)
in > 0, we see easily that x(t)= x(t,.) is the mild solution of the following evolution
equation in L2(G)"

(t) aAox (t) + bx (t), x (0) Xo.

Here parameters a, b are to be determined uniquely. It would be evident that

= D(A) for all > 0.
We now consider the following two types of observation on J of positive measure

as in Example 4.1.
(i) Observation by distributed measurement:

y(t)=(Wo, X(t, ")), tJcR +, woL2(G).

(ii) Observation by pointwise measurement"

y(t) x(t, p), J cR+- {0},

Directly from Theorem 4.3 i) with k 0, we obtain the following result for the type
(i) observation.

The identifiability condition of the constant parameters a and b on J for the type
(i) observation is that

C(i) There exist two distinct n and n2 such that

To give the identifiability condition of parameters a, b for the type (ii) observation,
we need some preparation. First we cite an important inequality from [13, Chap. IV]:

For any x(.)D(Ao), k => IN/4]+ 1, x(.)C() and

where denotes Gauss’s symbol and C1, C2 are constants depending only on k, N,
a and G.

The inequality (4.38) is proved by using the estimates of the Green function of
h (a(s) 0) and the Neumann function of A (a (s) 0). By (4.38) and Ao,,j ’kn,i,
we have

sup I.j(s)l <= C3(1 + I’. for k >_- + 1,

where C3 max {C1, C2}. Then

E e("+’’ E I<xo,nj>ol’l.()lcllxollo" E (l+l,l)e
n=l j=l n=l

This shows that the series in (4.37) converges uniformly on [8, ) for each 8 > 0. By
the way from (4.38), the observation operator B given by

Bx(t,.)=x(t,p), t>0, :peG
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is a continuous linear functional on D(Ao). Notice that the output x(t, p) makes sense
for all p G (not for a.e. :p G).

Applying Theorem 4.3 i) with k _>-IN/4]+ 1, we conclude that the identifiability
condition of the parameters a, b for the type (ii) observation is that:

C(ii) There exist two distinct n and n2 such that

rn rn2
E (Xo, ’..’)Gg’,,(SCp) 0 and Xo, ttn2j)Gtn2j(p) O.
i=1

Consider the following special system. Let G be the circle {: Isl < 1} and let the
boundary data a 1 everywhere on {r/: Ir/I 1} (Dirichlet type). It is assumed that
the initial value Xo is known and belongs to L2(G). Denote by Ao the realization of
the Laplace operator A in L2(G) under the Dirichlet boundary condition. In this
system, the eigenfunctions of Ao are given by

cos mO,
firm, (r, O) m,nJm (Am,nr)

sin mO,
m =0, 1, 2, n =1,2,...,

in polar coordinates and the corresponding eigenvalues are A,.,, m =0, 1, 2,...,
n 1, 2,. ., where Y,, (r) is the Bessel function of order m and A,., is its nth positive
zero and c,., are constants for normalization. Note that Am,, is a double eigenvalue
for m => 1.

Then the conditions C(i) and C(ii) are given respectively by

2r

rxo(r, O)Jm (h,,.,r) cos mO dr dO. fo Io rwo(r, O)J, (h.,r) cos mO dr dO

+ rxo(r,O)J.,(A,,.r)sinmOdrdO, rwo(r,O)J.(A,.r)sinmOdrdO#O

for two distinct pairs of (m, n)

and

2"rr

Jm(.m,nro) cOS mOo Io Io rXo(r, O)Jo,(Am,.r) cos mO dr dO

2.rr t’

+ J,, (A,,.nro) sin mOo. Jo Jo rxo(r, O)J (A.,r) sin mO dr dO 0

for two distinct pairs of (m, n),

where (to, 0o). The verification of the above conditions for given data {Xo, Wo} or
{Xo, (ro, 0o)} will be easy.

Remark 4.2. In Example 4.2, Theorem 4.3 can apply to obtain analogous
identifiability conditions for other types of observations such as

(t) [ Wo()Dx (t, ) d,Y O, Wo Lz(G),

and

y(t) =Dx(t, jp), >0, p (,

where/3 (/3a, ,/3N) andD 0tl+’"+t"/(0q)1... (0N),.
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Example 4.3. On the domain G as in Example 4.2, we consider the following
hyperbolic initial boundary value problem:

02x
(4.39) -c2(t,)=aAx(t,)+bx(t,), G, t>0, (a>0, b’constants),

Ox
(4.40) a(rl)x(t, rl)+(1-a(rt))-c-(t, rl)=O, 7OG, t>0,

or/

0x
(4.41) x(0, )= Xo(), -77.(0, :)= yo(), O.

ot

The unknowns are constants a, b and the situation is quite the same as in Example
4.2. The system (4.39)-(4.41) is represented by the second order evolution equation
in L2(G);

(4.42) k’(t)=aAox(t)+bx(t), x(0) Xo, 2(0) y0.

Let Xo, yoD(Ao) for k =>IN/4]+ 1. Then as seen in Example 4.2, the type (ii)
observation is possible for the mild solution of (4.42). Applying Theorem 4.4 i), we
have that the parameters a, b are identifiable on J of positive measure for the type
(ii) observation if and only if at least one of the following conditions is satisfied"

1. F, (Xo, )0() 0 for two distinct n’s;
/’=1

’n
2. (yo, O)6(scp) 0 for two distinct n’s;

/’=1

3. there exist two distinct n and n: such that

’n rn
(Xo, nj)GlCnj() e 0 and Y, (Yo, On’}On’(#) e O.

j=l j=l

The similar identifiability condition of a, b is easily derived for the type (i) observation
under the weaker assumption that Xo, yo e Le(G).. Identifiability of operators and initial values. In this section we discuss the
identifiability of the whole system S, i.e., of the operator A and the initial value(s)
Xo or Xo, yo in S., by using its model system 6’ (] 1, 2). Assuming that all quantities
appearing in the model are known a priori, we derive some identifiability conditions
of $ in terms of known quantities such as the model eigenfunctions and the model
initial values. To solve the problem in our general setting, we suppose that B I, the
identity operator on X (Y X). The assumption B I is not practical in application,
but it is impossible in general that this assumption is weakened to that such as Y X
and B is a compact operator. For certain restrictive classes of linear systems, however,
the assumption can be weakened to the type (ii) or (iii) observation by using the theory
of Gel’fand-Levitan as seen in Example 4.1 (see also [23, Thm. 2]).

Let f=0 in LI(R +" X). Since the output error e(S1, S’" t)=x(t)-x’(t) (resp
e(Sa, S’ t) x(t)-x’ (t)) depends on the initial values Xo of 6’ and xU of 6’7’ (resp.
the two pairs of initial values (Xo, yo) of S and (x, y) of 6’), we denote this error
by e(xo, x’; t) (resp. by ee(xo, y0, x, y; t)).

The number of initial values as inputs has a close relation with the identifiability
of A. This will be clarified by Theorems 5.1 and 5.2 given later.
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Let Eo {Xo,, ", Xo,}, E {X,,1, ", XO,k} X (resp. Fo {(Xo,, Yo,), ’,

(Xo,, yo,)}, F {(x,, Y,I),""’, (Xo,, yo,)} cX) be the sets of initial values of $1,
S (resp. $, S). For these sets and J cR + we define the following conditions
Ck (Eo, E’) and Ck (Fo,F ).

C (Eo, Eo)’A=A and xo,l=Xo,x,"’,Xo,g=Xo, inX

follow from

el(xo,1, x,,1 t) 0,. , el(Xo,k, X,,k t) 0 in X, eJ.

C (Fo, F’):A =A and xo,l=Xo, l, YO,l=YO,1,’’’,Xo,k =Xo,k, Yo,k =Yo,k inX

follow from

e2(Xo, x, Yo, l,X,l, Yo,l; t)=0, ,e2(xo,k, yo,k, XO,k, yo,k; t)-0 inX, tJ.

DEFINITION 5.1. The system $1 (resp. $2) is said to be k-identifiable on J with
respect to the set Eft (resp. Fff) if Ck (Eo, E) (resp. Ck (Fo, Fff)) is satisfied. If
ck(Eo, E) (resp. Ck(Fo, F’)) is satisfied for some sets of initial values Eo,
(resp. Fo,F ), the system $1 (resp. $2) is said to be identifiable on J (more precisely,
identifiable on J by using the model system S’ (resp. $7)).

As in 4 we denote the sets of eigenvalues and eigenfunctions of A and A" by
{An, &n/’] 1,""", ran, n 1, 2,...} and {An, n" ] 1,..., kn, n 1, 2,...}, respec-
tively. Next we give the following concept.

DEFINITION 5.2. The set E--{x 1,..., xk} in X is said to be compatible with
respect to A" if

rankMn=kn for alln=l,2,....

The set F {(x 1, y 1), ’, (xk, y)} in X2 is said to be compatible with respect to A" if

rankMn=kn or rankLn=kn for alln=l,2,....

Here the matrices Mn, Ln, n 1, 2,. ., are given by

If E or F is compatible, then k >_-k-sup {kn’n 1, 2,." ’}. Conversely if the
multiplicity koo of A" is finite, then we can choose a finite set E in X or F in X2

such that E or F is compatible. From a practical point of view the number of initial
values must be finite, but countably many zero output errors are needed to obtain
the identifiability conditions for the case k

trloc +THEOREM 5.1 Let f 0 in 2 (R X) and let J R + be of positive measure. If
the multiplicity k ofA is finite, then the system S is identifiable on J (by using the
model system $7). And if the set EU {x0., x0,} of k numbers of model initial
values is compatible with respect to A’, then the system S is k-identifiable on J with
respect to E’.

Proof. It is sufficient to show the latter half of the theorem. The output errors
e (t)=e(xo,,Xo,i; t), 1,... ,k, are given by

k

Ant Ante (t)= Y e E <Xo,i, (nj>nj--Z e Y, (Xo,i, CDn/)CDn/, i= 1,’’’, k.
n=l i=1 n=l i=1
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Let e (t) 0 in X for all J and 1,. ., k. Then for any fixed NJ, we have

(5.1) (ei(t), N.r)=eXUt(Xo,i, NY)-- E ea"t E (Xo,i, dPi)(,/., bNY) =0, J.
n=l ]=1

kn (x ,q)(,,i, cDuj)=Cu.r(n). Since J is of positivePut (xo,i, cu.r) cu and Y’.=I 0,i,

measure and the series in (5.1) is analytic on R+-{0}, we have that

(5 2) ANt Antcue (n)e =0, t>0, i=l k.CNJ

If hN {An}= 1, then we see from (5.2) that

(n)= Y’, (x" 0CNJ O,i

(5.3) ’=1
for alln 1, 2,...,

The equalities (5.3) can be written by the following matrix equations

i=1,...,k.

Since E’ is compatible with respect to A", the equations (5.4) imply that 0=
(brj, (I)n.)= ((I)n’, bU) (the complex conjugate) for all n,/’. This contradicts that buj 0
in X, and this shows hu e{An}n=a. Hence it follows from (5.2) that there exists a
natural number N* (for fixed N) such that

(5.5) hu =Au,,

(5.6) c r(n) 0 for all n N* and 1, , k.

It is easy to see that (5.6) is equivalent to brs e X.. span {(I)., ., (I)r*k.,.}. Since
NJ is arbitrary, we have from (5.5) and (5.6) that {,.}= {A.}. and the inclusions
X. X. hold for all n. We can assume that the correspondence n n* is monotone
increasing by changing the order of {n*} if necessary. The completeness of {i’ f
1,.,. m,n=l,2,...} implies X=n=Xn (the direct sum), and hence X
.=IX.* Since X =X is obvious, we have {n} {n*}, so that An and

X. X. for all n. Then

D(A)= x X" 2 I nl
n=l

x ex. E IA l2 E
n=l j=l

This follows since h. An, m k. and (-i, -i)(.i, .p)= 6i, (Kronecker’s
delta), j, 1, .., k., n 1, 2,.... Furthermore since .i can be expanded as .i
Ep=l(nj,no)np, we have Ani=Ep(.i,.p)AO.o=A..i. Therefore (A-
A).i 0 in X for all n, j, which means that A A". Now we can assume without
loss of generality that O-i .i for all n, j. Then the zero output errors e (t)= 0 in X,
t>0, 1,..., k, imply (x0,-Xo, .i)=0 for all n, j and 1,,.., k. This shows
that Xo,1 Xo, a, ’, Xo, Xo, in X. This completes the proof.
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If the coefficient matrix in (5.4) is the zero matrix for some no, then the non-
identifiability of $1 on R /-{0} follows. To show this let the operator A be given by

Ax n (x, dp,] ),,], x D(A ),
n=l ]=1

( x x. I; l.nl Y I(x,*nl<
n=l ]=1

where x A if n no and Xo (Ano_ + A,o). A satisfies (H) and I(i), since xn are
reals, 1/IA -xl- 0 as n - oe if A xn for all n and A generates the semigroup

T(t)x 2 e ’"t (x, ])], x X.
n=l /’=1

Clearly A A". Let Xo,1 Xo,1, , Xo. Xo.. Then the condition C (Eo, Eo with
J R +-{0} does not hold. Thus the system $ is not identifiable on any Y R +-{0}.
Therefore when k 1, the necessary and sufficient condition for 1-identifiability of
Sl is that (x, o)# 0 for all n (here we write x’, , instead of Xox,

It is an open question, however, whether the compatibility of EU is necessary or
not for k-identifiability (k _-> 2) of Sx when k _>-2.

TI-IZOgZM 5.2. Let f=0 in L(R+; X) and let J R + be of positive measure. If
the multiplicity k ofA is finite, then the system S2 is identifiable on J (by using the
model system S’). And if the set F’ {(Xo, yo), ’, (Xo, yo)} of k pairs of initial
values is compatible with respect to A", then the system $2 is k-identifiable on J with
respect to F’.

Proof. The proof is omitted.
Remark 5.1. Theorems 5.1 and 5.2 hold even under the condition that A and

A" satisfy the next assumption (Ho) which is weaker than (H)’
(Ho). A has a compact normal resolvent.

This can be verified easily by a slight modification of arguments in their proofs (cf.
[30], [3 ]).

Example 5.1. Let G be a bounded domain with smooth (of C-class) boundary
OG. We consider, on G, the parabolic distributed system described by the equations

(5.7) Ox(t,)=x(t,)+fg(t,),O- eG, t>0 (i=l,...,k),

OX
(5.8) a(l)x(t, rt)+(1-a(q))---(t,q)=O, rlOG, t>0,

(5.9) x(0, )--- X0,i(), S G (i 1,..., k).

Here is a second order, formally selfadjoint differential operator of the form

(5.10) = Y aii() + c (:),
i,j=

with air(" ), c(. C() and ai]= a]i for all i, ], and is uniformly elliptic, i.e., there
exists a constant Co > 0 such that

N N

(5.11) E a]()d,d >=Co E d
i,]=l i=1

for all d (d, ., dN) RN and s G.
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In (5.8), 0<_-a(T/)-< 1 everywhere in OG and 0/0, denotes the conormal derivative
given by

0 N

ai](T/)n], T/ (T/i, ’, T/N e 10G,(5.12)

where n (nl, , riM) is the outer unit normal vector to OG.
In the system (5.7)-(5.9) we assume that:
(VII) The spatially varying coefficients a0(), i, ] 1,..., N, and c() in are

unknown except that a0(’ ), c(.)e C() and a0(:) satisfy (5.11).
(VIII) The boundary coefficient a(T/) and the initial values x0,1(),"’", X0.k()

are unknown except that a(. e C3(0O) and x0,1(’ ),’ , Xo,k(’ e L:(G).
(IX) The forced input functions fi(t, tj), 1, , k, can be controlled (so these

lC(R+" L:(G)) i.eare known functions) and fiL

fot f lfi(t, j)12 dj dt < c foreacht>0, l, k.

Under the conditions VII-IX, there exists a unique weak solution X(Xo,g, fg;t, ) in
LC(R/; La(G)) of the system corresponding to the initial value Xo,i and the forced
input [g for each i= 1,..., k (cf. [12], [13], [17], [19]). The representation of these
weak solutions will be given later. The state x(t, ) in (5.7)-(5.9) is understood in this
sense.

By the model we understand the system (5.7)-(5.9) in which aij(), i, f 1,. , N,
c() in , a (T/), 0/0, and Xo,i(), 1,..., k, are replaced by a (:), i, j 1,. ., N,
c’() in , a’(T/), 0/0," and Xo.i(lj), 1,..., k, respectively. Here O/Ou" is given
by (5.12) in which aij is replaced by ai’7. The differential operator given by the model
coefficients satisfying (5.11) is denoted by ’. The corresponding model solution is
denoted by x’(x o,i, fg; t, tj) for 1, , k. As usual the quantities suffixed by are
assumed to be known.

We shall say that the coefficients a0(), i,/" 1,..., N and c() and/or the set
of initial values {Xo.1,"’", Xo,g} are identifiable on J if

(5.13) aii(j) a,7 (), i, j 1,. ., N, and c() c"() for all

and/or

(5.14) X0,1() X,,1 (),""’, XO,k()- X,,k() for a.e. s G

follow from the relations

ei(t,)=X(Xo,i, fi; t,)-x’(x,,i, fi; t, ) 0
(.)

fora.e.GandtJ, i=l,...,k.

The identifiability of the boundary coefficient a(T/) can be defined similarly. If
all data are analytic, (5.15) follows from the zero output errors on some open set
contained in G.

By considering the functions x, x, fi, Xo,i, Xo.i as elements in L2(G), the system
(5.7)-(5.9) and its model can be written as follows"

: (t) Aox (t) + fg(t), :("(t) A’x’(t) +fi(t),
So" S

x(O)--" Xo,i, (i 1,..., k), x"(O)-- Xo,i, (i 1,..., k).
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Here the operator A0 denotes the realization in L2(G) under the boundary condition
(5.8). The operator A’ denotes the similar realization of model. Since G is bounded,
A0 and A’ satisfy (H) and I(i). We denote the sets of eigenvalues and eigenfunctions
of A0 and A’ by {’,, ,.:/’= 1,..., r,, n 1, 2,...} and {A,, nj:/’= 1,..., k,, n
1, 2,...}, respectively. It is known that O,j, ,j C2(() for all n,

Now we can give the representation of the weak solutions X(Xo,i, fi; t,

X(Xo, i, fi; t, )= E e’"’ E (Xo,i,
n=l

(5.6 + Y 2 e’"-(.f(s, .l,,,,cls ,,,(
n=1/’--1

for allt=>0anda.e.’G, i=l,...,k.

A similar formula holds for the weak solutions x’(xo’,, fi; t, ) of the model. We don’t
give the representation here but we number it by (5.16),. The first series in (5.16)
converges uniformly on [6, o) x G for each 6 >0 and satisfies (5.7) with f(t, )--0 in
the classical sense. The second series satisfies (5.7) in the sense of distributions and
converges on R + as a function of for almost every s G (cf. [13, Chap. II]). The
equations (5.16) mean that the concept of mild solution coincides with that of weak
solution as a function in LIEC(R +’, L2(G)). Let f(t, )=-0, 1, k in (5.7). In this
case the weak solutions make sense as functions of (t, s) in (R+-{0}) (, so the
condition (5.15) can be replaced by

(5.15") e(t,:)=O for all6tandt6JcR+- {0}, i=l,...,k.

Let fg(t)= 0, 1,..., k in So and SU and put the observation characteristic B I
by (5.15) or (5.15"). Then applying Theorem 5.1 to the system So (and its model S),
we see that a sufficient condition for the identifiability of aii(), i, 1,..., N, c()
and {Xo,1,’’’, Xo,k} on J of positive measure is that

(X0,l, XIInl)G (X0,I, XIlnkr)G

(5.17) rank
(x,2,nx)o (x02,,,)

k, for alln 1, 2,

(X,k, Xllnx)G (XO,k, Xllnkn)G
This is verified easily in the following way. By Theorem 5.1, we have that (5.15) (or
(5.15")) and (5.17) imply that

(5.18) AoX AUx for all x 6 D(A) and

(5.19) X0,1 x0,1, ", Xo,k XO,k in L2(G).

Since C (G)=D(A’), it follows from (5.18) that the equalities in (5.13) hold for
almost every s G. By the continuity of those coefficients (5.13) follows. It is obvious
that (5.19) is equivalent to (5.14). We note that if all Xo,, Xo( are continuous on G,
then all equalities in (5.14) hold for all " G.

We now consider the identifiability of a(rt). Without loss of generality we can
assume that

(5.20) ..() ..(), e G, for all n,/’.

Then by taking the difference of boundary conditions of 6,. and ,., we have

(5.21) (a(r/)-a"(rt)) ,.(rt)-O,----g(r/) =0, rtOG, for all n, /’.
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Define the following sets:

Notice that F,j has a positive measure on OG for any n, j, i.e., meas (F,.)= Jr.j dr/> 0.
Indeed, if meas (F,i)=0, then by the continuity of ,., 0q,i/0u" on OG and the
boundary condition it follows that i(r/)= 0g%./0u"(r/)= 0 for all r/ OG. Since ,.
is an eigenfunction of AU, this means that ,.(r/) must be identically zero, hence a
contradiction follows. Then meas (F,/.)>0. If r/ F,/., then by (5.21), (5.22) we have
a (r/)= a’(r/). Hence if the closure F OG (e.g., in the case where a, a are analytic),
then the boundary coefficient a(r/) is identifiable. We remark that F OG in general.

Next we consider the identifiability by means of the forcing inputs fi(t, tj). Let
XO,1 X,,1 XO,k X. 0 in L2(G) and let fi(t, ), 1,.. , k have the form
zi(j)hi(t), zi(’)SLE(G), hisLC(R+). Then by (5.16), (5.16), the output error ei in
(5.15) is represented by

(5.23) ei(t, )-- gi(; t--s)hi(s) ds

where

for a.e. G and J,

k

gi(j; t)= E e’"’ E (zi, I[Inj)Gl[Inj()-- E e A"’ E (zi, q,j)*n(j).
n=l j=l n=l j=l

It is clear that gi(:; ")e C(R +) for almost every : e G. Let J [0, T], T > 0 (resp.
J R +) and (5.15) be satisfied. If hi(" 0 in L2[0, T] (resp. hi(’ 0 in L2(R+)) for
all 1,..., k, then by the same argument as in the proof of Theorem 4.1 ii), we
see from (5.23) that

gi(;t)=0 fora.e.eG and
(5.24)

te[0, T], 0<Ti<T (resp. tR+), i=l,...,k.

The nonnegative number Ti depends only on hi (i 1,..., k). Considering (5.24) as
equations in L2(G) implies

k

E e"tE (Zi, I[ln.i)GlCni-" E eA"tE (Zi, "kll’nj)G"kll’nj in L2(G)
n=l /’=1 n=l /=1

for t>0 andi 1, ., k,

by analyticity. Hence using the same method as in the proof of Theorem 5.1, we have
that a sufficient condition for the identifiability of aii(), i, ] 1,..., N, and c() on
J [0, T], T < 0 (resp. J R +), is that

(5.25) hi(’) 0 in L2[0, T] (resp. hi(’) 0 in LC(R+)) for all 1,..., k

and

(Z1, "kI3’nl)G (Z1, a’I)’nkn)G\
(5.26) rank

(z2, n). {z2, "")/" k, for all n 1, 2,

Therefore summing up the above arguments, we obtain the following result.
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COrOLLArY 5.1. In the system (5.7)-(5.9) the coefficients aii(), i,/’ 1,..., N
and c () are identifiable on J in the following two cases"

i) IfJ is ofpositive measure, ](t, )mO, 1," ", k and if (5.17) is satisfied,
ii) IfJ=[O, T], T>0 (resp. J =R/), Xo,1 =Xo.l Xo.k =Xok =0 in L.(G),

fi, 1,..., k, have theform zi()hi(t), z La(G), hi(" L2C(R /) and if (5.25)
and (5.26) are satisfied.

In Case i) the set of initial values {x0.1, , Xo.} is also identifiable on J. Furthermore
in both cases if F OG, then the boundary coefficient a (l is identifiable on J.

Compare this corollary with Theorem 4.1. It would be easy to give an analogous
result for the corresponding hyperbolic system.

We remark that an identifiability result similar to Corollary 5.1 holds for the
unknown coefficients aa(:), 2m, in a strongly elliptic differential operator Ao
lt31_<2m a()D of order 2m in a bounded smooth domain G with the Dirichlet
boundary condition (O/On)ix(t, r/) 0, r/cOG,/’=0, 1,..., m-1 (cf. [1], [19]).

Example 5.2. Let be the Schr6dinger operator

(5.27) =-h+q(), R
with the unknown potential q(’)=>0, where A is the Laplace operator in R N. We
consider the following time dependent Schr6dinger equation:

(5.28) iOx(t,)=x(t,) t>0, Rr
Ot

with initial conditions

(5.29) x(O, ) XO,i(), R, 1,." ", k.

We assume in the system (5.28), (5.29) that:
1oc N(X) The potential q(:) in is unknown except that q(’)e,-,2 (R), q(s)_-->0 for

almost every ( in Rr and
(XI) The initial values Xo,(:), "’, Xo.(’) are unknown except that xo.l(" ), "’,

Xo. Lz(Rr).
To represent the system (5.28), (5.29) as evolution equations in L2(RU), we make

some preparations. We denote by A the realization of on the domain D(A)=
C (RV). It is obvious that Ao is symmetric and bounded from below (with a bound
qo ess infeRN q (:)) in Lz(Rr). Then by the well-known theorem (Kato [14, p. 323]),
Aoo has the Friedrich’s extension Aq. It is known that Aq is essentially selfadjoint,
i.e., Ao has only one selfadjoint extension Aq (see Reed and Simon [22, Vol. 2, p.
184] and Kato [14]). Hence the system (5.28), (5.29) can be expressed by the following
evolution equations in L2(Rr)

(t) -iAqx(t),
x (O) xo,i, l, k.

Since Aq satisfies (H) ([22, Vol. 4, p. 249]), there exists the set of eigenvalues and
eigenfunctions {’n, tPn."/" 1,..., ran, n 1, 2,...} of Aq. Then the mild solutions
X(Xo./; t), 1,..., k, of Sq are given by

(5.30) X(Xo.; t) Y e -"’ Y (Xo, i, ,j)RNnj, >--0, i= 1,’’’, k,
n=l /’=1

where _-> 0 (notice that -iAq is normal and satisfies (H0)). Relating to the expressions
(5.30), we say that the function X(Xo.; t, :), i= 1,..., k, defined by (5.31) below is
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the solution of the system (5.28), (5.29) corresponding to the initial value Xo,i"

rn
(5.31) X(Xo,i; t, )= Y e -i’"t Y, <Xo, i, I[n]>RNl[Inj(), i= 1,..., k.

m=l ]=i

For given Xo, i, , Xo,k in L2(R N) and all ->_ 0, the series in (5.31) converge for almost
every CeR N. Then the solutions (5.31) have sense almost everywhere in Rr and
X(Xo.i; t, X(Xo,i; t) in L2(RN), i- 1,..., k.

We now consider the model which means the system (5.28), (5.29) in which q(:)
in and Xo,i(j), i= 1,..., k, are replaced by q’() in and Xo,i(j), i= 1,..., k,
respectively. The model quantities such as its solution, Friedrich’s extension, etc. are
suffixed by . Then the model is represented as

’(t) -iA’x’(t),
x(O)-xo,g, i=l,’",k.

We denote the set of eigenvalues and eigenfunctions ofA by {An, n"/" 1,. , kn,
n =1,2,. .}.

As in Example 5.1 we shall say that the potential q(’) and the set of initial values
{Xo,1, , Xo,k} are identifiable on J c R /-{0} if

q(:) q"(:) for a.e. : e R N,
X0,1() X,,1 (),""", XO,k() XO,k() for a.e. e R

follow from

(5.32)
ei(t,):X(Xo,i; t,)-x’(Xo,i; t, ) 0, i=1,...,k,

for all e J and a.e. e R N.

We now consider the abstract systems Sq and S and set the observation characteristic
B =I by (5.32). Then applying Theorem 5.1 with X =L2(RN), we obtain (as in
Example 5.1) that if

(o,,

(5.33) rank/(X2’q"l)R
\<xo,,

=k, for alln=l,2,...,

then the potential q(:) and the set of initial values {x0,1,’"", Xo,k} are identifiable on
J of positive measure.

Let q()= 2- /,,, / In this case the phenomenon governed by (5.27),
(5.28) is called the harmonic oscillator and has a fundamental importance in quantum
mechanics (especially, in the case when N 3). Since the potential q()= I(I2 satisfies
the conditions in (X), the selfadjoint operator An in L2(R r) can be determined by
(5.27) with q(:) I 12, When N 1, we denote the operator An by H (which is known
as the Hamiltonian of the linear harmonic oscillator). Since L2(Rr) is isometric to
the tensor product L2(R 1) (R) L2(R 1) (R)... (R) L2(R 1), n times, we can identify

AH=H ()I . (R)I+I (R)H (R)I (R)... (R)I+...+I (R)... (R)I (R)H,

where I is the identity operator on L2(R 1) (cf. Weichman [32, Chap. 8]). It is known
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that the eigenvalues and eigenfunctions of H are given by

rn =2n +1, n =0, 1,2,...,

4’, (n c,H, (n e -’/ n R1
where Hn (r/) is the Hermite polynomial of order n and cn are constants for normaliz-
ation. For details, see Courant and Hilbert [4, Chap. 5] and Landau and Lifschitz
[18, Chap. 3]. Therefore the eigenfunctions of An are given by

nl...n () Hn,(l)" Hn, (N)" e -lel2/2 n 1,’ F/N 0, 1 2,"

and the corresponding eigenvalues are
N N

"l’nl""nN"-- E ’rn, =2 hi+N, hi,’’’ ,nN=0, 1,2,....
i=1 n=l

Since the multiplicity of An equals 1 when N 1 and equals c when N >_- 2, the above
system is not suitable as the model for the identifiability of the potential q(:) when
N _-> 2. But for any dimension N, the system can be used as the model for the K-mode
identifiability, i.e., the identifiability of finite numbers of eigenvalues and eigenfunc-
tions (see the next section).

Theorems 5.1 and 5.2 are for the case when f=0 in Ll2C(R +’, X). For the case
where the initial values vanish but the forcing functions fl,""’, fk as inputs do not
vanish, we can establish the similar identifiability conditions for the systems Sl and
$2 as in Example 5.1. Here the definition of identifiability of $., f 1, 2, with respect
to the set of forcing functions {fl," ’, fk} is similar to that given in Definition 5.1.

TI-IEOREM 5.3. Let all initial values of $1 and S’ be 0 in X and let
G={fl,...,f}cL12C(R+’X), be the form {zlgl(t),’",zgg(t)}, where Z=
{zl," ", z}cX and gl(. ),..., gk(. )Lz(R+). If the set Z is compatible with respect
to A" and gi(" 0 in L2[0, T] (resp. gi(" 0 in L2(R+)) for all 1,..., k, then
the system $1 is k-identifiable on [0, T] (resp. on R +) with respect to G (by using the
model $1).

TIJEOREM 5.4. Let all initial values of 82 and S’ be 0 in X and let G be the same
set as given in Theorem 5.3. Then the same conclusion as in Theorem 5.3 holds for
the system $2.

6. Relations between identifiability and observability and controllability. This
section is devoted to study the relations between identifiability and observability and
controllability. Let A generate a semigroup T(t) on X and let B eL(X, Y). Let U
be a complex, separable Banach space (of controls) and let E L(U, X). We denote
the dual Banach space of U and the dual operator of E by U* and E*, respectively.
To make our standpoint clear, we assume that A satisfies (H). Then there exists the
set of eigenvalues and eigenfunctions {hn, n." / 1, ., rnn, n I, 2, ..} of A satisfy-
ing (a), (b), (c), (d) in 3. The nth eigenmanifold and the associated nth eigenprojector
are denoted by Xn and Pn (n 1, 2,...). We now give the following definition:

DEFINn:ION 6.1. The system {A, E} is said to be
(i) approximately controllable ifE U,eo T(t)EU= X;
(ii) K-mode controllable ifE Xn.

The system {A, B} is said to be
(iii) approximately observable if Bo f-1 t__>o Ker BT(t) {0};
(iv) K-mode observable if Bo c_-+ X,.

The condition in (i) is equivalent to:

E*T(t)x 0 in U* for -> 0 implies x 0 in X,
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which gives the contraposition of Proposition 1 in [7] for complete controllability (in
the terminology of Fattorini). For other equivalent statements to (i), we refer to
Curtain and Pritchard [6] and Triggiani [30]. The condition in (iv) is equivalent to"

BT(t)x 0 in Y for _-> 0 implies PlX P:x 0 in X.

Hence the statement (iv) is a refinement of the definition of N-mode observability
given by Goodson and Klein [10] (in which forced and boundary inputs are assumed
to be known!).

Corresponding to the K-mode observability, we shall define the K-mode
identifiability. In what follows we use the same notation as in 5.

DEFINITION 6.1. (1) The system $1 is said to be K-mode identifiable on J R+

with respect to the set {X,l,’’’, x0,k} of model initial values if

follow from

An=An, Xn=X,, n=l,...,K, and

P (Xo,g-Xo,g) 0 inX, i=l,...,k,

el(xo.l, xo,l;t)=O,...,el(xo.k,x,;t)=O inX, tJ.

(2) The set E {x i,’’’, xg} is said to be K-mode compatible with respect to A
if rankMn =kn for n 1,...,K.

Using the same argument as in the proof of Theorem 5.1, we have the following
corollary"

COROLLARY 6.1. Let f 0 in LC(R +; X) and J c R + be of positive measure. If
the setE {x0,x, xg} is K-mode compatible with respect to A", then the system
$1 is K-mode identifiable on J.

In Example 5.2, if the Hamiltonian An of an N-dimensional harmonic oscillator
is used as the model operator, then it requires (K + 1) (K +N- 1)/(N- 1)! num-
bers of initial values for K-mode identifiability.

The compatibility condition can be identified with the rank condition for controlla-
bility or observability in the following sense (cf. [30, 3.2], [7]).

The set E {x l,’’’, x} is compatible (resp. K-mode compatible) with respect
to A" if and only if’

(a) {A’, (x 1, , xk)} is approximately controllable (resp. K-mode controllable),
where the k-tuple (x 1,..., xg) is identified with the operator Ec" Ck X given by

k

Ec(ttl,. Igk)-- 2 xiuiX,
i=1

or
(b) {A’, (X 1,"’ ’, Xk)} is approximately observable (resp. K-mode observable),

where the k-tuple (xl,..., x) is identified with the operator

E X C given by Ex ((x l, x ), (x, x )) Ck.
We shall say as in [7] that A is finitely controllable if for some E L(Ck, X),

{A,E} is approximately controllable. Then from [7, Thm. 3.2], [30, Thm. 3.6],
Theorem 5.1 and Corollary 6.1, follows the next corollary which shows the connection
between identifiability and controllability.

COROLLARY 6.2. Let f 0 in L2 (R +; X) and J R + be of positive measure. If
A" is finitely controllable, then $1 is identifiable on J. More precisely, if
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{A’, (xl,""", X0,k)} is approximately controllable (resp. K-mode controllable), then
Sl is identifiable (resp. K-mode identifiable) on J with respect to E’ {x0,x, x0,k}.

In Theorem 4.3 i), it is assumed that the initial value Xo is a priori known. But
from a practical point of view this assumption cannot be accepted, since the observabil-
ity of the system $1 is not established yet. To apply the theorem, we must determine
x0 uniquely. For this purpose we use the K-mode observable operator Br L(X, Cn’)
for K _---2, which is given by

Brx ((wl, x), (w,,:, x)) Cn for all x X,

where nr max {m 1, , mr}, w 1, ’, w,, eX and the set {w 1, Wnr } is K-mode
compatible with respect to A0. It is clear that {A0, Bt} is K-mode observable. Hence
it can be assumed that oPlxo,’" ,Pxo are all known exactly. Let K be fixed. If

0P,,xo 0 in X for two distinct n s, we can choose an operator B such that B (P,xo) 0
for such n’s. For the observation operator B, Theorem 4.3 i) can apply to identify
the parameters a, b in $1. If not, abandon Xo and take another initial value x; satisfying

Pxo=0such a condition and then apply the theorem. For any initial value Xo such that o

except for at most one n, the parameters a, b in $1 are not identifiable on R+-{0}
for any observation.

It would be easy to give results analogous to the above for the second order
system $2.
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SOLUTION OF THE BELLMAN EQUATION ASSOCIATED WITH AN
INFINITE DIMENSIONAL STOtHASTIC CONTROL PROBLEM AND

SYNTHESIS OF OPTIMAL CONTROL*

VIOREL BARBUt AND GIUSEPPE DA PRATO{

Abstract. We prove the existence and uniqueness of the dynamic programming equation for control
diffusion processes in Hilbert spaces.

Introduction. Consider the optimal control problem:
Minimize

(P) E (g(t,x(t)))+-lu(t)l dt+4o(x(T))

over all u inM (0, T;H) subject to

dx (Ax + u dt + 4- dW,, e >0,
(0.1)

x(O) =xo.

Here A is the infinitesimal generator of a contraction C0-semigroup in a real separable
Hilbert space H with the norm I. (fl, , P) is a probability space, Wt is a H-valued
Brownian motion on (f, -, P) and E is the expectation.

The function g: [0, T] H [ is continuous and convex as a function of x for
every [0, T].

This paper is concerned with a direct approach fo the dynamic programming
equation associated with problem (P), namely (see for instance [4], [6]):

(0.2)

#,(t, x)+ 14,, (t, x)lZ-(Ax, .(t, x))-- Tr (S**(t, x)) g(t, x),

(o, x) o(x)

where S is the covariance of W1. In few words the idea (already used in [2]) consists
-1

in approximating the term 1/2lbx 12 by a (b -b), where b is the convex regularization
of b and after to let a tend to zero. We have previously studied in [3] this problem
in the particular case where go and g(., x) have a sublinear growth. We remark that
when g is quadratic (0.2) reduces to a Riccati equation and the corresponding control
problem has been studied by several authors (see for instance [6]).

The contents of the paper are outlined below. Sections 1 and 2 are concerned
with notation and preliminary results for spaces of differential functions and convex
functions frequently used in the text. Section 3 studies a linearized version of problem
(0.2). Section 4 gives the main result on existence and uniqueness for problem (0.2).
Furthermore it is shown that for e 0 the solution to (0.2) converges to the solution
of the Hamilton-Jacobi equation

(0.3)
4,,(t, x)+ 1/214, (t, x)lZ-(Ax, Cx(t, x))= g(t, x),

(o, x) o(X)

Received by the editors January 25, 1982, and in revised form June 30, 1982.
University of Iasi, Romania.
Scuola Normale Superiore, 56100 Pisa, Italy.

531
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which has been studied in [2] by a different method. This result resembles the classical
approach of Hamilton-Jacobi equations in finite dimensional spaces [9]. Finally in 5
we study the synthesis for problem (P) proving the existence and uniqueness of a
smooth feedback control.

1. Notation and preliminary results. Throughout in the sequel H is a real separ-
able Hilbert space with inner product (.,.) and norm 1. [. For k 0, 1,..., denote
by ck(H) the space of all k times continuously differentiable (Fr6chet) functions
b’ H R which are bounded on bounded subset on H along with their derivatives
up to order k. For k =0 we shall simply write C(H). Other notation such as
c(k)([O, T] H), k O, 1, and (H) is obvious. We set

(1.1) [1,. =Sup {[(h)(x)(l/lXl2n)-li’,X ell},,

(1.2)
(1 +(Ix[ v ly[)=")-’; x y H}

where b () stands for the derivative of order h and Ix[ v ly[ =max (Ixl, lyl).
LtSMMa. 1. For any ck s C + (H) one has

(1.3) [[b Ilk,,, I Ik+l,n.

Proof. For ]y]=< 1 we have

lim
t--*0

< [lbl[,.. Conversely we havewhich implies that [b [, +1..

Ib ()(x)- b((y )[ [x y I-1[ 1 + (Ix[ v lY 1). ]-1

Io [b(t+l)((1-h)x +hy)dh[1 +(Ix[ V [yl)2n]-1.

Since [(1-h)x +hy[_-<[x[ v[y[, the latter implies [[bl],. _-< [b[k+x, as claimed.
We shall also use the following notation:

X {& s C(H); I& IO,.o < +},

where n0_-> n -> ne --> n3 => 0 are fixed integers. The spaces X, Y and Z are endowed
with the norms

(1.4)

We note for the purposes of 4 the following lemma.
LEMMA 2. For each M > 0 the set

(1.6) A { Z ;14, Iz -< M}

is closed in X. Furthermore if {.} c A is convergent in X to O then

(1.7) (y, 4,,x (x)) (y, 4x (x))
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uniformly on every bounded subset of H. Finally, if $ e(H) is a nuclear symmetric
operator then

(1.8) Tr (Srkn,xx (x )) "-> Tr (Sckxx(x))

uniformly on bounded subsets ofH.
Proof. Let {4n} c Z, [4. [z -<M and 4 X be such that 4 --> 4 in X. We have to

show that fi Z and [4 [z <- M. For any R > 0 there exist Mi,R, 0, 1, 2, 3, such that

(1.9)
SxUF 1 (i)(x )] Mi,R, i=0, 1,2,

16 (:)(X)- 6 (2)(Y)I
<=M3,R,Su

xCy

where
Let now R >0 be fixed and x, y eBR, h [-1, 1]. We set

(1.10)

and notice that

(1.11)

By (1.9) we have

On.,,y (h tOn (h &n (x +hy)

O ’ (h (y, ckn. (x + hy )}.

(1.12)
I/.(h)-O’.(k)l<-M2,2nlh-kllyl2, h,k e[-1, 1].

By the Ascoli-Arzel theorem there exists a subsequence {nk} of N such that {k} is
uniformly convergent as k --> oo. It follows that

(1.13) Onk(h)-->ck(x +hy),
uniformly in [-1, 1]

d
’(h)-(b(x + hy)),

and consequently b is Gateaux differentiable (we shall denote by DO (x) the Gateaux
derivative of 4 at x). We have

(1.14) g’ (0) (y, 4nx (x)) - (y, DO (x)).

We can show now that D4 (x) is continuous in x which will imply DO -4. We have
indeed

(x.15)

from which, recalling (1.14) and letting x tend to +oe we get

(1.16) [(y, Dck(x)-Dck(z))[<=M2,R]x
(1.17) [D& (x) D4 (z)[ <- M2,R Ix z [.

Consequently 4 e C (H), D& 4, and

(.8) (y,

The latter implies (1.7) by a standard argument. Now we set

(.19) &.,..(h)=C.(h)=(u, .(x + hy)).



534 v. BARBU AND G. DA PRATO

It follows that

(1.20) sr’n (h) qSnxx (x + hy )(u, y ),

and by (1.9)

(1.21) I’,, (h ’, (k <- M3R Ih k lu [y =.
Using once again the Ascoli-Arzel theorem we may conclude that there exists a
subsequence {n ,} of {nk} such that

(1.22)
srn t’(h (u, &,x (x + hy )) (u, &x (x + hy )),

d’. (h) -,-(u, 6 (x + hy)).

We set

(1.23) -(u, q, (x + hy)) Eb (x)(u, y).
h=0

From (1.22) it follows that

(1.24) &,x (x)(u, y)E6(x)(u, y).

To prove that E& b it suffices to show that E is continuous in x. We have

(1.25)

and, recalling (1.24), we get for k o

(1.26) ](E6 (x) E6 (z))(u, y)l--< M3,n Ix z lu ly I,

It follows that E6 (x) 6xx (x) and

(1.27) 6,(x)(u, y)- 6(x)(u, y).

It is also clear that

(1.28) 6,,,x(X)(U, y)dax,c(x)(u, y)

uniformly on bounded sets on H.
To prove that Ilz =<M we proceed as follows. Let {ei} be an orthonormal basis

in H such that

(1.29) Se, Aei, Z ]AI < az.
i=0

We have

(1.30) Tr (S6,.,,(x))= ., X4,,.,,(e,, ei)
i=0

which along with (1.28) and some simple calculations implies the claimed conclusion.
In the sequel we shall denote byB ([0, T]; Ch (H)) the space of all b [0, T] H R

such that (O,b/Oxi)(zl, z2, ", z) is continuous in [0, T] H, for Zl, z2, , zi H;
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besides for any R > 0 we have

Sup 10ib(t’i x)
t[0,T] OX
]xl<=R

We set moreover

<+oo, i=0,1,...,h, te[0, T].

B([0, T];X) ={,5 B([0, T]; C(H)); Sup Ib(t, ")Ix
t[0,T]

B([0, T]; Y)={6 B([0, T]; C(H)); Sup I&(t, ")Iv < +oo},
t[0,T]

B([0, T];Z)={6 B([0, T]; C(H)); Sup 14,(t, .)[z
t[0,T]

Let {f, -, P} be a complete probability space and let W be a H-valued Brownian
motion. Let {e} be an orthonormal basis in H and assume that W is given by

(1.31) W(t)= Y x/g(t)ei,
i=0

where hg ->- 0, 1, 2, , =o hg < oc and {/3(t)} are scalar Brownian motions mutually
independent. Let S be the nuclear positive operator defined by

(1.32) Sei Aiei, 1,

We note (see [6]) that

(1.33) Cov (Wt)= tS.

In the sequel we shall denote by L(0, T; H) (resp. M (0, T; H)) the space of all
nonanticipative mappings x’[0, T] x 11 H with respect to W, such that

T

resp.
T

For other concepts and fundamental results on Brownian motion we refer the reader
to [63, [103, [113, [12].

2. Preliminaries on convex functions. In this section we recall for later use some
definitions and elementary properties of some spaces of convex functions. For general
concepts and results on convex analysis we refer to [1] and [5].

We shall denote by K the set of all convex functions b C(H). For any b K
denote by b the function

(2.1) b(x) inf {(2a)-a[x -yl2+b(y); y H}, a >0

and recall that b K f3 C (H).
For any b K denote by 0b :H H the subdifferential of b, i.e.,

Ock(x)={x* H; (x*,x -Y)-> 6(x)-6(Y), Vy ell}.
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If 4 CI(H) then 04 is single valued and 04 4/ (4’ is the derivative of &). The
map 04"H H is maximal monotone, i.e.,

(x*-y*,x-y)->_0 forallx*Od)(x), y*O&(y)

and the range R (1 + a 04) is all of H (1 is the identity operator).
In particular this implies that

x =(1 +a 04))-.x
exists for all a >0 and moreover [x-2[-< [x-2[ for any x, 2 ell. Also we have

(2.2) ,(x)=e,(x)+(2)-llx-xl2 V>0,xg

and

(2.3) F(x) F(x,) ff-l(x Xa),

where F &b and F 4/
Assume now that 4 K f’l C2(H). Since x x + oF(x) we have

l=x’ +aF’(x,) x’,
where x’ is the derivative of the operator x -> x. Hence

(2.4) x’ (1 + aF’(x))-1

In the next lemma we gather for later use some immediate properties of x and F.
LEMMA 3. For any c K 71C2(H) and x, y H we have

(2.5)

(2.6)

(2.7)

(2.8)

Ixllxl+if(O)[,

If (x)l If(x)l,

IF’ (x)l <- [F’(x)],

If’ (x -F’ (Y)I--< [F’(x,) f’(y)[,

Proof. The proof is well knowh but we sketch it for the reader’s convenience.
Since F is monotone, we have the inequality

-1O<-(f(x)-F(O),x,)=a (x-x,x)-(F(O),x,)

which implies

Ix 1 --< Ix I(Ix l+ c IV(O)l)
and (2.5) follows. To prove (2.6) we notice that

-1IF,(x)l<-Ia (x-(1
-1

=c I(l+aF)-a[(1 +aF)x-x]l<-lF(x)l.
As regards (2.7) it follows by (2.4) because F’ is a positive operator. Finally, again
by (2.4), we have

[x’, -y’ ]<a[F’(x,)-F’(y,)[

while by (2.3)

-l[xt[F’(x)-V’o (y)[ a o-y,[<[F’(x,)-F’(y)[=

which yields (2.8) as claimed.
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For any e > 0 and & CI(H)I"1K we set

--1(2.9) R+,(x) a ( (x ,b (x )) 1/21cb ’(x )[2

LEMMA 4. We have

IR’(x)l<--If(x)l Io IF(x-tf(x))-F(x)l dt + If(x)-F(x)l(2.10)

and

R’*’(x)[ <-- IF(x)] fo IF’(x -ctF(x))-F’(x)] dt + [F’(x)l lF(x)-F(x)l(2.11)

where F cb’.
Proof. To prove (2.10) it suffices to notice the equality

1 [2R*’ (x
l
( (x & (x)) --(IF(x)

a
+ IV(x)l=)

1
2)(F(x -atF(x)),F(x)) dt-(F(x)2+]F(x)[

1(F(x -atF(x))-F(x),F(x)) dt-[F(x)-F(x)
Finally (2.11) follows from the identity

2,(x) (F(x)-F(x))-F’(x) F(x)

Jo F’(x-atF(x)). F(x) dt-F’(x). F(x)

Jo [F’(x -atF(x))-F’(x)]. F(x) dt +F’(x)(F(x)-F(x)).

LEMMA 5. Assume that O, K C2(H). Then for all x H

(2.12) (x) (x) ()- (),

(2.13) lx x[ lF(x) P(x)l,
(2.14) IF (x)-P (x)l lF(x)-P(x)l.

Proof. By (2.1) we have

(x)-(x)=inf (y)lx-yl; y H -()-IP()I=

which clearly implies (2.12). Next we have

x- (1 +aP)-(x +a(P(x)-F(x)))-(1

and by (2.2)

Ix-llP(x)-f(x)l.

537
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Finally by the identity

F(x)-F(x)=a (x-2)

we find (2.14) as claimed.
LEMMA 6. Assume that ck Ca(H) f3 K. Then for every k O, 1, 2, there exists

a continuous positive function Ck such that

(2.15) 1 +lxl -<(1 + Ixl=)( +c(IF(0)I))

for all x H and a > O.
Proof. It is a simple consequence of (2.5).
PIOPOSITIOy 1. Assume that &, C2(H) K. Then for all n O, 1, we have

(2.16)

(2.18)

(2,20) I
Moreover, if I& Iz, Ilz then there exists C(A )> 0 such that

Proof. From (2.12) and (2.15) the below inequalities follow

(x)-&(x)
<(x)-;(), 1 +112

1+Ix12" 1+lYe12" l+lxl2"

<= [ 4;1o,, (1 +
which imply (2.20) and (2.16). Estimates (2.17) are immediate consequences of (2.6)
and (2.7); the other inequalities are simple (although tedious) consequences of proper-
ties of &.

PROPOSITION 2. Assume that & e C(H)Kand that no, n, n, are nonnegative
integers such that

(2.22) no-> 2n1(1 +n2), no>=nl >n2.

2Then there exists a continuous increasing mapping 3’ --> + such that

(2.23)

Proof. We have

IF(x -ctF(x=))-F(x)l <-_ I 12,.= IF(x)[{1 /[Ixl v Ix -tF(x)[]2"=}
<-- I 12,.=1 I,.,(1 + Ix 12"){1 +[Ixl+lF(x)l]"}

(2.24)
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Moreover, one has

IF(x F(x )l <-I I=,=lx
(2.25) -<-

aV2(16 ]l,nx, 16 12,n2)(1 + Ix 12,+2n2)"
From (2.24) and (2.25) the conclusion follows, by virtue of (2.10).

PROPOSITION 3. Assume that e C2(H)Kand no gn gn2 gn3 gO. Let m be
a positive integer such that

(2.26) m g (2n1+ 2nn) v (n + 2n2).

Then there exists a continuous increasing mapping + + such that

(2.27) lR,X,l

Proof. We have

IF’(x tF(x )) F’(x )l

I1 112,n." I ,,.1(1 + Ix lan’){1 +Elxl+lF(x)132"’}
(2.28)

Recalling (2.11), (2.25) we get

as claimed.

3. The linearized problem. We shall study here the linear Cauchy problem:

E
6t(t, x)-(Ax, (t, x))- Tr (S(t, x)) O,

(3.1)
6(0, x) 6o(X),

where oeZ, e >0 and A’D(A)cHH is the infinitesimal generator of a Co-
semigroup e at of contractions on H, i.e.,

(3.2) le’[ N 1 for all N 0.

By a solution to problem (3.1) we mean a function e B([0, T]; Z) which belongs
to C1[0, T] for each x eD(A) and satisfies (3.1) for all x D(A) and all el0, T].
Consider the approximating problem

7 (t, x)-(A,x, 7(t, x))- Wr (S(t, x))= O,

(3.3)
"(0, x) 6o(x),

where A, n(n -A)- nA(n -A)- (the Yosida approximation of A).
It is well known that exp (tA,)x exp (tA)x for every x in H and Anx Ax for

every x in D(A) (see for instance [6]). Moreover, since A, is bounded, it is easy to
prove many properties in equations involvingA, (for example It6’s formula for "(t, u))
and afterward to pass to limit as n goes to infinity.
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LEMMA 7. For every CoZ, problem (3.3) has a unique solution
C1([0, T]H)fqB([O, T]; Z) given by the formula

(3.4)

Proof. For existence we first remark that srt WT- WT-t is a Brownian motion.
We have:

(3.5)

(3.6) o.xx e e d((s) e

We notice that if bC2(H) then da"(x)(H, SY(H,N)) and so we may write
(4"(x)" y). z b"(x). (y, z) (4"(x)" y, z). In this sense we have (ckP)"(x)
P*ck"(x)P for all P (H). To prove that (I) is differentiable with respect to we
notice that for each h > 0 one has

(3.7)

t+h

(e(t+h)a"x--eta"x--x/-I, e a" ds, o,(etA"x--x/- Io esa" d())
+ -dao** 4- e sa"

t+h

[e(t+h)Anx--etA"x--/-f e sA" d]
at

To calculate 4,(t, x) we remark that

(3.8) lim
1

e A, e
h-*O fi (e (t+h)A X tmnx tAnx

and
t+h

e dsr,4o e e dsr =0,

since r have independent increments. Moreover, one has

(3.10) imo-le(’+h)a"x-e =0,
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(3.11)

Tr S e ta.Oxx (e ta"x 4- e sa. d(s eta..

Observe also that the last integral in (3.7) goes to 0 for h 0 by the Lebesgue
dominated convergence theorem.

It follows that
E

(3.12) D- (t, x) (Anx, 7 (t, x)) + Tr (S x"x (t, x)),

where D[ means the right derivative. Since the right-hand side of (3.12) is continuous
we conclude by a standard result, that (3.3) holds.

Uniqueness. Let be a solution to problem (3.3). We set O(t,x)=(T-t,x).
Then is a solution to the backward problem

(3.13)

E
Or(t, x)+ (A,x, x(t, x)) +- Tr (S4tx(t, x)) O,

6(T,x)=o(X).

Let u u (s, t, x) be the solution to the stochastic differential equation

du Anu ds + 4- dW, u (t) x,

(3.15) u(s,t,x)=e(-’)a"x +4- e(-)andW=u(s).

By the It6 formula

dO(s, u)= O(s, u)+Tr (SOx(S, u)) ds +Ox(S, u) du,

from which, by integrating in It, T] and taking the expectation we obtain

(t, x) E(t, u(t, t, x))= E(T, u(T, t, x)) E&o(u(T, t, x)),

and therefore =" as claimed. The following corollary follows via a standard
variation of constants formula.

COROLLARY 1. Under the assumptions ofLemma 7, the problem

C (t, x)-(Ax, &’ (t, x))-- Tr (S’x(t, x))= ((t, x),

(3.16)
(O,x)=o(x)

has for every B ([0, T]; Z) a unique solution & given by

q(t’x)=E&(eta"x+;- Io
(3.17)

+E Io (s, e(-)a"x +x/- Io ea" dWT-)ds.
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PROPOSITION 4. For every qboZ problem (3.1) has a unique solution
B ([0, T]; Z) given by

(3.18)

Moreover, for each nonnegative integer m there exists OOm > 0 such that

(3.19) [b (t, ")li, emt[b0li, i=0, 1,. ,
et,,, 11.4.(3.20) I1, (t, )[I/,-, -< e IIOlli, O, 1,...

Proof. Let b given by (3.4). Inasmuch as for each x H, etA"x -- etAx uniformly
on compacts we see that

c (t, x) da (t, x),

Tr (Sb (t, x)--> Tr (S4x(t, x),
uniformly in [0, T], T > 0.

Moreover, since for all x D (A)(Anx, da ’ (t, x)) (Ax, bx (t, x)) uniformly in [0, T] we
infer that 4’(t,x)ct(t,x) uniformly on [0, T] and therefore b satisfies (3.1) for all
s [0, T] and x D(A) (we note that in this case b is differentiable as a function of
for each x D (A)).

For uniqueness let r/sB ([0, T]; Z) be another solution to problem (3.1). For
x s H we set xn (n -A)-lnx and notice the equation

tit(t, x.)-(A.xn, fix(t, x.))-- Tr (Srlx(t, x.))

((a -an)x,, (t, x,)).

Then by Corollary 1,

r(t, xn) =Eo(etA"Xn +: 0 esAn dWT-s)
+E i ((A-A")x"’(e’t-s)a"x" +; ea"dW_ ds

Letting n tend to + we get = as claimed. To prove (3.19) we shall restrict
ourselves to the case 0 the other cases being similar. Since Mt ea dW_s is a
martingale it follows (see for instance [12]) that for each m N there exists y >0
such that

2m

(3.21) Ef ea dWr-s Nyt.
We have

2m

).
It follows that there exist real bounded functions ae, e 2, 3,.. , 2m such that

16(t,x)l16olo,mE 1 +eY’,2ae(lXl)X/= e -sA dWt-s (1 + Ixl2m).
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By virtue of (3.21) there exists real bounded functions be such that

I,(t, x)l_-< I01o,,,(1 / Ixl=m)(1 / " be(et)e/2),
e=2

so (3.19) is proved. The proof of (3.20) is completely similar, so it will be omitted.
We shall consider now the nonhomogeneous Cauchy problem,

,(t, x)-(Ax, bx (t, x))- Tr (Sqbxx(t, x)) g(t, x),

(3.22)
6(0, x) 6o(X),

where 4o Z and g B ([0, T]; Z).
By a solution to (3.22) we mean a function b B([0, T]; Z) which belongs to

WI’(0, T) as a function cft (for each x D(A)) and satisfies (3.22) for all x D(A)
and a.e. ]0, T[.

For later use, we notice the following existence result.
PROPOSITION 5. For every doZ and gB ([0, T]; Z) problem (3.22) has a

unique solution 49 B ([0, T]; Z) given by the formula

(3.23)

+EIo g(s,e(t-SAx+/-IO eAdWr_)ds.
Proof. Existence follows from Proposition 4. To prove uniqueness, arguing as in

the proof of Lemma 7 it suffices to assume that A is bounded.
Let b B([0, T]; Z) be a solution to (3.22) where g =0 and b0=0 and let

(t,x)=g)(T-t,x). Finally set d/n(t,x)=(t, Pnx), where

(3.24) Pnx (X, ei)ei.
i=1

Clearly 4," C1([0, T]H;)f’IC([O, T];Z), so we may apply the It6 formula to
(s, u) (see for instance 11]) and get

(3.25)
/ )dO(s,u) /’(s,u)+-Tr(SO.(s,u)) ds+O(s,u)dWs.

Integrating and taking the expectation we obtain

T

(3.26) O=EtO(T,u(T))=gt(t,x)+E O’(s,u(s))+- Tr(SOx(s,u(s))) ds,

where u is the solution to (3.1) (with An A).
As n goes to infinity we get

T

/(t,x)=-E p(s,u(s))+-Tr(SCx.(s,u(s))) ds=O,

as claimed.
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4. The main results. Consider the Cauchy problem

1 e
t(t, x)+-lCx(t, x)12-(Ax, x(t, x))-- Tr (S(t, x))= g(t, x),

(4.1)
(0, x) Co(x), e >0,

under the following assumptions:

(4.2)
a) A is the infinitesimal generator of a Co semigroup of contractions;
b) oZf3K;gB([O, T]; Z) f’I Y{;
c) no>=2nl(l+n2);

where Y{={& e B([O, T]; C(H)); (t) e K, Vte[O, T]}.
We shall consider the approximating problem

1
67 (t, x)+--( (t, x)-62 (t, x))-(Ax, (t, x))

1
(4.3)

2
--eTr (S,,,, (t, x)) g(t, x),

(0, x) Co(X),

where a ]0, 1] and 2 is defined by (2.1), i.e.,

(t,x)=inf (t,y)+-alx y ;y

A weak form of problem (4.3) is given by the following integral equation:

(t, x)=exp (-a-t)Eo(e’ax +/- Io ea dWr-)
(4.4) +E Io exp (-a-a(t-s))(a-ld)2 +g)

(S, e(t-)A+ X/- IO e’A dWT-s)ds.
PROPOSITION 6. Under assumption (4.2) for every a > 0, (4.4) has a unique solution
B([0, T]; Z). Moreover satisfies (4.3) for all (t, x) e [0, T]xD(A).
Finally there exist Gi >-- 0, 0, 1, 2, 3 such that

(4.5)
+ Io exp (ei(t S))[g(s," )]i, ni ds, O, 1, 2,

(4.6)
I1 (t,.)[[2., -<- exp (eo33t)l[o[12,,

+ Io exp (e3(t-s))llg(s, ")112.,3 ds.

Proof. Set

c(t, x e-/Eqbo (etAx +/- Io eSa dWT_)
(4.7)

t-s

+E Io e-(’-)/g(s, e(’-)ax +/ fo e’A dWr_,) ds,
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(4.8)
"+a(t, x) cb(t, x)

+ I--E e s, e
tws

Using inequalities (2.16)-(2.20) it is not difficult to find 0, 1, 2, 3, such that

(4.9)
1" (t,.)[g.., _-< exp (eot)lcbo[,.

+ exp (egi(t-s))lg(s, ’)li, ds, 0, 1, 2,

(4.10)
116 (t,.)[[a.,3 <- exp (e53t)l[4,ol12,.

+ Io exp (ed3(t-s))llg(s,")Jl:z,,3 ds.

By (4.9) and (4.10) we see that the set

r {b"(t, .); n N, [0, T]}

is bounded in Z.
Set now

(4.11)

By (2.21) it follows (F being bounded in Z) that {bn(t, .)} is a Cauchy sequence, with
respect to the norm I’ Is, uniformly in .t. This implies .that {b"} convergesin B ([0, T];
C2(H)) to a function b. By (4.9). and (4.10) it follows that b B([0, T]; Z) and
also that (4.5) and (4.6) hold.

Finally, using Proposition 5 it is easy to check that 4 is the unique solution to
(4.3) for all (t, x) [0, T]D(A).

THEOREM 1. Under assumptions (4.2) the Cauchy problem (4.1) has a unique
solution cb B([0, T];X)fqB([O, T]; Ca(H)) such that 4(’,x) Wa’(O, T) for all
xD(A). Moreover, the map (b0, g)b is Lipschitz from XXB([O,T];Z) to
B ([0, T]; X). Finally the set {4 (t,.), [0, T]} is bounded in Z.

Proof. We shall obtain the solution b to (4.1) as the limit for a 0 of b. The
first step is the proof of the convergence of b. Let a,/3 > 0. By (2.10) it follows that

14,f +-(4, ’ E-c)-(Ax, 4)-Tr ($4,) g + R,t,,,o R,t,,t,

4,’ (0, x) ,/,o(x),

and by Proposition 5, we get

t3(t,x)=e-t/Eo(etAx +x/- Io eA dW:r-)
d) +R, R,

(S, e(t-S)Ax+ X/- IO eA dWT-_) ds.
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By (2.20), (2.23) and (3.19) we see that

[(t, .)-t(t, ")lO.no

-< exp (-(t- s)(a -1 + wo))

(4.13)
[-(1 +C.o( (s, .)))1 (s, .)-e(s, ’)1O,.o,

By(4.5), (4.6) and the Gronwall lemma it follows that there exists C > 0 such that

(4.14)

and all {&(t, .)} belong to a closed bounded subset of Z. Hence there exists
/3 ([0, T]; X) such that in/3 ([0, T]; X).

We shall study the convergence of &. Choose ml>-(2n+2nn3)v(n+2ne).
Recalling (4.12) and (3.19) it follows by Proposition 3 that

[(t, .)-(t, .)1,.-< Io exp(-(t-s)(a-+w))
(4.15) [a-(1 +aC(&e(s, .)))[&(s, .)-&(s,

+ (- + t)n (l (s,.)11,.,, I (s,.)1,., [ (s,.)[,n)] as.
Using once again the Gronwall lemma we get

(4.16) 14 (t, .)-4e(t, .)11.,1 <- Cl(a +/3),

and therefore & /3([0, T]; CX(H)). By Lemma 2 it follows that for every [0, T]

(4.17) Tr (SL(t, x)) Wr (S4L(t, x))

uniformly on every/3R. Recalling now that

1 e
da + - 14 e Ax da o - Tr ($4 x) g R6.,

and keeping in mind estimate (2.21) we may infer that for every x D(A)d? (t, x) is
bounded in L(0, T) and as a 0

1 e
7(t, x) --lCkx(t, X)I2 +(Ax, (t, x))+ Tr (Sckx(t, x))+ g(t, x)

uniformly on BR, for any e [0, T], where R is arbitrary. We have therefore proved
that satisfies the conditions of Theorem 1. Let C g, 1, 2 be two solutions to

problem (4.1) corresponding to (, gi). We have

-1 E
x-- ixx):ick + a (ok -ok )-(Ax, ck - Tr (S g +R,,.,

oi(t,x)=o.
This yields, recalling Proposition 5,

i(t,x)=exp(-a t)Eo e + e dWr_

+E exp(-a (t-s))( +g s,e + e dWr- ds
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and by (2.20), (2.23), it follows via Gronwall’s lemma that

(4.18)

+Io o lo, o s),
where C is independent of e. In particular, we may conclude that the solution to
(4.1) is unique and the proof of Theorem 1 is complete.

Remark. If Z happens to be a dense subset of X then for any oX and
g e B([0, T];X) problem (4.1) has a unique weak solution e B([0, T]; X).

Now we shall study the convergence of {} for e 0.
TEOREM 2. Under the assumptions of Theorem 1, in B([0, T]; X)I

B([0, T]; C(H)), where (.,x) W’(O, T) or all x D(A) is the solution to the
Hamilton-Jacobi equation:

,(t,x)+1/2[x(t,x)12-(Ax,&x(t,x))=g(t,x) a.e. te[0, T], x D(A)
(4.19)

(0, x) Co(x).

Proof. First we observe that in estimates (4.5), (4.6) the constants can be taken
independent of e. For e, a > 0 we have

e ,t -e- ).149 12 (ax, 4) - Tr (Sx)=g+ 2
Tr(S

Then by (4.5) and (4.18) we see that {} is a Cauchy sequence in B([0, T];X) and
therefore for e-+0, -+ in B([0, T]; X). Moreover, arguing as in the proof of
inequality (4.16) we show that --> in B([0, T]; Ca(H)). Again by estimates (4.5)
and (4.6) it follows that {(t,.)} remain in a bounded subset of Z and for e-+0,
e [0, T] and x e D (A).

4,7 (t, x)-, -1/2IG (t, x)l2 +(Ax, 49(t, x))+ g(t, x),

thereby completing the proof of Theorem 2.
We shall give now another approximation result which will be useful in the next

section. Again we denote by An n2(n-A)-a-n the Yosida approximation of A.
PROPOSITION 7. Assume that hypotheses of Theorem 1 hold for any n N let 49

be the solution to the problem

, +1 +(Ax,x)--Tr(Scbx)=g,
(4.20)

"(0, x) Co(x),

and let O be the solution of problem (4.1). Then On__> in B([O,T];X)f’)
B([0, T]; Ca(H)).

Proof. Let & n, be the solution to

b,
1

(4.21)
"’(0, x) Co(x).

Proceeding as in the proof of Theorem 1 we see that

(4.22) lim Cn,= inB([0, T]; X) fq B ([O, T]; Ca(H)) forallc >0.
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Hence for n m

Synthesis ot optimal control. Consider the Cauchy problem"

at(t, x)-}[x(t, x)l2 +(Ax, Px(t, x)}

E
(5.1) +-Tr ($4,x(t,x))+ V(t,x)=O,

6(T,x)=6o(X),

where V(t, x) g(T-t, x). Remark that (5.1) is obtained from (4.1) by setting (t, x)
(T-t,x). Throughout this section we shall assume that assumptions (4.2) are
satisfied. Then by Theorem 1, problem (5.1) hasa unique solution E B ([0, T]; Ca(H))
such that (.,x)E WI’(0, T) for every xD(A). Notice also that by virtue of
Proposition 7 the solution to the problem

’(t,x)-1/2[d/’(t,x)I2+(A,x, ff(t, x))

(5.2) +-Tr (S’,(t,x))+ V(t,x)=O,

is convergent to in the following sense"

(5.3) " in B ([0, r]; X),

(5.4) 7 uniformly in [0, T] BR.
We shall use these facts to prove the following lemma.

LEMMA 8. Let u M2w (0, T’, H) and let be the mild solution to the stochastic
equation

(5.5) d( (A + u) ds + /- dWs,

If O is the solution to (5.1) then the equality

’(t) x, t<-s<-T.

(5.6)
t(t,x)+-E Itx(S,(s))+u(s) ds

I,T( 1 )=E V(s, ((s)l+-tu(s)[ ds +&o(’(T))

holds for all (t, x) [0, T] H.
Proof. Let r, be the solution to

(5.7) d(, (A,C, + u ds + 4- dW,,
and let $, :[0, T] H - [ be the function defined by

T

,(t, x)= Jo "(s, x)n,(t-s) ds,

where {p,} is a family of C-real valued functions such that

supp (P") ]- 1’ nl--[n
p.(t)=p.(-t),

r,(t) x,

p. >=0
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and I+ g,(t)dt= 1 Clearly q, B([0, T];Z) and (,)B([0, T]" X) By (5.3) and
(5.4) it follows that

(5.8) q, - in B ([0, T]; X).

By standard results on infinite dimensional stochastic equations (see for instance [7])
we know that ’, (t)- ’(t) uniformly on [0, T] with probability 1 and therefore

(5.9) E(($,)x(t, y, (t))) E$x (t, y(t)) uniformly on [0, T].

Next by the It6 formula,

dO.(s, .) (O.)(s, ,,) ds +(A.(,, ds + u ds +4- dW, (O.)x(S, ,.,))

+- Tr (SO.,x(s, (.)) ds.

Then, integrating on [t, T] and taking the expectation gives

[O..x (S, C. + u (s )l ds

( 1 )V(s, ’.)+lu(s)[ ds +o(’.(T)).

Then, if we let n tend to +c, by (5.8) and (5.9), (5.6) follows as claimed.
The relevance of the solution to (5.1) for the optimal control problem (P), is

explained in Theorem 3 below.
THEOREM 3. Assume that conditions (4.2) are satisfied. Then the solution O to

(5.1) is the optimal value function of problem (P), i.e., for every [0, T] one has

(t,x)=inf E V(s,(s))+-lu(s)l2 ds+co((T));

d=(A+u)ds+,/-dW,(t)=x,u eM(O, T; H)}.
Moreover, the solution (+ to the problem

d( (a 4& (t, )) dt + x/- dWt, [0, T],
(5.)

((o) =x

is an optimal trajectory to problem (P) corresponding to the optimal control u + given by

(5.12) u+(t) -O(t, ’+(t)) a.e. e ]0, T[.

+The optimal control u is unique.
In few words, Theorem 3 says that under assumption (4.2) u(t)=-x(t, r(t)) is

an optimal feedback control for the stochastic control problem (P) (see [8] for
definitions and classical results on these topics).

Proof of Theorem 3. By Lemma 8 (formula (5.6)) we see that for each (t, x)
[0, T]H, 4(t, x)= (t, x) where is the optimal value functions of problem (P).

Now let (r+, u +) be a pair given by (5.10). Since B([0, T]; C(H)) and it is
monotone in x (as the derivative of a convex function) (5.9) has a unique solution
’/ (see [7, Thms. 4 and 7]; remark that hypothesis (24) in Theorem 7 is satisfied in
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our situation because qx is monotone). By (5.6) we see that for every [0, T]

x)=E{
and therefore u + is optimal in problem (P).

Assume now that (t, 37) is another optimal pair. Again by formula (5.6) it follows
that

T

E J, IOx(S, )7(s))+1/2tT(s)l: ds =0

which implies t7 -Ox(s, (s)). since the solution to (5.9) is unique we infer that
and t7 u as claimed.
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APPROXIMATE CONTROLLABILITY FOR A CLASS OF
SEMILINEAR ABSTRACT EQUATIONS*

HONG XING ZHOU"

Abstract. In this paper a class of control systems governed by the semilinear abstract equation:
+Ay =F(y)+Bv is considered. A sufficient condition for the approximate controllability is obtained

which improves J. Henry’s results on a nonlinear parabolic control systems with some more serious
restrictions. It is suitable not only to the infinite-dimensional case but also to the finite-dimensional case.
Two examples are given to explain the applications of the theory.

Key words, semilinear abstract system, approximate controllability theory, infinite dimension examples

1. Introduction. In this paper we will be concerned with a class of control systems
governed by the semilinear abstract equation with a distributed control

3 (t) +Ay (t) F(y (t)) + By(. )(t),

y (0) n0.

0<t<T,

Here the state y (t), 0 <_-t <_- T, takes values in the real Hilbert.space X and the control
v (.) is in another real Hilbert space V. For instance, V L2(0, T; U) and U is a real
Hilbert space. Assume the operator -A generates a differentiable semigroup S(. on
the state space X. In (1.1) the action operator B is a linear bounded operator mapping
V into L2(0, T;X). F(.) is some nonlinear function satisfying Hypothesis (F) in 2.

If F(y(.))--0, V=L2(0, T; U) and B [UX], the space consisting of all
linear bounded operators mapping U into X, i.e., Bv(.)(t)= Bu(t), then the system
(1.1) becomes

(1.2)
f (t) +Ay (t) Bu (t),

y(O) no,

0<t<T,

which is called the corresponding linear system of (1.1). The controllability theory on
the linear abstract control system (1.2) is well known. One of the principal results on
approximate controllability is that the linear control system (1.2) is approximately
controllable on [0, T] if and only if IS (t)B ]*b * 0 for 0 <- <= T implies b * 0 in X*
(see [3], [1]). In [9] the existing results on controllability theory for linear partial
differential equations are summarized.

As for the control systems governed by nonlinear abstract equation or nonlinear
partial differential equation, there are very few papers to discuss the approximate or
exact controllability problems. Using the implicit function theorem, H. O. Fattorini
[4] studied the local controllability of a nonlinear wave equation with an input of the
form b(x)f(t). In [2] the controllability problem is considered for the N-dimensional
hyperbolic equation.

In 1978, J. Henry [6] discussed approximate controllability for a nonlinear
parabolic equation where the operator A is positive and -A generates a holomorphic
compact semigroup. He pointed out that if the range BV of the operator B in (1.1)
is dense in L2(0, T; X) then under some hypotheses on the nonlinear function F(.)
the nonlinear parabolic system (1.1) is approximately controllable. As an infinite-

* Received by the editors June 18, 1981, and in revised form April 16, 1982.
t Department of Mathematics, Shandong University, Jinan, Shandong Province, The People’s Republic

of China, and University of California, Los Angeles, California 90024.
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dimensional parabolic equation, it may be looked at as a natural extension of a
finite-dimensional ordinary differential equation. In the later case, A is a N N matrix
and B is a N M matrix (M -< N), and approximate controllability becomes complete
controllability for the linear control system. Thus Henry’s hypothesis BV=
L2(O, T;X) in the finite-dimensional case is equivalent to that M =N and B is a
nonsingular N N matrix. That means his result cannot be applied to such a simple
second order ordinary differential equation as

(1.3) d-- y2 0
Y + + u(t).

-4 Y2 F2(y 1, Y2)

But in [7], [11] it is proved that such a system is completely controllable under some
assumptions on the nonlinear functions F1 and Fz and the terminal time T.

In this paper, sufficient conditions--Hypothesis (B) in 3--for the approximate
controllability of the semilinear abstract system (1.1) are obtained. If the range BV
of the operator B is dense in Lz(0, T;X) then Hypothesis (B) is satisfied (Theorem
3.3). So this sufficient condition is more general than previous ones. It is suitable not
only for a nonlinear abstract control system in Hilbert space, but also for the finite-
dimensional ordinary differential equations, e.g. the nonlinear system (1.3). In 4 two
examples will be given which show that even if the range BV of the operator B is
not dense in L2(0, T;X) then under some reasonable hypotheses on the nonlinear
function F(. and the terminal time T the semilinear parabolic system is still approxi-
mately controllable.

2. Preliminaries. Here we give some notation and introduce some lemmas con-
cerning the properties of the solution of (1.1) corresponding to a given control v(.).

First, a hypothesis for the nonlinear function F is given which insures existence
and uniqueness for the nonlinear equation (1.1) with a given v (.) V.

Hypothesis (F). F(. is a nonlinear operator mappingX intoX and F(. satisfies a
Lipschitz condition with some positive constant K1

(2.1) IlF(y)-F(y2)ll<-Klly,-y2]l fory, yX.

(Here I1" denotes the norm in X, i.e., I1" IIx.)
Under Hypothesis (F), F(y(t))eX, O<-t<-T, and F(y(.))eL2(0, T;X) for any

y(.)e L2(0, T; X), since

(2.2) IlF(y(t))ll2<-2gllly(t)ll2+211F(O)ll, O<=t<-_T.

In 1 it was pointed out that the important case for V and B is V L2(0, T; U)
and B [U-X]. To distinguish the two kinds of case we use B(o.r to denote the
operator on V.

While discussing the semilinear parabolic system (1.1) on the interval [0, T] we
usually use its "intercept system" on the interval [to, T] with some given initial value
Co X at the initial time to [0, T):

(2.3)
(t) +Ay (t) F(y (t)) + B(to,T)V(" )(t),

(to) sCo,

to<t<T,

where the track y(.) is in L2(to, T;X), the control v(.) is in V and B(to,T)
[V L2(to, T; X)] is the intercept of B(O,T) on [to, T], i.e.,

B(to,rv(’)(t)=B(o,rv(’)(t) forto<=t<=T.
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It is proved that there exists a unique solution y(. E L2(to, T; X) for the nonlinear
Cauchy problem (2.3) with every given v(. )E V under Hypothesis (F). Thus one may
define a solution mapping, denoted by Y(to, Co; v), from R X V into L2(to, T;X)
(see [10], [5]). It is not difficult to obtain the following estimate for the solution
mapping"

LEMMA 2.1. Let v(.) V and oX. Then under Hypothesis (F) the solution
mapping Y(to, o; v) of (2.3) satisfies

Y(to, 0; v)(. )l[,o.;,-<_ MIIo[14T- to + M21IF(O)II(T to)3/2
(2.4)

+M3(T to)lIB,o.
where M1, M2 and M3 are positive constants independent on to, Co and v. Let v l(" and
v2(’) be in V. Then

(2.4)’ I[Yl(" Y 2(" )llLZ(to,T ;X) <- M3(T to)[lB (to,TVl (")(" B (to,TV2(" )(" )I[L2(to,T ;g)
where y,(.)= Y(to, o; v,)(. ), n 1, 2.

Proof. By the semigroup method [1], [5], the solution y(t)= Y(to,o; v)(t) of
(2.3) satisfies

(2.5) y(t)=S(t-to)o+It S(t-s)[F(y(s))+B(to,rv(’)(s)]ds,

Thus

Denoting

(2.6)

we have

O<__t<_T.

IlY (t)ll <= lls (t t)llll#ll + I, IlS (t s)lllF(y (s)) -F(O)l] ds

+ It Ils (t s )ll IIF (o) +B(,o,TV (")(S)II ds.

Ma max IIS(t)[letx-x,
Ot<=T

Ily (t)ll -<- M[l[o[[ + IlF(O)ll(t to) + 4t tollB (,o,v (.)(. )llr(,o,7-;xl

+KIMA ft IIY (s)ll ds.

Since [...] in the above inequality is monotonically increasing, using Gronwall’s
inequality, we have

(2.7) Ily(t)llMaeElloll+llf(0)ll(t-to)
and

(2.8)
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Formula (2.4) is required, with

1 1
(2.9) M /Ma eKMaT M2 --M M3 -Mand (2.4)’ is proved by the same way.

Remark 2.2. If we consider concrete nonlinear control systems, then the constants
M1, M2 and M3 in (2.4) could be improved over that in (2.9). For example, assume
the operator A is positive, i.e.,

(2.10) (Ay, y)=>0 for y eX,

and the nonlinear function F is negative, i.e.,

(2.11) (F(y)-F(y2), yl-y2)=<0 for y, y2X.

Then the constants M, M2 and M3 in (2.4) take values such as

2(2.12)
M 1, M2 --, M3 4.

That proof of (2.12) is slightly different from that of Lemma 2.1 and is omitted
because the values of the constants M, M2 and M3 are not essential for the future.

Given a strongly continuous semigroup S(t) for -> 0 we define a linear bounded
operator 5e, mapping L2(to, T; X) into X by

T

(2.13) St’top= f S(T-t)p(t)dt forp(.)eL2(to, T;X).
at

Let v(.) be an arbitrary element in V and y(t)= Y(to, jo; v)(t). Then the pair
(y(.), v(. )) satisfies (2.5) and the terminal state y(T) may be rewritten as

(2.14) y(T)= Y(to, o; v)(T)=S(T-to)jo+5toF(y(’))+9,oB{,o.T)V(’)(’).

So the reachable set for the intercept system (2.3) at the terminal time T is dependent
on to and sco. We denote it by

(2.15) K(to, sCo) {seT[SeT Y(to, s%; v)(T)for some v e V}.

If the reachable set K(to, sco) is dense in X for any given sCo e X then we say that the
intercept system (2.3) is approximately controllable on [to, T]. Here, for convenience,
we give an equivalent definition of approximate controllability of the intercept system
(2.3) on [to, T]:

DEFINITIOr. Assume sCo is arbitrarily given in X. The intercept system (2.3) is
called approximately contro.llable on [to, T] if for any given e >0 and scr e X there
exists some control v (.)e V such that

(2.16) [[r-S(T-to)o-,oF(y)-toB(,o,rvll<e,
where y(t) Y(to, :o; v)(t), to <=t<= T.

Remark. The definition of approximate controllability for the intercept system
(2.3) is slightly different from the ordinary one in which :o- 0. But there is not any
essential distinction.

Obviously, the linear intercept system

3 (t) +Ay (t) u (t), to < < T,

y(to) :o
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is approximately controllable and the reachable set at the terminal T includes the
domain D (A) of the operator A.

3. Approximate controllability. Before discussing approximate controllability
for the semilinear abstract system (1.1) on [0, T] we deal first with the approximate
controllability problem for the corresponding intercept system (2.3) on [to, T]. We
prove here that some intercept system is approxirnately controllable under some
assumptions on the nonlinear function F, the action operator B(to,r and the length
T- to of the time interval.

Hypothesis (B). For every arbitrarily given e >0 and p(.)L2(to, T;X) there
exists some v (.) V such that

lib ,o,v (’)("

where q is a positive constant independent of p (.);

(3.3) The constant ql satisfies M3(T-to)gxql < 1.

Remark. Hypothesis (3.1) is equivalent to the approximate controllability of the
corresponding linear system.

THEOREM 3.1. Let the operator B(t,,,r), the nonlinear function F and the length
(T-to) of the time interval [to, T] for the intercept system (2.3) on [to, T] satisfy
Hypothesis (B ). Then this intercept system (2.3) is approximately controllable on [to, T].

Proof. Since the domain D (A) of the operator A is dense it is sufficient to prove

(3.4) D(A) c K(to, Co);

i.e., for any given e > 0 and scre D (A) there exists an v (.) V such that

(3.5) IICT S(T- to)Co ,,F(y)-,oB (,o,T)V]] < e,

where y(. Y(to, Co; v)(. satisfies

(3.6)

y(t)=S(t-to)o+ It S(t-s)F(y(s)) ds

+ It S (t s)B (to,rv (")(s) ds,

that

to<=t <-_ T.

As r D(A) and S(T-to)oD(A) there exists some p(.) cl([to, T];X) such

toP ,r S T to)o,

e.g., p(t)= 1/(T-to)[(l +(t-to)Al], where 1 r-S(T-to)o.
We construct a sequence recursively as follows’
Assume vx(’) V is arbitrarily given. By Hypothesis (3.t) there exists some

v2(’)e V such that

S(T to)o-oF(y 1) 5toB (,o,T V211 <

where

yl(t) Y(to, sCo; vx)(t), to <=t <- T.
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For v2(’) thus obtained, we determine w2(’)e V by Hypotheses (3.1) and (3.2) such
that

[I,-Pto[F(Y 2) F(y 1)] 5froB (to,r)w 211 < 2-5
and

lIB (to,T)W2(" )(" )11L2(to,r ;x)--<--q IlIF (Y 2)(’ )-F(y 1)("

(3.7) qlKlllY2(" )-- yl(" )llL2(to,T;X)
<= q1KM(T- to)]]//(,o,TV2(’ )(’ )--B(o,T(" )(" )][L(o,T;X,

where

yn(t)= Y(to,:o; vn)(t), n 1,2, to<-t<-T.

Thus we may define

v3(’)=v2(’)-w2(’) inV,

which has the following property’

(3.8)

By induction, it is proved that there exists a sequence of v, (.) in V such that

(3.9) IIT-s(r-to)o-toF(Y,)-toB(to.T)Vn+lll< -+" "+ e,

where

(3.10) y,(t)= Y(to,Co; v,)(t), to<-t<-t, n 1,2,...

and

(3.11)
(to,T) Vn+l(" )(" )-- B (to,T)Un (")(" )I[L2(to,T;X)

<= q1KIM3(T to)liB (,o,r)vn (")(" B (to,T)V,,-l )(

By Hypothesis (3.3) the sequence {B(to,r)v,,; n 1, 2,... } is a Cauchy sequence in
the Banach space L2(to, T; X) and there exists some f(. in L2(to, T; X) such that

lim B(to,r)v,,(.)(.)=f(.) inL:(to, T;X).

Therefore, for any given e > 0 there exists some integer N such that

(3.12) 116eoB (to,T)VN+ toB (to,T)VN <
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and

(3.13)

in which yr (’)= Y(t0, sCo; vr)(’). These are the required inequality (3.5) and (3.6).
Thus the intercept nonlinear system (2.3) is approximately controllable under
Hypotheses (B) and (F).

Remark. The limiting element f on the sequence {B(to,rv,} is only used to obtain
the inequality (3.12). In generality, the control sequence {v,} is not convergent and
there is not any "limiting control" t5 V such that f =/3 (to,7"O. ]

From Theorem 3.1 the following corollary on the approximate controllability for
the nonlinear system (1.1) on [0, T] is obtained immediately.

COROLLARY 3.2. Consider the semilinear parabolic system (1.1) on [0, T]. If there
exists some to [0, T) such that Hypothesis (B) is satisfied for its intercept system (2.3)
on [to, T], then under Hypothesis (F) the original system (1.1) is approximately control-
lable for every given rtoX on the time interval [0, T]. [q

The conclusions in Theorem 3.1 and Corollary 3.2 are suitable for more general
cases. For some concrete nonlinear system Hypothesis (B) may be verified. We discuss
two cases here"

(1) the range B(o,r)V of the operator B is dense in L2(0, T; X),
(2) the finite-dimensional case.
THEOREM 3.3. Suppose the range B(o,rV of the operator B(o,r) is dense in

L2(O, T;X). Then under Hypothesis (F) the nonlinear parabolic system (1.1) is
approximately controllable for every given rio X on [0, T].

Proof. Denote the intercept ofB (o,r) on [to, T] byB (to,r for every given to [0, T).
Then it is easy to see that the range /3(to,T)V Of the operator B(o,r is dense in
L2(to, T;X). In fact, for any given p(.)L2(to, T;X) there exists a sequence of
v, (.) V such that

lim liB (O,T)t)n(" )(" )-P*(" )[[L2(O,T;X) O,

where p*(. L2(0, T; X) is the extension of p(. with p*(t)= 0 for 0 <-’t < to. As

lib (to,r)Vn (")(" )--P(" )llg=(to,Z;X)

That means the range B (to, T) V is dense in L2(to, T; X) for every given to [0, T).
Now choose an arbitrary to such that

1
(3.14) 0<T-to<MaKI
for example to=max{0, T-(1/2M3K1)}. Thus for any given e >0 and p(.)
L2(to, T;X) there exists some v(.) V such that if

lIB (,3,rv (")(" -P(" )llL2(to,T;X) ( ,Slip(" )ll.o.r;x,
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where 8 > 0 is any given constant. Thus

lib (to,r)V(")(" )llr=(to,r;x) liP(" )[Ic=(to,r ;x)( + 1).

By the definition (3.14) of to Hypothesis (B) is satisfied for this to and the operator
B(to,r with dense range. Hence the approximate controllability of the system (1.1) is
obtained on [0, T] where T > 0 is any given terminal time. [3

In the rest of this section the finite-dimensional case will be considered. Suppose
X N, U NM(M < N). The time-dependent nonlinear lumped-parameter control
system is described as follows:

(3.16)

dx(t)
dt

A(t)x(t) F(x(t))+B(t)u(t), O<-t<-_T,

x(0)=n,

where A (t) and B (t) are N xN andN xM continuous matrices on [0, T] respectively.
The corresponding linear system of (3.16) is

(3.17)
dx (t___) +A (t)x (t) B (t)u (t).
dt

Denote the fundamental solution matrix of (3.17) by S(t,s), O<-s <-_t<-_T. Then we
have a preliminary lemma on controllability (see [8]):

LEMMA 3.4. Let the linear system (3.17) be completely controllable on [to, T] and
the matrix G(to, T) be defined by

(3.18) G(to, T)= (T, t)B(t)B(t)*S(T, t)* dt.

Then for every h e RN the control u(t)=B(t)*S(T, t)*[G(to, T)]-lh has the min-norm
property:

T

(3.19) IIU(’)IIL2(to, T;RM)=inf {[[V(’)llL2(to,T.RM)’ft S(T, t)B(t)v(t)dt=h}.
THEOREM 3.5. Let toe [0, T). Assume the linear system (3.17) is completely

controllable on [to, T], nonlinear function F satisfies Hypothesis (F) in 2, and the
condition

(3.20) M3KMa IIB )II(T- to)3/l[G(to, T)-II < 1

is satisfied for the nonlinear system (3.16), where

MA max IlS(t, s)IIe[R’_,RN].
Os<=t<=T

Then the nonlinear system (3.16) is completely controllable on [0, T] for any given
initial state rio S.

Proof. Letf(.)eL2(to, T; Ru) be an arbitrarily given function. Then by the com-
plete controllability of the linear system (3.17) on the time interval [to, T] there exists
an u(.)L2(to, T; NM) such that

T T

ft S(T’ t)B(t)u(t) dt ft S(T, t)f(t) dt

and
T

u(t)=B(t)*S(T, t)*G(to, T)-1 It S(T, t)f(t) dt.
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Thus

(3.21)

where

q MlIB(’ )[I(T-to)/l[G(to, T)-[[.
Similar to Theorem 3.1, for any given :r and :o in RN there exists a sequence {v, (.);
n 1, 2,...} in L2(to, T; RM) such that

(3.22)

T

0 T -S(T, S)o- It S(T, s)F(x,(s)) ds

TI, S(T, s)B(s)vn+l(S) ds,
0

n=l,2,...

and

(3.23)
q*lKiM3(T-to)llB(.)llllv.(.)-V._l(.)llC,o,T;,), n 2, 3,...

where x,(t) X(to, sCo; v,)(t) is the solution of the intercept system on [to, T] of (3.16),
i.e.,

(3.24) x,(t)=S(t, to)o+ S(t,s)F(x(s))ds+ S(t,s)B(s)vn(s)ds.

Here we notice that since the linear system (3.17) is finite-dimensional the inequality
(3.9) in Theorem 3.1 becomes an equality (3.22) here. By Hypothesis (3.20) the
sequence {v,(. ); n 1, 2,... } is a Cauchy sequence in L2(to, T; N) and there exists
some control u(. in L2(to, T; N) such that

limv,(.)=u(.) inLZ(to, T;).(3.25)

Since the semilinear system (3.16) is a finite-dimensional ordinary differential equation,
the solution mapping X(to,o;V)(’) is continuous from L2(to, T;NM) into
C([t0, T]; NN). Thus from (3.24) we have

(3.26) x(t)=S(t, to)o+, It S(t,s)F(x(s)) ds + It S(t,s)B(s)u(s) ds,

where

x(t)=X(to,o;U)(t), to<-t<-T,

and from (3.22) we have

(3.27) x(T) r.
Since the initial value sCo at to is arbitrary, the complete controllability for the
system (3.16) on [0, T] is shown immediately.

Remark. There are some papers which discuss the complete controllability prob-
lem for the nonlinear lumped-parameter system (3.16). Here the condition (3.20) for
the complete controllability is similar to one in [9].

4. Examples. In this section some examples of approximate controllability of the
systems governed by the semilinear heat equations will be given. For these systems
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approximate controllability does not follow from Henry’s theorem. But Theorem 3.1
can be applied to show that these systems are approximately controllable.

Example 1. Let X=L2(0, r) and e,,(x)=x/-jrsinnx, n 1,2,.... Then {en,
n 1, 2, } is an orthonormal base for X. Define an infinite-dimensional space U by

(4.1) U= u u unen with
=2 =2

The norm in U is defined by Ilull=(E=zU=)1/. Define a mapping B L[U-X]
as follows:

(4.2) Bu 2u2el+ u,e, for u Y u,e, U.
=2 =2

Obviously, IIllc:xa--< 4,
Consider a system governed by the semilinear heat equation

0y(t,x) 02y(t,x)--= Ox 2 -F(x, y(t,x))+Bu(t,x), 0<t< T, 0<X <Tr’,

(4.3) y (t, 0) y (t, 7r) 0, 0 <_- _-< T,

y(O,x)=no(x), O<-_x<-r,

where the operator B is defined by (4.2) and u(.,. e L:(0, T; X) L2((0, T) x (0, 7r)).
Here the nonlinear function F is considered as an operator satisfying Hypothesis (F).
Assume the initial value satisfies the compatibility condition, i.e., rio(0)= rio(r) 0.
In this specific case the range B(,.r)V of the operator B is not dense in L:(to, T;X).

The linear system corresponding to the nonlinear heat system is

Oy(t, x) O2y(t, x)
Ot Ox

+Bu(t,x), 0<t<T, 0<x<Tr,

(4.4) y (t, 0) y (t, 7r) 0, 0 -< =< T,

y(0, x)=0, 0-<_x=<m

(without loss of generality, we may assume rio(X)--0). Let

y(t, x)= y,(t)e(x), u(t, x)= , u,(t)en(x).
n=l n=2

Then this heat equation (4.4) is equivalent to the following infinite set of ordinary
differential equations"

(4.5)

and

dt \yz(t) 0 __) (yl(t)y2(t)/+ (21) u2(t),

yl(0) y2(0) 0,

d 2

dt
y" (t) -n y, (t) + u, (t)

(4.6) n =3,4,....
y.(0) 0,

Obviously, as the second order system (4.5) is completely controllable in R2 for any
given T > 0, the heat system (4.4) is approximately controllable.
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Let f(. be an arbitrary element in L2(to, T; X) and h X be defined by

(4.7)

Assume that

T

h It S(T- t)f(t) dt.

f(t) Y’. fn (t)e,, and

According to Lemma 3.4

h=Y.h,en.

T T

o

where

2n 2

(4.8) fn (t)
1 e -2n2(T-t)

h, e -n2(T-t),

Define/(t) E=I L (t)e,,. Then

n-l,2,...,

to<-t<=T, n=l,2,...

(4.9) 10v(" )11=(,o,;)<-Ill("

We now claim that there exists some constant ql such that

(4.10) IIBu (’)11 =(,o,;x)<- q llf(" )11(,o, ;x),

where the control u(.) satisfies

(4.11)
T T

I, S(T-t)Bu(t) dt h I, S(T-t)f(t) dt.

In fact, consider such a control u(t) ’n-_2 u.(t)e., where u2(t), u3(t), are defined
by

(4.12)

u2(t)=(2 1)(e-(r-’) 0 ) ( )0 e_4(T_t) Gb(to, T)- hi
to <-- <= T,

hE
2n 2

-n2(T-t)un (t)
1 e -2n2(T-t)

h, e to <- <-_ T, n 3, 4, ..
The matrix Gb (to, T) may be obtained as follows

T (4e-2(T-t)G (to, T)
2e

2e -5(T-t)
e_8(T_t) j dt

2[1-e -2(r-’)] [1-e_8(r_,,,)]].52_[l_e_S(r_,o)], 81-[1_e

To illustrate the applications of Theorem 3.1, concrete initial and terminal times are
given, for example, to- 0.9 and T 1. In this special case one has

Gb(0.9, 1)=
.1574

0.1574 ( 416.5 -952.8)0.06881
Gb(0.9 1)-

-952.8 2194
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Thus

and

(4.13)

u2(t) 2(416.5hl- 952.8h2) e -(l-t) + (-952.8hl + 2194h2) e

TI, lu2(t)l2 dt=416h +2449h-2123hlh2

_<- (21.51h 11 + 49.51h21).
Taking the norms of 11(’ and 2(. in L(0.9, 1) gives

]h11=0.3011]1(.)[c2(o.9,1) and 1h21=0.262[]2(.)[c2(o.9,1).
From (4.13) we obtain immediately that

lug(’ )1c2(o.9.1 -< 19.5[[(.
and

-4(1-)

1/2

[[Bu (’)[[L2(O.9,1;X) (5 I0.9 [u2(t)12 dt+Yn=3 I0.9 I/n (t)[2 dt)
:’(o.9,1) + Ilf(.)II L2(0.9, ;X))

(4.14)
=< 43.611[(.

43.611/(.
This is (4.10) with q 43.6, to 0.9 and T 1. Thus the condition (3.3) in Hypothesis
(B) reduces to

(4.15) 6.2K1 < 1;

i.e., if the Lipschitz constant K1 for the nonlinear function F satisfies the requirement
(4.15) then the nonlinear heat system (4.3) is approximately controllable for every
given initial state r/o(.) L2(0, zr) on the time interval [0, 1].

Example 2. Let X Lz(0, zr) and {e,, n 1, 2,... } be an orthonormal base as
the one in Example 1. Define

(4.16) V =LZ(0, T;X).

For every u (.) e V of the form u (t) .__ Un (t)e. define

(4.17) B(o,ru(.)(t)= Y an(t)en,
n=l

where

n=l,2,....(4.18) un(t)
1

(t), T(1--) <- <- T,

Since

the operator B(O,T) is bounded in [VL2(O, T;X)]. It is not difficult to see that
the range B(o,rV of the intercept B(to,T) Of B(O,T) is not dense in L(to, T; X) for



APPROXIMATE CONTROLLABILITY FOR SEMILINEAR ABSTRACT EQUATIONS 563

any to [0, T). In fact, if to [0, T) is given, there exists some positive integer N such
that

Hence for any given function f(.)L2(to, T;X) and u(. ) V one has
T

llf(t) B (,o,T)U (")(t)ll2 dt

nE1 [fn (t) an (t) dt

E IL (t) u. (t)l 2 dt + Y Ifn (t) un (t)l 2 dt
n=l n=N+l (1-(I/n2))

T(1-(1/n2))

+ E I, If. (t)l - dt.
=N+I

Consider such a function g(t)= Y’.,--1 gn(t)en, where gn(. is defined by

gn(t)=0 for to <- <= T, n=l,2,...,N,

N+I
for to<-_t<-_ T(1-n-),/ T

gn (t) T-t-(N+I)2 n =N+I,N+2,

<t-<_r,

Since

thus

T_ to_ T/n 2
2 (N+ 1)2

g,(t) dt= 2n T-to-T/(N+I)2’ n =N+I,N+2,...,

(N + 1)2(T to) E
1 (N + 1)2

T-to- T/(N + 1)2 n=N+l /,/2= T-to- T/(N + 1)2

12>=(N+I)2 Y >1.
n=N+l F/

T-to- Tin 2

This means that
T

g(.)L2(to, T;X) and It Ilg(t)-B(’’T)U(’)(t)[lZdt>=l

for every u V. Hence B(,o.rlVCL2(to, T;X) for any toe[0, T).

2

Consider a nonlinear heat control system (1.1) with corresponding linear system

Oy(t, x) O2y(t, x)
at ax 2 +B(o,r)u( .)(t,x) 0<t<T, 0<x<rr,

(4.19) y (t, 0) y(t, 7r) 0, O<-t<-_T,

y(0, x)=0, 0=<x-<_rr.
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We claim that for every given f(’)EL2(0, T;X) there exists an u(.)E V such that
T T

(4.20) Io S(T-t)Bo,,u(’)(t)at= fo S(T-t)f(t)dt

and

lib (o,r)u (")(" )ll,=(o,r ;x)_-< (1 e-Z)-/Zllf(. )ll=(o,;x).
As in the example above consider the infinite set of lumped-parameter control

systems equivalent to (4.19)"
gy,(t___)= _n2y" (t) + t, (t), 0 < < T,

dt
(4.21)

y.(o)=o.

By the definition of B(o,r (or t.(.)) (4.21) is equivalent to

(4.22)

dy. (t) 2 ( ___2)<t<Td--7- -n Yn (t) + t/. (t), T 1
1

y. r-7 =0.

If f(.)eL2(O, T;X) and h is defined by (4.7) with to=0, then the control fin(t),
T(1-(1/n2))<-t <= T, in (4.22) may be selected as

(4.23) tTn (t)
1 --e -2T

hn e -n=(T-t), T 1 =< < T,

which satisfies
T

hn IT(1-(1/n 2))

Define

u (t) Y un (t)en,
n=l

0
un(t)

an(t), <_t<_T.

Then (4.20) is satisfied. The estimate (4.21) is verified by the definitions of t, (.) and
u(.) and (4.8) with to 0:

Ilu o,u (.)(.)11 ILE(o,T;X) E [tn(t)]2dt
n=l .IT(1-(l/n 2))

1 2h2
1 e-2T E 2n

1 e -2r
y (1 e Jo 1/" (t)l de

1
< Ill(.)IIb(o,

1 e-27"
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Now return to the nonlinear heat control system (1.1). If the Lipschitz constant
Kl.for the nonlinear function F satisfies

2 )
/

(4.24) KT
1 e-r

< 1,

for instance, K1 < 0.66 with T 1, then the nonlinear system is approximately control-
lable on [0, T] under Hypothesis (F). [3
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SINGULAR PERTURBATION IN MAYER’S PROBLEM
FOR LINEAR SYSTEMS*

A. L. DONTCHEV+ AND V. M. VELIOVt

Abstract. The well-posedness of Mayer’s problem for a linear system with a small parameter in the
derivatives and constrained controls is studied. The convergence of the optimal control when the parameter
tends to zero is analyzed. The state constrained case is discussed.

Key words, singular perturbation, optimal control, Mayer’s problem, well-posedness

1. Introduction. Consider the following singularly perturbed control system:

=Al(t)x +Az(t)y +Bl(t)u(t), x(0) x,
(1) oA =A3(t)x +A4(t)y +B(t)u(t), y(0) y

for e [0, T], where the final time T e (0, +co) is fixed, the "slow" state x(t)eR and
the "fast" state y(t)e R ". The set of feasible controls is

(2) U={u(.)eLI(R r, (0, T));u(t)e VR a.e. e (0, T)}.

The singular perturbation is provided by the positive scalar parameter A, A e
(0, T2). We assume that"

(A1) The matrices At(t), i= 1,..., 4, Bj(t),/’ 1, 2, are continuous; the eigen-
values of the matrix A4(t) have strictly negative real parts for [0, T].

For A 0 we obtain the reduced system

(3a) 2 ao(t)x + Bo(t)u (t), x (0) x,
(3b) y (t) -a-1 (t)(A 3(t)x (t) + Bz(t)u (t))

for [0, T], where Ao A1-AzA-IA 3, B0 BI A2A-IB2.
Let Kx be the attainable set for the system (1) at the time T, that is Kx

{z R"+"; =lu(.)6 U, z (x(T), y(T)), where (x(.), y(.)) is the solution of (1) corre-
sponding to u(.)}. This paper is concerned with the well-posedness of the order
reduction procedure for the following optimal control problem"

(,4) inf {g (x, y), (x, y) 6 Kx } .
Formally substituting (3) into (4) we get the problem

inf {g(x, -A-a(T)(A3(T)x +B2(T)v)),x 6Po, v V}= ,
where P0 is the attainable set for the system (3a). Such a definition of the limit problem,
however, does not provide well-posedness of (4): see the following example.

Example 1. For [0, 1] consider the system

(6a) 2 Yl--Y2, X(0) --0.5,

A3)1= --yl + U(t), yl(0) 0,
(6b)

A32 -2y2 + u (t), y2(0) 0.

* Received by the editors July 17, 1981, and in revised form March 15, 1982.
t Institute of Mathematics, Bulgaria Academy of Sciences, 1090 Sofia, P.O. Box 373, Bulgaria.
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Let u(t)e[-1, 1] and g(x, yl, Y2)=X2+y+(y2+0.25)2. The problem (5) for , =0
becomes

ff =min {x2(1)+v2+(O.5v +0.25)2, v e[-1, 1]}

for the reduced system

(7) 2 =0.5u(t), x(0)=-0.5, u(t)e[-1, 1].

We obtain in fact two independent problems" a Mayer’s problem for (7) and a
one-dimensional minimization. Clearly, the optimal control iT(t)=-1 and g =0.05.
Applying the control

1 fort[0,1+Aln0.5],
u(t)=

-1 fort(l+,ln0.5,1]

to the perturbed system (6a, b) we get
-1/x -2/xx(1) =,(-0.5 +ln 0.5 +e -0.25 e ),

y1(1) e -1/ -2/y2(1) =-0.25-0.5 e

and

Hence, for small

ffa <-g(x(1), y1(1), y2(1))--- 0,

Thus the question arises of how to define an optimal control problem for the
reduced system (3) which is a "limit" of the perturbed problem (4). This paper gives
an answer to this question.

Convergence of the solutions of singularly perturbed Mayer’s problems has been
investigated by Dmitriev [4] for a system which is linear with respect to the state, and
by Binding [2] for a general nonlinear system. In both papers the performance index
does not depend explicitly on the fast states. In this case the effect illustrated in
Example 1 disappears. Considering a more general performance index we limit our
investigations here to linear systems.

The discontinuity effect in the terminal part of the performance index was first
observed by Glizer and Dmitriev [7] for a linear-quadratic problem without constraints.
The investigations in this direction are developed in [5] for strictly convex control
problems. The analysis in [5] is based on the observation that, if the reduced and the
fast systems are controllable (with unconstrained controls) then the attainable set for
small is the entire space. This approach, however, cannot be applied to the con-
strained case.

In 2 we give a definition of the limit problem, corresponding to the considered
one, which guarantees well-posedness without any controllability assumptions. Section
3 deals with the optimal performance convergence. A possible generalization of our
analysis to problems with functionals including an integral part is discussed. In 4 we
concern ourselves with the convergence of the optimal controls. Section 5 is devoted
to state constrained problems.

2. Statement of the limit problem. In the sequel we assume that:
(A2) The function g(.,.) is continuous; the set V is compact and convex.
Since for each >0 the attainable set Kx is compact, there exist an optimal

control ax (") and a corresponding final state (x, 3x) for problem (4). For every x R



568 A. L. DONTCHEV AND V. M. VELIOV

we define the set

(8)

where

R (x) -A-dl(T)A3(T)x +R,

R Io exp (A4(T)s)B2(T) Vds.

Here the integral of the set-valued function is taken in the sense of Aumann [1].
From the stability of the matrix Aa(T) (see Assumption (A1)) it follows that this
integral exists. Moreover, R is a convex and compact set in R n.

Let

(9) Ko {(x, y)Rm+n; X P0, y R (x)}.

We define the following limit problem"

(10) inf {g(x, y), (x, y) go} fro.
Since the set Ko is compact, there exists an optimal control ao(" ), which when

applied to (3a) drives the initial state x to 0, where (o, o) is the solution of (10).
Note that the limit problem (10) does not depend on the initial condition y(0)= yO.

We can rewrite the limit problem as follows

(11) inf {go(x ), x Po},

where the (continuous) function go(’ is defined by

(12) go(x) inf {g(x, y), g(x, y)= g(x, y-A-dI(T)A3(T)x), y

Such a definition suggests that the limit problem could be solved as a two-stage
optimization problem. The goal function go(x) of the "outer" problem (11) is to be
evaluated by means of the "inner" problem (12). Clearly, in so far as the set R can
be effectively approximated, the ."inner" problem is a parametric mathematical pro-
gramming problem. Generally, problem (12) can be considered as a parametric Mayer’s
problem with performance index g(x, y) on infinite time horizon for the system

3) A4(T)y + B2(T)u (t), y(0) 0,

the attainable set of which at + is exactly R. The "outer" problem (11) for the
slow state x remains Mayer’s problem over [0, T]. We shall not go into computational
details further noting only that if g(x, y) is separable one can select two important
cases: 1) the function g(x,.) is linear; 2) A3(T)= 0. If one of these conditions holds,
the problems (11) and (12) can be solved independently. Moreover, then the "outer"
problem (11) coincides with the corresponding "outer" problem in (5). The solution
of (12) gives only a shift constant for go(x), which provides the well-posedness of the
order reduction.

The difference between problems (5) and (10) follows from the fact that

-A-(T)B2(T) V R.

For our Example 1 this relation is illustrated in Fig. 1. The set R (x)= R has
been obtained analytically in the following way:

The boundary ORx of the attainable set Rx for the system (6b) at the time 1/
can be achieved by means of controls having one switching. Using the switching point
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-
FIG.

tx as a parameter, one can get that each point (y l, y2) ORx satisfies

yx +/-(2 exp (.tx 1))3,
+0(3,), y2 =-4- exp -0.5 +O(h).

Eliminating t and tending to zero with h, we obtain that

R {y (y 1, y2) R2; -1 <= yl <- 1, 0.25(yl + 1)2-0.5 -<_ y2 --< -0.25(yl 1) + 0.5}.

Since A3 0 and g(x, y) is separable, the limit problem consists of two independent
problems" the "inner" one is

inf {Y2 + (y2 + 0.25)2, (yl, y2) R} 0,

and the "outer"

minx2(1) subject to (7).

3. Convergence of the optimal performance. From assumption (A1) it follows
that there exist numbers fro, tr > 0, such that if b(t, -, 3‘) is the fundamental matrix
solution of the equation 3‘3 Aa(t)y, normalized to the identity at -, then

(13) I& (t, ’, A)[ <_-- tro exp (-o" -)
for each t, -, ->_ - and 3, > 0.

LEMMA 1. Let [9u (g, Ko) be the Hausdorff distance between the sets Kx and Ko.
Then

(14) lim pn (Kx, Ko) 0.
0

Proof. Let (Xo, yo) Ko. There exists a control Uo(" U such that the correspond-
ing solution Xo(’) of (3a) satisfies xo(T)- Xo and there exists an integrable function
Vo(’ defined on [0, +) Vo(t) V for [0, +c) such that

-A-I(T)Aa(T)xo+ f exp (A4(T)s)B.(T)vo(s) ds.yo
Jo

Define the control

Uo(t) for

for e (T- x/, T].
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Clearly, ux(.)e U. Moreover, limx_oUx(t)=Uo(t) for almost all e(0, T). Let
(xx (.), yx (.)) be the solution of the perturbed system (1) which results from ux (.). By
Lemma A in the Appendix it follows that limA_,o xx (T)= x0. Let 37x (.) be the solution
of the equation

(15) A}=A4(T)y+A3(T)xx(T)+B2(T)ux(t), t6[0, T], y(0)=y,
and let Ayx(.)=yx(.)-)Tx(.), Axx(t)=xx(t)-xx(T), AAg(t)=Ai(t)-Ai(T), i=3,4,
ABe(t) BE(t)-BE(T).

We have

h A3)x A4(T)Ayx + zM44(t)yx (t) + zM4_ 3(t)xx (t)
(16)

+A3(T)Ax(t)+ABE(t)ux(t), Ayx(0) 0.

Using the compactness of V, (13) and the Gronwall lemma one can easily prove that
yx(t), )Tx(t) and x(t) are bounded uniformly in and A, hence xx(.) is Lipschitz
continuous with respect to uniformly in A. From (13) and (16) we get

T-,g--

’ fo (T-t)lAa4(t)yx(t)+Aa3(t)xx(t)]Ayx(T)]<=- exp -or
A

+A(Y)Ax(t)+ X(t)u(t)l dt

+ max
T-,,/- <= T

(IzM44(t)yx (t)l + [(t)x (Z)l

T

+ IA3(T)Axx (t)[ + IzXB2(t)u (t)])- -,/x-

T-
dt.

Hence

(17) lim liy (T)I 0.

We have

(18) [irno -and

exp (A4(T) ,T- t)A 3(T)xx (T) dt -A- (T)A3(T)xo

7- exp A4(T) B2(T)ux(t) dt

(19)

A
exp A4(T)

T-
BE(T)uo(t) dt

T/4x

+ Jo exp (An(T)s)BE(T)vo(S) ds.

Applying (17), (18) and (19) to the Cauchy formula for (15) we conclude that

[ ly (T)- yol o.

Hence, there exists a sequence (x, y) Kx such that

(20) lim (x, y)= (Xo, y0).
A-0
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Now, let us assume that there exist sequences {Ak}, limk_+ , 0 and {(x, Yk)},
(x, yk) Kxk, lim_,+ (x, y) (Xo, Yo) Ko. Let the control u(. correspond to (xk, y)
according to (1). The sequence {u(.)} has a weak limit point Uo(’) in L2(R r, (0, T))
and let the trajectory Xo(’ result from (3a) for Uo(" ). Then, by Lemma A(i), Xo xo(T) e
Po. As before we denote Aye(.)= y(.)-)Tk(.), where 7(.) is the solution of (15)
for u(. and. By repeating the arguments in (17), we get lim_,+ Ayk(T) 0, hence
lim_+ )7(T)= yo. Moreover, using (13) we have

T/At"

f(T) -A-2(T)A3(T)xo+ exp (Ag(T)s)Be(T)u(T-,s) ds +k
aO

R(Xo)+qZk,

where

lim 0, lim (
, 0.

k-+eo k+oo

Hence Yo R (Xo) and (Xo, yo) K0 which is a contradiction. This, combined with (20),
completes the proof.

From (14) and the continuity of g(.,.) one can obtain:
THEOREM 1. The following relation holds:

lim x ’o.
A--,0

The proof is standard and therefore it is omitted.
Remark 1. Consider the problem for minimizing the following more general

functional:
T

J,(u(.))=g(x(r), y(r)) + J0 f(x(t), y(t), u(t))dt

subject to (1) and (2), where the function g is continuous and the function f satisfies
the Carath6odory condition, i.e., it is continuous with respect to (x, y, u) and measur-
able with respect to t. We assume additionally that the integral part of Jx (.) is lower
semicontinuous in the uniform topology for x and in the L2 weak topology for (y, u);
for sufficient conditions see [8, p. 380]. The performance index for the limit problem
will have the form

T

Jo(u(" )) go(x(T))+ Jo f(x(t), -A-l(t)(Aa(t)x(t)+B2(t)u(t)), u(t)) dt.

Choosing an L2 weakly convergent subsequence of tx (.) and using Lemma A(i),
(iii) one can get

(21) Jo(to(’ )) <- lim inf L(a (")).
A--,0

By Lusin’s theorem, for each e > 0, one can find a continuous control u(.) e U
such that

(22) Jo(u (’)) -< Jo(t3o(’ )) + e.

Letx x (T) correspond to u (.) according to (3a) and let y satisfy go(x g(x , y).
Then there exists a control v (t) V for e [0, +m) such that

y =-A-gI(T)A3(T)x + | exp (a4(T)s)Bz(T)v(s) ds.
Jo
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Introduce the control

t(t) for [0, T- x/],
ux(t) (’TA-’) for t(T-/-, T].

Since u (.) is continuous, by Lemma A the corresponding trajectory (x , (.), y , (.))
from (1) is pointwise convergent on (0, T) to the trajectory (x (.), y (.)) corresponding
to u(.) according to (3). Thus

lim sup Jx (tx (’)) lim sup Jx (ux (’)) Jo(u (’)).
0 0

Since e is arbitrarily small, combining this relation with (21) and (22) we finally obtain

lim Jx (tx (.)) J0(ao(’ )).
A0

Remark 2. The result obtained in Lemma 1 may be interpreted in the following
way: Let Zx (t) be the family of solutions of the differential inclusion

0h) A4(t)y +B2(t)V, y(0) y

for [0, T] and (0, T2). Define the set

Zo(t) fo exp (A4(t)s)B2(t) Vds.

Then, for each (0, T]

lim on(Zx (t), Zo(t)) O.

4. Convergence o the optimal control. Throughout this section we assume that
(A1) and the following conditions hold’

(A3) The set V is a compact and convex polyhedron in R . The components of
the matrices A(t) and A3(t) are in C"-2[0, T] and the components of A2(t), A-d(t),
B(t) and B2(t) are in C"-[0, T]. For the matrices Ci(t), defined by the relations

Ca(t) Bo(t), C(t) -Ao(t)Q_(t) + (i_(t),

the general position hypothesis holds, that is, if the vector is parallel to an edge of
V, then the vectors Cl(t)l,..., C,(t)l are linearly independent, see [9, p. 201].

(A4) The function g(.,. is locally Lipschitz continuous. For each solution (0, o)
of the limit problem (10) if (p, q)Ocg(o, o) then p-(A-dl(T)A3(T))*q 30, where
Ocg(" is the subgradient defined by F. Clarke, see [3].

We denote transposition by an asterisk.
As it will be further shown, the condition (A4) is a sufficient condition for go(x)

to achieve its minimum at the boundary OPo of the set Po. (The general position
hypothesis implies that Int P0 .) Moreover, for sufficiently small h the function
g(x, y) achieves its minimum at the boundary of Kx.

From Theorem 1 it follows that every L2 weak limit point of the optimal controls
tx (.) is an optimal control for the limit problem. We strengthen this result in the
following theorem.
THEOREM 2. For every e > 0 and for every sequence {hk }, limk-,+ h 0, ]:or which

the sequence of optimal controls {tx (.)} is L2 weakly convergent to o(" ), there exists
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N > 0 so that if k >N one can choose a finite number of intervals A1,.. , Ap such that
meas U’- Ai < e and ux (t) ao(t) for almost all [0, T]\U’= Ai.

Proof. Let (k(’), ))k (")) be the optimal trajectory corresponding to txk (.) and ,.
We denote by NM(zo) the normal cone to a convex set M cR at the point zoeM, i.e.

NM(zo) {l R , l*(z Zo) <= 0 for all z e M}.

From [3, Thm. 1] it follows that for each k 1, 2,... there exists a vector (p, q)e
-Ocg(,(T), ,(T)) fqNK, (,(T), ,(T)). Moreover, from [3, Lemma 1] we conclude
that if there exists lim_,+o (x,(T), yk(T)) then from the sequence {(p, q)} one can
choose a convergent subsequence.

Let us assume that the statement of the theorem is false for some e0 > 0 and for
some sequence {hk} for which limk_,+otx(.)=t0(.) in the weak topology of
L2(R , (0, T)). Without loss of generality we suppose that

lim (,(r), k(r))= (0, 3o), lim (Px, qk)-" (Po, qo).
k-*+oo

From Theorem 1 it follows that (o, 3o) solves the limit problem (10) and by Lemma
1 we get that (po, qo) NKo(o, o).

We shall prove that

(23) -po- (A- T)A(T))*qo XPo(o).

Let Po and ti(.) U be the corresponding control according to (3a). Since

o R (o) there exists t3o(t) V for [0, +eo) such that

3o -A-d(T)A(T)o+ f exp (A4(T)s)B2(T)o(S) ds.
30

Define the control

ti (t) for

a,(t)= (T-t) for e (T-4-, T].Vo ,,
If ((.), (.)) corresponds to a(.) according to (1), for A, then from Lemma
A(ii) it follows that lim.+ g(T)=. Moreover, from the proof of Lemma 1 we get

lim f(r)=-AZ’(T)A3(T)$ + 0 exp (A4(r)s)B(r)vo(s) ds
k+

Then

-A-d (T)A3(T)( -.o)-t-

*( -o) P( -o) + q*o (-A-d (T)A 3(T)(:g -0))

lim (p’(k(T)-(T))+q((T)-(T)))<=O,
k -t-oo

since (Pk, qk) NKx((T), k(T)). This proves (23).
Let us denote by 0o(’) the solution of the adjoint equation

(24) t -A’ (t)tp, /(T) .
From [3, Prop. 7] we have (p0, q0) -Ocg(o, 33o), hence by (A4)/3 S0. In [9, p. 202]
it is proved that if the general position hypothesis holds and o(’) 0, then there
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exists a finite number of points t2,’’ ", tp-1 such that tp*o(t)Bo(t)l 0 for every
leo/4, T-eo/4]\{t2,"’, tp-1} and for every vector which is parallel to an edge of
V. Let the intervals A1,..., Ap be centered at 0, t2, , t-l, T and meas A < eo/2p,
/" 1,...,p. Since / NPo(o) the optimal control to(’) is uniquely defined on
[0, T]\U_- A by the maximum principle

(25) 4,*0 (t)Bo(t)ao(t) max {o* (t)Bo(t)v, v V}.

Relations (24) and (25) can be rewritten as

(b -A* (t)t -A(t)rl, (T) =,
0 -A(t)/-A(t)rl,

(*(t)B(t) + rl *(t)B2(t))ao(t) max {(g/*(t)B(t) + 1 *(t)B2(t))v, v V}.

Since (Pk, qk)eNKxk((T), 3 (T)), for the perturbed problem we have

( (t)B(t) +’ (t)B2(t))axk (t) max {(O (t)Bl(t) +l’ (t)B2(t))v, v V},

where ((.), r/k (")) solves

-A*(t)O -A(t)q,

hk -A (t)4, A*4 (t)n,

From Lemma A(i), (iv) it follows that

(T) =p,

lim max (14(t)-f(t)l+ln(t)-n(t)l) =0.
k +

Hence, for sufficiently large k and for every vector l, which is parallel to an edge of
V we have

and ’ (t)l (b’ (t)B(t) +rl (t)B2(t))l 0

max {* (t)v, v e V} ’ (t)ao(t)

for each e [0, T]\U’=x hr. The obtained contradiction completes the proof.
Remark 3. If the limit problem (10) has a unique solution to(’) then Theorem

2 can be formulated in the following way" for each e > 0 there exists A > 0 such that
if , e (0, A) and t3 (.) is an optimal control for (4) then there exists a finite number
of intervals Aa,..., Ao such that meas U/.P=I hi <e and t;(t)= to(t) for almost all
te[O,T]\U p A..i=1

In order to obtain uniqueness of to(’) it is sufficient to assume that g(.,.) is
convex. We prove this statement. Let (1, a)Ko and (2, 2)Ko be two different
solutions of (10). Then (o, o)= ((1, 33a)+(2, 2))/2 is a solution. Moreover, since
the set Po is strictly convex, we have oInt Po. From [3, Thm. 1] we conclude that
there exists (/, )-Ocg(.o, o)f’lNKo(,o, 3o). Let x Po be arbitrarily chosen and
let y -A-I(T)A3(T)(x -o)+ o. Clearly y R(x). Then

0 >=/5*(x o) + c*(y ;o) ( (A- (T)A3(T))’4)* (x o),

which combined with oe Int Po implies that -(A-a(T)A3(T))* 0. This contra-
dicts assumption (A4). Thus, the general position hypothesis implies that the optimal
control to(’ is unique, see [9, p. 139].
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By repeating the arguments in [6, Thm. 3.2] one can prove:
THEOREM 3. Suppose that the optimal control to(" is unique. Then ]:or every e > 0

there exists A > 0 such that if , e (0, A) and ( (.), (.)) is an optimal trajectory/:or
the perturbed problem (4), then there exists a finite number of intervals A1, Ap such
that meas U’=I Aj < e and

max Ix (t)- o(t)l + sup I))x (t) )?o(t)l < e,
t[0,T] t[O,T]\Uff=l A

where o(’) is the optimal trajectory for problem (10) and 13o(’) satisfies (3b) for
u o(t) and x o(t).

Remark 4. Following [5] one can develop conditions for semiuniform conver-
gence of the optimal controls for problems with an integral performance index, see
Remark 1.

5. State constraints. In this section we show that the analysis of 3 can be
extended to problem (4) with additional state constraints of the form

(26) x (t) s X for all s [0, T],

assuming that (A1), (A2) and the following condition hold:
(AS) The set X cR is closed and convex and has nonempty interior. There

exists a control g(.)e U such that if (.) is the corresponding solution of (3a) then
(t) Int X for all [0, T].
We denote as U the set of admissible controls for the reduced system, that is:

u (.) U if u (.) U and the corresponding state of (3a) satisfies (26). As before, let
Po be the attainable set for the system (3a) (with controls in U) and let Kx be the
attainable set for the full-order system (1). The sets R (x) and Ko are defined as in
(8) and (9). The limit problem has the form of (10).

In this case the statements of Lemma 1 and Theorem 1 hold true as well. We
need only the following modification of the proof of Lemma 1.

Let (Xo, yo) Ko, Uo(.) U, Vo(t) V for e [0, +m) and u (.) be chosen as in
the proof of Lemma 1. By Lemma A(ii) we get that limo [[x (.)-Xo(" )[[c 0, where
x(.) solves (1) for u=ux(.). There exists a function e(h)(0,1) such that
limxo e (h) 0 and limxo (llxx (.)- Xo(" )]]c +)/e (h) 0. Define the control

(1 e (h))Uo(t) + e (h) (t) for e [0, T #],

v0 for e (T-42, T].

Clearly, a(.) e U. Let (2x(.), x(.)) correspond to a(.) according to (1). Since
Xo(t) eX one can easily deduce that

2x(t)=(1-e(h))xx(t)+e(h)x(t)eX for each tel0, T-4].

We show that there exists a constant a > 0 such that

dist (2 T x/-), OX) >- ae (h).

Denote tx T-/ and let

I(t)-zl =dist ((T- ,/-), oX), lx zx -(1 e (h))x0(t)- e (h)(t).
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Since z, OX and (tx) Int X, lx # 0. From (A5) it follows that there exists e o > 0
such that (tx) + eol,/ll,[ X. Then

eoe (, )l
(1-e(h))Xo(t)+e()2(t;,)+ [l------eX.

By the definition of lx we get sos (A)<-_ II [. For A suciently small we have

]x (tx)- zx[ I(1 e (h))xx (tx)+ s (h)x (tx)- zx[
e [Ix I-(1 s (h))lxx (tx) Xo(t)- s (X)x (tx) (tx)
e o (A) (1 (A))[lx (.) xo(. )llc (A)1 (’) (" )llc
=> s0s (,)/2.

Thus, since 12(T-x/)-2(t)l O(x/) for all t[T-x/-, T] and
lim_,o x//e (A)= 0, for A sufficiently small we obtain that 2(t)eX for all e [0, T].
This means that tT(.) Ux. As in Lemma 1 one can prove that lim_,o(T)= Xo
and lim_,o 37 (T) yo, this is completely analogous to the proof of Lemma 1.

The presence of state constraints for the fast variables complicates the situation
considerably. The following example shows that even in the case where the function
g is not dependent on the fast states, the substitution A -0 in (1) does not define a
limit problem.

Example 2. Minimize x(1) subject to

=y, x(O) =-1,

/3) =--yl+Y2, yl(O) O,

h3)z -yz+ u (t), y2(0) e,

te[0,1], u (t) e [0,1], y(t)e[-1,1].

The "reduced" problem consists of minimizing X2(1) for

2=u(t), x(0)=-l, u (t) [0,1],

and has a solution a(t) 1, which gives (1)=0.
For the perturbed problem we have

l0ty2(t) e-t/he +- e -(t-)/Xu(s) ds > e t-/’

1 ftyl(t) Jo e-(t-s)/Xy2(s) ds >=-eh

Hence the only feasible control is u (t) 0, which gives value I for the performance
index.

In the case considered the fast state constraint "transfers" the singularity to the
slow system and changes essentially the attainable set of the full-order system. It can
be shown that for some special sequences, for example {hk} such that limk-,+ ((hk+l--
hk)/hk) O, the sequence of the attainable sets is a fundamental sequence according
to the Hausdorff metric, hence it has a limit set. The description of this limit set,
however, remains an open question.
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Appendix. Denote by (Xk("), Yk(" )) the solution of the equation

2=A(t)x +a2(t)y+po(t)+Aq(t), x(O) v,
(27)

,3 a3(t)x + a4(t)y + o(t) +A(t), y (0) w,

where k 1, 2,. ., lim_,+ A 0, Oo(’ L(R ", (0, T)), o(" LZ(R ", (0, T)), and
v R’, w R "; {Aq (.)}, {A0 (.)} are given sequences of functions. The solution of

=ax(t)x +az(t)y(t)+qo(t), x(0)= Vo,
(28)

0 a3(t)x (t) + a4(t)y (t) + o(t)

will be denoted by (Xo(’), yo(’)). We assume that the matrices A(t), i= 1,..., 4,
satisfy (A1).

LEMMA A. (i) Let lim_,+ v Vo, w o/A, lim_,+ o wo, and the
sequences {Aq (.)} and {A0 (.)} are weakly convergentto zero[unctions inL(R ", (0, T))
andL(R ", (0, T)) respectively. Let Xo(" be determined by (28) with the initial condition
X(0) vo-A2(0)l(0)o. Then the sequence {x(. )} is uniformly bounded on [0, T] and
for every 0 (0, T)

(29) lim max Ix (t)- Xo(t)l O.
k + O T

(ii) If, additionally, Oo O, then

(30) lim Ilxk (")-Xo(" )][c 0.

(iii) Let lim_,+ x/- w 0 and all the above conditions hold. Then the sequence
{y(. )} is Lz weakly convergent to yo(" ).

(iv) Ifall the above conditions are satisfied and, additionally, 0o(" C(R n, [0, T]),
the sequence {w} is bounded, and ]’or every 01 (0, T)

lim max IzX(t)l--0,
k-.+oo OtO

then for every 0 (0, T/2)

lim max lye(t)- yo(t)[ 0.(31)

(32)

Proof. Denoting Axe(.) x(.)-Xo(" ), Aye(. y(.)- Yo(’) we have

Axk (t) v Vo +A2(0)A21 (0) ao

[ (AI(z)Ax(r)+A2(r)Ay(z)+ Aq(z)) dr,+
Jo

(33)
Ayk(t) c(t, O, h)w

+-- &(t, r,h)(Aa(z)Ax(r)+AOk(z)-Ag(z)yo(z)) dz- yo(t).

In the sequel we use the following standard result: if p(.)LI(R 1, (0, T)), q(.)
L:(R 1, (0, T)) and

r(t) Io p(t-z)q(z) dz
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then

Let 8 be an arbitrary positive number. Choose a function y(.)e CI(R ", [0, T])
such that Ily( )- yo(. )1[ < . In view of (13), for every e [0, T]

[/o’ 9
(t, ’, h)yO") dz- yo(t)(35)

0z

<_- c [y (t)- y(t)[ / ]y (0)] exp -r / z[]p (.)[[

where c is a generic constant. Let

1 Jo b(t, ’r, hk)A4(’r)y0(’r)(36) k (t) h-- dr.

Then, since 8 can be arbitrary small, by (34) and (35), integrating by parts we obtain

(37) lim IbTk(. )- Yo(" )IlL 0.
k+oo

For an arbitrary but fixed e >0 one can choose matrices A(t) and A(t), whose
components are C 1, such that IIA(’)-A;(’)II <e and iIA-dl(.)-A(.)IIc <e. From

integrating by parts and taking advantage of (13) we get

(38)

where el(E) >-Ild/dt(AA)( )lie. Denote :k (t) A3(t)Axk(t)+ AO(t) and

r(t) =h (t, ’, h)0") d’.

Applying (34) we have

(39) I[r/k (,)lk I1 (,)ll=,
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Using (13), (34), (39), the Hoelder inequality, and integrating by parts we obtain

fot A2 (’r" ’rl t (’r dr

Io=< [A20")-A;(,)I [r (,)l d" + AO’)A

+ oa()a()O()d.
Taking into account (32), (33), (38), (39) and (40), we get

(41)

Let us recall that if the sequence {z (.)} is L weakly convergent to zero, then

lim max f0 z(,)d, =0,

and the sequence of the norms is bounded. Applying the Gronwall lemma to (41) we
conclude that

IIx (,)11 rllx (.)11 c ( + +c())llx(.)11 + c.

Choosing e < 1/c and tending to zero with I we get

(42) lim sup IIx
k+
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Using this result in (41) we obtain finally

(43) lax(t)l<-_c / lAx(,)l&/lwlexp

where limk-,+oo 6k 0 uniformly in [0, T]. From the Gronwall lemma we obtain that
for every 0 (0, T)

lim max IAx
k +

Since e can be arbitrary small and Axk(" does not depend on e, this relation implies
(29).

The relation (30) follows immediately from (43).
If limk_,/o x/Ak wk 0, then from (13), (29), (33), (34) and (38)

lira sup [IAYk (’)11 < +oo.
k/oo

Hence, if we show that for every [0, T]

lim Jo Ayk 0") dr 0,(44)

then the statement of (iii) will be proved. Using a sequence of inequalities similar to
(40) we have

(, s, A)A(s) ds d c( +4+c()x)lla (’)11

+ Jo A
In view of this relation, (30) and (37) we obtain (44).

Next, let the conditions in (iv) hold. Since yo(’) C(R", [0, T]), one can choose
y (.) C(R", [0, T]) such that Ily (’)- yo(’ )11 < , Then

l(t)-yo(t)l- (t,,)A4()(yo(r)-y ())d

(45) + (t, , 1)y () d- yo(t)

c + ly’ (0)l exp - +AIIN (’)11

By substituting (45) into (33) we obtain (31). The proof is complete.
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THE CONSTRUCTION OF THE SOLUTION OF
AN OPTIMAL CONTROL PROBLEM DESCRIBED BY A

VOLTERRA INTEGRAL EQUATION*

GUSTAF GRIPENBERG

Abstract. A constructive method is developed for finding the nonnegative function u so that u(s) ds
is as small as possible when liminft_,oy(t)>0, where y satisfies the equation y(t)=u(t)+
to a(t-s)g(y(s)) ds, >=O.

Key words, optimal control, integral equation

1. Introduction. The purpose of this paper is to study the following problem:
Find a nonnegative function u on E+= [0, oo) so that o u(t)dt is minimized under
the condition that lim inft_. y(t)->inf {o e E+[g(o)) I0 a(t) dt > o} when

(1.1) y(t)=u(t)+Io a(t-s)g(y(s))ds, tee+.

We assume that a is integrable, nonnegative and nonincreasing, g(o)= 0 on [0,
and that g is nonnegative and concave on [w0,

This problem arises for example from the following kind of "investment" or
"growth" model: Let y(t) be the flow of available "resources" (of some kind) and let
g(y(t)) be the "investments". Due to diminishing returns it is to be expected that g
is concave and that if there are not enough "resources" available, then no "invest-
ments" are made. The available "resources" are determined by previous "invest-
ments" and "exterior inputs" u(t) as in (1.1). The problem is to minimize the total
inputs 0 u(t)dt so that self-sustained growth is achieved, i.e., the returns on the
"investments" suffice for "consumption" and "re-investments".

Another equation that can be put in form (1.1) is the following:

v(t)=go u(t)+ a(t-s)ga(v(s)ds)

(To get (1.1) take y(t) u(t)+o a(t-s)gl(v(s)) ds and g goog.) This equation arises
from a model where v(t) is the "output" of the "economy", g(v(t)) represents the
"investments", I a(t-S)gl(V(S))ds is the "capital stock" due to previous "invest-
ments" and u(t) is "capital stock" derived from external sources and one.wants to
minimize the use of this external "capital stock".

These models, as they are formulated here, are clearly quite simple, and hence
somewhat unrealistic, ones, but the main point of this paper is to show how one can,
at least in principle, calculate the optimal solution. The proof that such a solution
exists will be quite a small part of the argument.

For more general results on the optimization of functional equations, see e.g. [1],
[3], [4] and [8]. Here we will use only one relatively straightforward idea from these
more general results where the main emphasis is on how to find necessary conditions
for optimality. Since we will here try to find the solution to the rather specific problem
at hand, most of the analysis is closely tied to the assumptions made concerning (1.1).

* Received by the editors August 19, 1981, and in final revised form July 25, 1982.

" Institute of Mathematics, Helsinki University of Technology, SF-02150 Espoo 15, Finland.
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2. Statement of results. We will establish the following result concerning the
problem formulated in the introduction.

THEOREM. Assume that

(2.1)

(2.2)

(2.3)

Then

a" R+ + is nonincreasing and a (s) ds 1,

g: + + is continuous, g (to) 0, to [0, too], too > 0 and g is twice continuously
differentiable nondecreasing and concave on [too, c),

g(to.) to.,/’= 1, 2 where too<to1 <to2 and g"(to) <0 on [too, w2].

there exists a unique, a.e., function u*sU such that u*(t) dt=
inf{ u (t) dtlu U} where

(2.4) U ={u’+-->+luismeasurable, liminf,- y(t) >=to1 ifyisthesolutionof (1.1)
and inf {tly (t) u (t) > 0} 0}.

The function u* is continuous and if y* is the corresponding optimal solution of (1.1),
then

(2.5) y*(t)>to0, u*(t)=0 if g’(y*(t))<l, a.e., ten+ and limt_, y*(t) =to1.

Moreover, the functions u* and y* can be found as the uniform limits on compact
subsets of / of functions that are constructed using iteration procedures involving
evaluations of integrals and functions.

Note that the theorem above does not make the claim that the procedure for
finding u* and y* would be computationally very efficient. It may very well be the
case that much simpler approximation procedures will give the desired result.

The fact that the kernel a is nonincreasing is needed because the function g is
not concave on the whole of R/, but this assumption also has the desirable consequence
that if limt_, u(t)= 0, then limt_, y(t) exists provided y is bounded, cf. [5]. It will
also be shown in the proof that if u(t)>=u*(t) with strict inequality on some set of
positive measure, then lim inf,_, y(t)= to2.

It is easy to see that if the last condition in the definition of the set U of admissible
controls is dropped, then the optimal solution is no longer unique.

The main idea of the proof is, of course, to replace the optimization problem
above by other problems that approximate the original one in the right sense and that
are such that they can be solved. One difficulty is of course the infinite horizon of the
problem and the solution is to take a finite interval [0, T] and letting T--> . But
when we work on [0, T] the condition lim inf,_, y(t)>-to is meaningless and instead
we minimize u(t)dt-(y(T)-u(T)), where is a certain carefully chosen con-
stant. But in order for this approach to work we must replace the function g by
another function g(6,.) that equals g on [to, to2], and is concave on and satisfies
sup,, g(6, to) to2 as 80.

3. Proof of the theorem, First we observe that if we define x by x (t) y (t) u (t),
then (1.1) becomes

(3 1) x(t)= a(t-s)g(x(s)+u(s))ds, t

If lim,_,x (t) x0 and u (t) >- O, o u (t) dt <, then lim inft-, y (t) Xo. On the other
hand, under the same assumptions on u, it follows from (2.2) and (2.3) that g(x(. )+
u(.))-g(x(.))sLl(+) for any nonnegative function x and therefore it is possible
to show, see, e.g., [6], that (3.1) has a unique, nonnegative and continuous solution
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x. But it also follows from results in [5] that limt_,ox(t) exists and is equal to
lim inft_oo y(t). Thus we see that we can just as well consider (3.1) and the problem
of minimizing o u(s)ds under the condition that the solution x of (3.1) (which we
denote: x G(u)), satisfies limt_,o x(t) >-to1.

Next we construct some new functions that will be used instead of the function
g in (3.1). There are several other functions that would serve the same purposes. Let
6 _-> 0 and define

g"(too+)(1 +too-to) log (1 +too-to)

+ (g’(too+)+ g"(too+))(to-too), to -<-too,

g (o), Oo <o <--o2,

(3.2) g(6, to)= g(to2)+(g’(to2)6-2+g"(to2)(36)-)((to-to2-6)3+63)

+ (g’(to2)2-16 -3 + g"(to2)(26)-2)((to 0,)2 6)4 64),

g(to2)+g’(to2)2-6 + g"(to2)(12)-6 2, to >to2 +6.

It is easy to check that if 6o>0 is such that g’(toz)>-6og"(to2), then g(6,.) is
nondecreasing and concave on [+ for 6 [0, 6o) and if 6 > 0, then g(6,.) is twice
continuously differentiable. Observe that by (2.2) and (2.3) g’(to2)>0 because other-
wise g’(to) < 0 for some to > to2 as g"(to2) < 0. Note also that g (8, to) _<-to when to _>-to2,
since g (6, is concave and g (8, to,) to,,/" 1, 2 and hence g (8, to) =< to2 + 6, 6 [0, 6o).

It follows from standard results that if u is nonnegative and measurable on +
and 6 e [0, 6o), then the equation

(3.3) x(t) Jo a(t-s)g(6, x(s)+u(s))ds, te+

has a unique solution on [+ and there exists a continuous nondecreasing function
Co: ++ +, independent of u, such that

(3.4) -Co(t)<-x(t)<-_to2+6, t[+.
To see this, one uses the facts that g(6, to) o a(t) dt to2 -Jr-6 and that x(t) >=z(t) where
z satisfies z’(t)=a(O)g(6, z(t)),z(O)=O. We denote the solution of (3.3) by x=
G(& u).

For arbitrary T > 0, Ix > 0 and 6 [0, 80) we consider the following:
Problem (T, 6). Find a nonnegative measurable function u on [0, T] such that

def
J(T, 8, u) tz u(t) dt-x(T) is minimized when x =G(6, u).

(Laterwe will choose/x so that (3.4) is satisfied and thereforewe will not write out the
dependence on/z below.)

First we prove that this problem has a solution. This proof is not "constructive",
but we need it below.

LEMMA 1. For each T > 0 and 6 [0, 80) Problem (T, 8) has a unique, a.e., solution
u,(T, 6, .).

Proof. Fix T > 0 and 6 [0, 80). Since J(T, 8, u) is bounded from below, see (3.4),
it follows that there exists a sequence {ui}i-_l of nonnegative functions such that
J(T, 8, ui)inf>_oJ(T, 8, u), as/’-oo. We let xi =G(6, ui). Since g(6, .) is a constant
on (to2 + 8, oo) it follows from (3.4) that we may assume that

(3.5) u,(t)<=to2+6+Co(t), t[0, T].
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Since the functions g(&xi(’)+uj(’)) are uniformly bounded by (3.2) and (3.4), it
follows from the integrability of a and (3.3) that the functions xn are uniformly bounded
and equicontinuous. Hence we conclude, using also the fact that the integrals or uj(t)2 dt
are uniformly bounded, see (3.5), that there exists a continuous function y and a
bounded, nonnegative, measurable function v such that for some subsequences, also
denoted by {xi} and {ui},

(3.6)

and

xiy

(3.7)

uniformly on [0, T],

weakly in L2(0, T) as ] eo,

T

Ix Io v(t) dt-y(T)= u_->0inf J(T, 8, u).

It follows from (3.6) and [7, Thm. 3.13] that there exist numbers cii such that

t(i) (i)

(3.8) a0_-->0, Y ai=l, aiui-->v inL2(0, T) as/->oo.
=j -----j

Using the concavity of g(8,. and the fact that a (t) >- 0 we get from (3.3) and (3.8)

’. Otijxi(t) < a(t-s)g 8, Olij(Xi(S)-l-Ui(S)) ds
=j =j

and if we let /’ oo, then we obtain from (3.6) and (3.8), since g(& .) is locally
Lipschitz-continuous, that

y(t)<_-- a(t-s)g(3, y(s)+v(s)) ds.

As g(8, is nondecreasing and a (t) _-> 0, this inequality implies that x G(8, v) satisfies
x(t)>- y(t), [0, T]. Hence (3.7) shows that J(T, 8, v)=infu>__oJ(T, 8, u).

Next we establish the uniqueness of this optimal solution. Suppose that we have
two functions U and u2 that give the same minimal value to J(T, ,.) and differ on
a set of positive measure. Therefore the solutions x =G(8, u) /" 1, 2 cannot be
identical and xl + ul and x2 + u. must also differ on a set of positive measure. Since
we obtain the minimum, we must have xj(t)+ u(t)<=092 +8, hence the function g(8,.
is strictly increasing and strictly concave on the interval under consideration. Let
u(t) (ul(t) + u2(t))/2, and (t) (x (t) + x2(t))/2, [0, T]. It follows that (g(8, x (t) +
ul(t))+g(&x.(t)+u2(t)))/2<=g(&2(t)+u(t)), i.e., 2(t)<=oa(t-s)g(&2(s)+u(s)) ds
with strict inequality on a set of positive measure. Let x G(8, u). By the previous
result and the fact that g(8, .) is nondecreasing it follows that x(t)>-2(t) with strict
inequality on a nonempty open set. If x(T)>(T), then we immediately get a
contradiction. Otherwise we let t0=sup{t[0, T][x(t)>(t)}, so that X(to)=(to).
Since g(& is strictly increasing on (-oe, 092 +8) and a is nonincreasing and 0, there
exists a number ->0 such that (t)+u(t)=to2+8 on (to-r, to). But then x(t)+u(t)>
092 +8 on a set of positive measure but this is by (3.4) impossible since u is also
optimal. This contradiction shows that the optimal solution u,(T, &. is unique and
the proof of Lemma 1 is completed.

We fix for the moment T>0 and 8 (0, 80) and we write x,(.)=x,(T, &.)=
G(8, u,(T, 8, )), u,(. u,(T, 8,. ). We will derive an equation for u, and x, that we
will then solve. We write g’(& to) d/dto g(8, to).
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LEMMA 2. ff 6 (0, 60) and T>0, then there exists a unique solution q,(.)=
q,(T, 8,. and x,(T, 8, of the equations

T

(3.9) q(t)=a(T-t)+J, a(s-t)min{lx, g’(6, x(s))q(s)}ds, t[0, T]

and

(3.10) x(t) Jo a(t-s)g(8, max{x(s), Q(8, q(s))})ds, t[0, T],

where Q(8, is defined by

(3.11) tog’(8, Q(8, to)) =, to >0, Q(8, to) =-, to <=0.

Moreover,

(3.12) u,(T, 8, t)= max {0, Q(8, q,(T, 8, t))-x,(T, 8, t)}, [0, T].

Proof. Let to (0, T) be a Lebesgue point for the functions u,(. and g(8, x,(. +
u,(. )). Let v _-> 0 and e > 0 be arbitrary numbers and define

u (e, t) [ u,(t), t[0, T]\[to, to + e ],
(3.13)

v, [to, to + e ].

Since u, is optimal we have

inf
J(T, 8, u(e, ))-J(T, 8, u.)(3.14) lim =>0.

e-0+

Because to is a Lebesgue point of u, we have by (3.13)
T (u (e, t)- u,(t)) dt

v u,(to).(3 15) li_.om+ e

Let x(e, G(8, u(e, )). It is straightforward to prove that x(e, ) x. uniformly
on [0, T] as e 0+ and that lim_.o+ (x(e, t)-x,(t))/e y(t) exists and satisfies the
equation

y(t)= I. a(t-s)g’(8, x,(s)+u.(s))y(s) ds

(3.16)
+ a (t to)(g(8, x,(to) + v)- g(8, x,(to) + u,(to))).

Here we used the facts that to is a Lebesgue point and that we may modify a on a
denumerable set so that a is left-continuous and a(t)=O,t<-_O. Let h(t)=
g’(8, x,(t)+ u,(t)) and define R (t, s) to be the solution of the equation, see [2],

R(t,s)=a(t-s)h(s)+Is a(t-u)h(u)R(u,s) du

=a(t-s)h(s)+I R(t,u)a(u-s)h(s)du, s<-t.

This equation shows that R (t, s) 0 if h (s) 0 and hence r(t, s) R (t, s)/h (s) satisfies

r(t,s)=a(t-s)+I a(t-u)h(u)r(u,s)du

(3.17)
=a(t-s)+ | r(t, u)h(u)a(u -s) du, s <-t.
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Using the first equality of (3.17) in (3.16) we obtain

(3.18) y (T) q,(to)(g(3, x,(to) + v) g(3, x,(to) + u,(t0)))

where q,(t) r(T, t). From the second equality in (3.17) and our definition of h we get
Tt"

(3.19) q,(t)=a(T-t)+ Jt a(s-t)g’(a,x,(s)+u,(s))q,(s) ds.

Now we are able to conclude from (3.14), (3.15) and (3.18), our definitions for J and
y and our choices of v and to, that

min {tzv -q,(t)g(6, x,(t)+v)}
It

(3.20)
txu,(t)-q,(t)g(6, x,(t) + u,(t)) for a.e. [0, T].

From (3.19), (3.20) and the fact that g(6,.) is concave, we conclude that q, and x,
satisfy (3.9) and (3.10) and that (3.12) holds.

It remains for us to prove that the solution q,, x, is unique. Suppose that this is
not the case but that there exists another solution qo and Xo. If we define Uo by
Uo(t) max {0, 0(6, qo(t))-Xo(t)}, then Xo G(6, Uo) and Uo and u, cannot be identical
a.e., since otherwise we could deduce from standard uniqueness results for Volterra
equations, see e.g. [6], first that Xo=X, and then that qo=-q,. But then Lemma 1
implies that

(3.21) (T, 6, Uo) >Y(T, ,, u,).

Let us (1-c)Uo+Cu, and x =G(6, us). By the same argument that was used in
the proof of Lemma 1, we see that x(T)>=(1-c)xo(T)+cx,(T). Hence

(3.22) lim sup (J(T, 6, us)-J(T, 6, Uo))/ <=J(T, 6, u,)-J(T, 6, Uo).
o-+-

On the other hand it is easy to see that lim_.o+ (x (t) Xo(t))/c v (t) exists and satisfies

v(t)= a(t-s)g’(8, Xo(S)+Uo(S))(v(s)+u,(s)-uo(s))ds.

Arguing in the same way as above, we conclude that
T

v(T) Jo qo(s)g’(6, Xo(S) + Uo(S))(u,(s)-uo(s)) ds.

But this means that

lim (J(T, 6, u)-J(T, 6, Uo))/a

T

J0 (t -qo(s)g’(6, Xo(S)+Uo(S)))(u,(s)-uo(s)) ds >=0

by the definition of Uo and the fact that u, _-> 0. Combining this inequality with (3.21)
and (3.22) we obtain a contradiction and the proof of Lemma 2 is completed.

Next we proceed to show how this solution q,, x, of (3.9) and (3.10) can be
found. Since the functions max and min are not continuously differentiable and we
want to apply the implicit function theorem, we need some approximations. Let



588 GUSTAF GRIPENBERG

a (0, ) and define

(3.23) p (a, to

We also define

(3.24)

and

(3.25)

2

re(a, y, to)=
yg’(6, to)+/x-p(a, yg’(6, to)-/x)

2

n(a, % to)--g(6, to2+6)--2-110., g’(6, S)(1--poo(a, yg’(6, s)-lx))ds.

It is straightforward to check that the functions p, m and n are continuously differenti-
able in all their arguments and that for every to, R the first partial derivatives are
uniformly bounded when a (0,/), y R. and to [to,, ). To see this we use the facts
that poo (a, to) is a constant for Itol > a/2 and that g’(6, to)2/g"(6, to) is uniformly bounded
on every set of the form [to,, ), cf. (3.2).

Let X- (q, x) be an element in V =L(0, T; ) C([0, T]; ). For A [0, 1], a
(0,/) and X V we define the mapping F(A, a, X) by

T

F(A, a, X)(t)= (q(t)-A (a(T-t)+ ft a(s-t)m(a, q(s), x(s))ds),
(3.26)

x(t)-A/o a(t-s)n(a,q(s),x(s))ds), t[0, T].

It follows from the differentiability properties of rn and n that F is continuously
Fr6chet-differentiable: V V, but we need a stronger result.

LEMMA 3. If A.[0, 1],a (0,z) and X=(q,x) is such that O<-q(t)<-cl, c2<=
x(t) <-_c3, [0, T], ]’or some constants cj, ] 1, 2, 3, then Fx(A, a,X) is invertible and
the norm of the inverse is bounded by a constant independent of A, a and S. Moreover,
Fx(A, a, X)-lw, w V, can be found as the uniform limit of certain iteration procedures.

Proof. Fix A, a andX such that the assumptions of Lemma 3 are satisfied. We put

(3.27) hi(t) mr(a, q(t), x(t)), h2(t) moo(a, q(t), x(t)), h3(t) n(a, q(t), x(t))

and we note that by (3.24), (3.25) and (3.27) we also have the important result that

(3.28) no, (a, q (t), x (t)) h (t).

We observe that there exists a constant Ca (depending only on c, c2, c3, g and 6),
such that

(3.29) O<=h(t)<=c4,-c4<=h2(t)<=O, O<=h3(t)<=c4, t[0, T].

The equation Fx(A, a,X)(v, v2) (wl, WE) can be written in the form
T T

(3.30) Vl(t)-A Jt a(s -t)hl(S)Vl(S) ds -A J, a(s -t)hE(S)V2(S) ds Wl(t),

io io(3.31) v(t)-A a(t-s)h(S)Vl(S) ds-A a(t-s)h(s)v.(s) ds w(t).
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Define the function rx (t, s) to be the solution of the equation

rx(t,s)=ha(t-s)+h I rx(t, u)hl(u)a(u-s) du

(3.32)
=,a(t-s)+, J a(t-u)h(u)rx(u,s)du, O<=s<=t<=T.

It is straightforward to check that this equation has a unique solution that can be
found by iteration and that the iteration procedure converges uniformly, cf. [2] and
the proof of Lemma 2 above. Thus one also sees from (2.1) and (3.29) that there
exists a constant c5 such that,

(3.33) O<=r(t,s)<-cs, O<=s<=t<=T.

Using (3.32) we can rewrite the (3.30) and (3.31) as
T T

(3.34) v,(t)=I, rx(s,t)ha(s)v2(s)ds+wx(t)+I, rx(s,t)wl(s)ds,

(3.35) V2(t) J0 rx(t, s)h3(s)v(s)ds +we(t)+ J0 rx(t, s)w2(s)ds.

If we let y(t) h3(t)a/2Vl(t), then we obtain from (3.34) and (3.35) the equation
T

(3.36) y(t)+ | H(t, s)y(s) ds =f(t),
0

where

and

T

H(t,s)=-Im rx(’,t)rx(’,s)h.(’)h/(s)h/a(t)d
ax{s,t}

T

f(t)=h3(t)l/2(Wl(t)+It rx(s, t)Wl(S)ds

T

+ I rx (s, t)h2(s)(w2(s)+ Io rx (s, 7")W2(’/’)dr) ds).
The important thing about the function H is that by (3.29) it defines a monotone
operator in L2(0, T), i.e.,

T T

fo z(t) fo n(t, s)z(s) ds >-0, z L:(O, T).

Since it is also a bounded operator, cf. (3.29), (3.33), we can solve equation (3.36)
iteratively by

T

yj+l(t) yj(t)- u(yj(t) + H(t, s)yj(s) ds -f(t)),
where v is a suciently small positive number, and y y in L2(0, T). From (3.36)
we also obtain the bound

T T

fo [Y(t)[ dt o [f(t)]: dt.
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Since we now know the function y, we can get vz from (3.35) and then Vx from (3.34).
Since y appears inside the integral we get the desired bounds on vl and vz in terms
of the sup-norms of wx and w2 and we also obtain the uniform convergence of the
approximate solutions. This completes the proof of Lemma 3.

When a (0, ) and A 0 we have F(a, 0, 0) 0 and if for some other A (0, 1]
we have found X (q, x) such that F(a, A, X)= 0, then we conclude from (3.26) that
O<-q(t)<-a(O+)+tx, since (2.1) holds, and 0-<_re(a, y, to) <--tx. On the other hand we
also have g(6, o92+6) >_-n(a, % to)->_g(& to) and hence we see that x(t) satisfies (3.4).
But this means that we can apply Lemma 3 and the implicit function theorem to
construct a function X(A, c) such that

(3.37) F(A,a,X(A,a))=O, a e (0,/x), e[O, 1].

Wenote that the construction of this function X(A, a) relies on the iteration procedure
(i.e., the Newton method), used to establish the implicit function theorem.

Since X(1, a) satisfies bounds of the form given in the hypothesis of Lemma 3,
we conclude thatF (a, A, X(1, a)) is uniformly bounded. Invoking the implicit function
theorem and (3.37) we see that X(1, a) is continuously differentiable with respect to
a and the derivative is uniformly bounded. But this means that X(1, a) converges as
a- 0+ and in view of the definitions (3.24)-(3.26) and the uniqueness result given
in Lemma 2, we see that the limit must be (q,, x,). Thus we have been able to
construct the solution of Problem (T, 8). It remains to show that this solution converges
to the solution of the original problem as 8 - 0 and T-, o.

Next we establish a result concerning the asymptotic behavior of the optimal
solution x,, and this proof will involve our choice of

LEMMA 4. If (0, 60) is sufficiently small, T>0 is sufficiently large and we

define u,(T, 6, t)= O, >- T, then x,(T, 6, t)>-tol, >- T.
Proof. Choose a number to3e(to,to2), so that g(&to3)>to3 and let O

(g(8, to3)-to3)/2. Let z0 be a number such that

(3.38) O)4 (0) 1, to2)
T

if to4 to2 +p g(6, to3) a(r) dz +w3,

and

Io"(3.39) g(& to3) a(s)ds+g(8,) a(s)ds>to3,

where/ is a negative number such that

to _-< fl implies that

(3.40)

Here

(3.41)

a(ro) >0,

rl=inf rlto+80 to- Ig(,o)l a(t)dt<O <,

a(O+)ng’(8, to) e a(0+)g’(8’)’rl <--to +to1- rt,

T1

[g(6, to)[ a(t) dt > 2a(O+)rlg’(6, to) e (0+)g’(&o)-
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It follows from (2.1)-(2.3) and (3.2) that one can find such numbers z0, p and /3
independent of 6.

Now we choose the number/ so that

(3.42) /x (0, 1), <a(t)g’(6, 603) e (0, Zo].

This implies in view of (3.12) and the fact that q,(t)>-_a(T-t) by (3.9) that

(3.43) x,(t) + u,(t) > w3 on [T--o, T).

Assume that 6(0, p)(3(0,6o) and that T is so large that T>’o and
g(6, w4) To a (t) dt > o4. Define to inf {t > T[x,(t) < o3} and assume that to is finite. If
this is not the case, then we are done, since o3 > Wl. It follows from (3.43) and the
fact that g(6,.) is nonincreasing that

’a(to-S) {0, g(6, x,(s)+u,(s))} {w3, x,(T)}-g(6, w) [a(t)min ds <_-min dt
0

and since a is nonincreasing and g(6, x,(t)+ u,(t))>0 on IT-’o, to] we also have

io(3.44) a(T-s)min{O,g(6, x,(s)+u,(s))}ds<-wa-g(,o) a(t)dt.

But then it follows from (2.1), (3.3), (3.38), (3.44) and the fact that g(6,
that x,(T)<-w4. Since u, is the solution of Problem (T, 6) we must therefore have

T

(3.45) Jo u,(t) dt

because if we take u(t)=max {0, to4--g(t, 094) a(s) ds}, then x(T)=G(6, u)(T) >-

w4. By the same reasoning we deduce that x,(T)
Let/30 inf {x,(t)lt e [0, T]}. We will derive a contradiction from the assumption

that/30<_-/3. Let tl e [0, T] be such that x(tl) =/30. Since x,(T)>-w4-rt, it follows from
(3.40) that tl < T. By (2.1) we have

I a(t-s)g(6, x,(s)+u(s)) ds

(3.46)
_-<min to + Ig(to)[ a(s)ds, w2+6o, t>-_tl.

a0

On the other hand we deduce, since g(6,. is concave and u,(t)>-0, that

(3.47) g(6, x,(t) + u,(t)) <= g(6,/30) + g’(6,/3o)(X,(t) + u,(t)-o).

Using (2.1), (3.3) and (3.45)-(3.47) we get the following inequality for y(t)=
x,(t+tl)-o:

+ a (O+)rlg’(6, flo) + Io a (0 + )g’(6,/3o)y (s) ds.
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If we apply Gronwall’s inequality, then we obtain

(3.48)
+a(O+)rlg’(8,o)e (+g’(’t, t[O, T-t].

By the definition of flo we have y(t)>-O and since x,(T)-->0)4-/ we have y(T-tl) >_-
0)4- rt -/30. But then we get a contradiction from (3.40) and (3.48) if/30 -</3.

Since we have now proved that x,(t) + u,(t) > fl on [0, T] we get a contradiction
from (3.39) and (3.44). This completes the proof of Lemma 4.

Next we consider what happens when 8 0.
LEMMA 5. /f T > 0, then u,(T, 8," u,(T, 0,. and x,(T, 8, - x,(T, 0,.

uniformly on [0, T] as 8 O. Moreover,

(3.49) u,(T, 0, t)= max {0, O(0, q,(T, O, t)-x,(t))}

where O(O, .) is defined by (3.11) when we let g’(O, 0)2)=[0, g’(0)2)] (i.e., a set-valued
map) and

T

(3.50) q,(T, O,t)=a(T-t)+| a(s-t)k(T,s)ds,

where k (T, is a measurable function satisfying 0 <- k (T, s) <- tx. Moreover, if T is
sufficiently large and u,(T, O, t) O, > T, then

(3.51) x,(T, O, t) >=0), >= T.

Proof. Proceeding in the same way as in the proof of Lemma 4 we can show that
there exists a constant Co independent of T and 6 such that

(3.52) x,(T, 6, t) >- Co, 6 [0, 80], [0, T].

(For the proof in Lemma 4 to work we need an upper bound on u,(T, 8, t) dr, and
this is easy to find since this bound may now depend on/x.)

Choose a sequence {Sj}.= converging to 0. Since we know that
min {/x, g’(8, x,(T, 8, ))q,(T, 8,.)} and g(8, max {x,(T, 8,.), Q(8, q,(T, 8,.))}) are
uniformly bounded we conclude from (2.1), (3.9) and (3.10) that x,(T, 8, .) and
q,(T, 8,. )-a (T-. are uniformly bounded and equicontinuous. It follows that we
can choose a subsequence also denoted by {8.i} such that there exist functions q,(T, O, ),
y and k (T,.), 0 <_- k (T, s) _-</x, such that

(3.53)
q,(T, 8i, .)-->q,(T, O, "),x,(T, 6i, ")--> y(’) uniformly on [0, T] and

min {, g’(Si, x,(T, 8,. ))q,(T, 8,. )} k(T,. weakly in L2(0, T).

Thus we obtain (3.50). If we define

(3.54) v(t) =max {0, Q(0, q,(T, O, t))- y (t)}

then We see from (2.2), (2.3), (3.2), (3.11), (3.12) and (3.53) that

(3.55) u,(T, 8,.) v(.) uniformly on (0, T].

But it also follows from (3.10), (3.12), (3.53) and (3.55) that y G(0, v). Thus, if v(.
and u.(T, 0,.) differ on a set of positive measure, then we must, by Lemma 1, have

(3.56) r(T, 0, v) >r(T, 0, u,(T, O, .)).
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Since g(0, w) g(to2) when to >(.02 and o a(t) dt= 1 we have x,(T, O, t)+u,(T, O, t) <-

to2 and hence by (3.2) J(T, O, u,(T, O, .)) =J(T, 6, u,(T, O, .))>=J(T, 6, u,(T, 6, .)).
Because it follows from (3.53) and (3.55) that J(T, 6j, u,(T, 6,. )) J(T, O, v) we obtain
a contradiction from (3.56). This contradiction shows that u,(T, O, .)= v(. a.e. and
hence that x,(T, 0,. =- y (.).

As the sequence {6i} was arbitrary we obtain the first part of the assertion.
It is easy to see that if we define u,(T, 6, t) O, >-_ T, 6 [0, 6o), then x,(T, 6,.

x(T, O, .) uniformly on compact subsets of R as 6 0 and therefore we obtain (3.51)
from Lemma 4. This completes the proof of Lemma 5.

Now we proceed to consider (3.1) and we define

Uo {u" R+ N+lu is measurable, o u(s) ds <;
(3.57)

lim,_,x(t)>=tol and inf {t > 0Ix(t) >0} 0, where x G(u)}.

It is clear that Uo is nonempty. As we already noted above lim,_, G(u)(t) exists if
u (t) => 0 and o u (t) dt < c. Next we establish a useful technical result.

LEMMA 6. If Uo Uo, xo=G(uo), to (tol, to2), g’(to) < 1 and mes ({t_->01Xo(t)+
Uo(t) >to, Uo(t) >0}) >0 or mes ({t >=Olxo(t)+Uo(t)<-_oo})>O or lim,_, Xo(t) >to1, then

Io u(t) dt >inf {Io u(s) ds u Uo

Proof. Let us first assume that the set {t >= 0 IXo(t) + Uo(t) > to, Uo(t) > 0} has positive
measure. Define the function v as follows

[ uo(t), xo(t) + .o(t) <-_ o,
(3.58) (t)

max {0, to Xo(t)}, otherwise

and let

(3.59) w(t)= Io a(t-s)(g(xo(s)+uo(s))-g(Xo(S)+V(S)))ds.

If we define y by

(3.60) y(t)= a(t-s)g(xo(s)+v(s)) ds,

then we see from (3.1) and (3.59) that

(3.61) y(t)= Jo a(t-s)g(y(s)+v(s)+w(s)) ds.

Because limt_, Xo(t) >--to1, g(tol) =to1, g nondecreasing, v(t) >-0 and a(s) ds 1, it
follows from (3.60) that limt_, y(t)tol. Hence v +w Uo by (3.58), (3.60), (3.61)
and the fact that w(t)2-_0. From the definitions (3.58) and (3.59) we get, since g is
concave,

(w(t)+v(t)) dt <= v(t) dt + g’(to)(Uo(t)-v(t)) dt < Uo(t) dt,

because g’(to)< 1 and o (uo(t)-v(t))dt>O by assumption and (3.58). Thus we get
the desired assertion.

Next we assume that the set {t >-Olxo(t)+ Uo(t)<--too} has positive measure. By
the previous result we may assume that Uo(t)=0 if Xo(t)+Uo(t)>tOo and g’(x0(t)+
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u0(t))< 1. Let x(t)=0 if Xo(t)+Uo(t)<=wo and x(t)= 1 otherwise. Since Uo Uo, we
must have o X(t) dt oe. Define the functions v, y and z by

(3.62) v( X(s) ds Uo(t), y G(v), z(t)= y( X(s) ds

A change of variables shows by (3.1) and (3.62) that z satisfies the equation

(3.63) z(t)= Io a(Is X(z)d’r)g(z(s)+uo(s))x(s)ds.
Let

(3.64) w(t)= a X(z) dz-a(t-s) g(xo(s)+uo(s))x(s) ds.

By assumption g(t)= 0 on a set of positive measure and since a is nonincreasing and
nonconstant on (0, c) and the set where X(t)= 0 does not contain a nonempty set of
the form [0, ’) (see the definition of U0), it follows that

(3.65) w(t)>-O, w(t)O.

By (3.1), (3.63) and (3.64) we have

(3.66) z(t)-Xo(t)=w(t)+ a X(z)d (g(z(s)+uo(s))-g(xo(s)+uo(s)))X(s)ds.

From (2.1), (2.2) and (3.65) we see that z(t)>=Xo(t), and that strict inequality holds
on a set of positive measure. Since limt_,oo Xo(t)>-0)1, there exists a number to such
that Xo(t) >= (0)1 + 0)o)/2, >_- to. We claim that

(3.67) z (t) > Xo(t) on [to, o).

Suppose that (3.67) does not hold but that there exists a number tl => to such that
z (tl) > Xo(h). Let t2 sup {t[ z (-) > Xo(-), " [h, t]}. Then we have z (t2) Xo(ta) but
since tl =>to and Xo(t)+Uo(t)<--0)E we have g(z(t)+Uo(t))>g(xo(t)+Uo(t))on (tl, rE) by
(2.3) and we get a contradiction from (3.65) and (3.66). This implies that there exist
numbers t3 and t4 such that z(t)=Xo(t), t>=t4, z(t)>Xo(t), t3<t <t4. Unless x(t) =0
a.e. on (t3, t4) we get a contradiction from (3.66) and if h’(t)= 0 a.e. on (t3, t4) then it
follows from (3.64) that w(t) must be positive at some point in (t4, CX3) and this gives
a contradiction too. Thus (3.67) holds.

It follows from the results in [5] and our assumptions on g and a that limt_, y (t)
limt_, z(t) must be one of the numbers 0, 0)1 or toe and since z(t)>-Xo(t) and Uo Uo
there remains the possibilities 60 and toE. We claim that

(3.68) lim z (t) lim y (t) 0)2.
t- t-O

Suppose that this is not the case, but that limt_, z (t) 0)1. Then there exists a number
t5 > to and a number 0)5 (0)1, 0)E) so that g’(0)5) > 1 and

(3.69) z (t) <-_ 0)5, >- ts.

If m{t>tslUo(t)>O}>O, then we can by (3.67) choose a function ul(t)>=O such that

o ul(t)dt<o Uo(t)dt and if we define vl by vl(toX(s)ds)=ul(s), and yl

G(vl), zl(t) yl( X(z) dr), then zl(t) >-_Xo(t), R/. This would give the assertion of
the Lemma and hence we have to consider the case that Uo(t)= O, => ts. But this
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implies, by (3.69), that

g(z(t)+Uo(t))-g(xo(s)+uo(s))>-g’(o5)(z(t)-Xo(t)), >-ts.

Thus, using (2.1), (3.65)-(3.67) and the fact that z and Xo are continuous we deduce
a contradiction by taking a sequence {rj}= tending to + such that z (-i) Xo(’i)
inf,(ts,,i (z(’)-Xo(’))>0 and invoking the fact that g’(ws) o a(s) ds > 1. This
contradiction shows that (3.68) holds.

It is easy to check, using the Lipschitz-continuity of g that if {vj}i is a sequence
of nonnegative measurable functions on R+ such that vi v in LI(R/) as/" c and
o vj(t) dt < o v(t) dt then y. G(vj) converges to y, uniformly on compact subsets of
N/ In view of (3 68), this implies that there exist numbers 096 E (0)1, (-02) t6, tTE
and/’0 >---- 1 such that yio(t) >-- 0)6 on (t6, tT) and g(0)6) ;7-t6 a (s) ds > 0)6. But then it follows
from (3.1) that yio(t) >-0)6 for all t>-tT, that is, Vio Uo. Since o Vjo(t) dt <o v(t) dt <-

o Uo(t), we get the desired assertion. Since the last case of Lemma 6 follows from
the argument above, the proof of Lemma 6 is completed.

Now we are in a position to prove the next lemma.
LEMMA 7. There exists a unique function u* Uo such that o u*(t)dt=

inf{ u (s) dslu Uo}. Moreover, if x* G(u*), then x*(t) + u*(t) > 0)0 and u*(t) 0

if g’(x*(t) + u*(t)) < 1, a.e., + and limt_ x*(t) 0)1.

Proof. Let {u.}. = Uo be a sequence such that o ui(t) dt - inf {o u (t) dt[ u Uo}
as/’-o and let x. G(ui). By Lemma 6 we may assume that xi(t)+ uj(t)>0)0 and
ui(t)=0 if g’(xi(t)+ui(t))<l for a.e. E+. This implies by (2.2) and (2.3) that
Xj(t)- b/j(t) 0)2 and hence it follows from (2.1) and (3.1) that the sequence {xi}ix is
uniformly bounded and equicontinuous and that the sequence {u.} is bounded in
L2(+). If we proceed in the same way as in the proof of Lemma 1 and note that g
is concave on (tOo, ), then we conclude that there exist subsequences, again denoted
by {x.} and {u} and functions y and v such that

x. y uniformly on compact subsets of R/,
(3.70)

u v weakly in L2(+) as/"

and

(3.71)
x (t) _-> y (t), +, where x G(v) and

Io v(t) dt<--inf{Io u(s) dsluUo}.
Suppose that vg Uo. If this is a consequence of the fact that x (t)= 0 on [0, -], r > 0
then we can replace v by v(t) v(t--) and proceed. Thus we must have lim,_, x (t) <
0)0 and then we see from (2.2), (2.3) and the results in [5] that

lim x(t) 0.

By (3.70) and (3.71) this implies that there exist numbers/’o, t and t2 such that

(3.72) Xjo(t) <--= on (t, t:) and (t.-2h)0)o > Uo(t) dt.

Since we assumed that Xo(t) + Uo(t) > Oo a.e. we have Uo(t) > oo/2 a.e. on (t2 t) and
therefore we get a contradiction from the second part of (3.72). Thus we must have
v Uo and by the second part of (3.71), v is an element in Uo that minimizes the
L1-norm.
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To prove that this optimal element is unique we proceed in the same way as in
Lemma 1, using also the results in Lemma 6 and its proof. The last part of the assertion
of Lemma 7 follows directly from Lemma 6. This completes the proof of Lemma 7.

There is one additional result we have to establish and then the proof of the
theorem is complete.

LEMMA 8. x,(T, 0," x*(" and u,(T, 0,. u*(. uni)rormly on compact subsets
o] / as T . Moreover, u* is continuous.

Proolc. Let {T.}il be a sequence tending to +c. By (2.1), (3.2), (3.3) and
(3.50)-(3.52) the functions x,(T,0,.) and q,(T.,0,.)-a(T.-.) are uniformly
bounded and equicontinuous on N/ (we let q,(T., 0, t)=0, > T). Hence we can
choose a subsequence, again denoted by {T.} such that there exist continuous functions
y and q so that

(3.73) x,(T., 0, .) y(.), q,(T, 0, .)
q(. uniformly on compact subsets of N/ as/" o.

Moreover, by (3.49) we conclude that if we define v by

(3.74) v(t) =max {0, O(0, q(t))-y(t)}

then v is continuous and

(3.75) u,(T., 0, v(. uniformly on compact subsets of N+ as/" c.

From (3.75) it follows that

(3.76) | v(t) dt-<liminf | u,(T., O, t)dt
Jo Jo

and by (3.3), (3.73) and (3.75) we see that y G(0, v). We claim that

(3.77) lim y (t) _-_, wl.
t-oO

By (3.51), (3.52), (3.73) and the fact that x,(T, O, t)<-_w2 we see that y is bounded
and hence it follows, again from (2.1), (3.2), (3.3), (3.76) and [5], that lim,_,y(t)
exists and must be one of the points o91 or 02 (the number 0 is excluded since
g(0, 0)< 0). Thus we have (3.77).

Since x,(T, O, t)+u,(T, O, t)<_-w2 we must by (3.73) and (3.75) also have y(t)+
V(t)<--o2 and this means that g(0, y(t)+v(t))<-g(y(t)+v(t)). Therefore, if z G(v),
then we have z (t)_-> y(t), so that (3.77) implies that v Uo. Suppose that

(3.78) Jo v(t)dt > Jo u*(t)dr.

It follows from the same argument that was used in the proof of Lemma 6, that if
Uo(t)>-u*(t),

(3.79)

and Xo G(uo), then

Io u*(t) dt < Io Uo(t) dt < v(t) dt

(3.80) lim Xo(t) 092.
t---

Since Xo(t)+Uo(t)>-x*(t)+u*(t)>o)o by Lemma 6 and because we can choose u0 so
that Xo(t)+Uo(t)<-w2 it follows from (3.2) that we also have xo=G(0, Uo). Since
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x,(T, 0, T)-<_o2 we conclude from (3.76), (3.79) and (3.80) that if/" is sufficiently
large, then J(T., 0, u0) <J(T., 0, u.(T., 0,. )) and this is a contradiction. Hence we have

o v(t)dt <=o u*(t)dt and by the uniqueness result in Lemma 7 we get v u*. But
then we also have y =x* and since v is continuous by (3.75) and the sequence {T.}
was arbitrary, we obtain the assertion of Lemma 8, and the proof is completed.
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CANONICAL REALIZATIONS OF SYSTEMS WITH DELAYS*

LUCIANO PANDOLFIt

Abstract. In this paper we consider the properties of the realizations of a class of nonrational transfer
functions. The transfer functions of this class can be realized as systems with delays. We introduce the
concept of o-canonical and -canonical realization. This last definition is equivalent to saying that all
spectral projections of the realization are controllable and observable systems with no state delay. For a
general class of systems, -canonical realizations are shown to be minimal according to a suitable definition.

Key words, linear systems, delay systems, transfer function, canonical realization

1. Introduction. The theory of the realization of transfer functions of linear finite
dimensional systems seems to be well understood (see [7], [5]). This problem has been
solved with the use of algebraic techniques, which have been successfully extended
to the realization problem of transfer functions of a wide class of systems. The problem
of the realization of systems with delays can be approached in this framework (see
[8], [17], [18] and the references therein). In this paper we study the realization of
systems with delays using a different approach.

Let (S) be the control system governed by the equation

(la) 2 Aix(t-hi)+ A(s)x(t +s)+ BlU(t-hi)+ B(s)u(t +s),
=o h =0 h

(lb) y(t)= Cx(t-h)+ C(s)x(t +s),
i=0 h

where x e R , u e R ’, y R and the matrices A, A(s) are n x n, B, B (s) are n x m
and C, C(s) are p x n, with real elements. We assume that the matrices A, Bi, C are
constant, and that the matrices A (s), B (s), C(s) have square integrable elements. The
numbers h, h satisfy the conditions 0 ho < h <. < h -<_ h.

We denote with the symbol the class of control systems just introduced.
In the following, we assume that u (t) is a piecewise continuous function for _-> -h.

The initial data for (la) will be of the form u(t)= v(t), a piecewise continuous function
on [-h, 0], and x(t)= q(t), [-h, 0), x(O)= xoR . We assume that the function
q(t) is square integrable.

The properties of (la) that we shall need in this paper are introduced in 2.
Now we choose matrices A(t), B(t), C(t), whose elements are functions of

bounded variation on I-h, 0], and such that we have, for all continuous functions
q (t), v (t),

dA(s)q(s) Aq(-hi)+ A(s)q(s) ds,
h i=0 h

0 0

dN(s)1)(s) i Ni19(-hi)+f_ (s,l)(s)ds,
h i=0 h

0 0

f_ dC(s)q(s)= i Ciq(-hi)+I_ (s)q(s)ds.
h i=0 h

* Received by the editors December 15, 1980, and in final revised form July 13, 1982.
t Istituto di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10100 Torino, Italy.
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In order to reduce notational complexity, in the following, when the functions q(t),
v(t) are continuous, we use the Stieltjes integral notation instead of the right-hand
sides of the above formulas.

As usual, if f(t) is a function defined for _>--h, ft denotes f(t + s), s I-h, 0] for
every >= 0.

The state of (S) at the time => 0 may be defined in several ways. We choose to
define it as

Z(t)=(x(t),x,,u,).

We consider Z(t) as an element of MZL2, where MZ=R"LZ(-h, 0", R"), L=
LZ(-h, O; R"). The ME- component of Z(t) is the pair (x(t), x(t)) (x(t), x) and will
be denoted X(t).

Let denote the Laplace transform. A standard calculation proves that, when
z(0) 0,

f( T( )t( ), where
o o

h h

0

A(A II | dA (s) exp (Is).
h

T(A) is called the transfer function of (S).
Assume that T(A) is the transfer function of a system of class 5 (Theorem 1.1.

will give a necessary and sufficient condition for this). In this paper we want to
investigate if T(A) admits a realization which is canonical (the definition is in 2).
The approach that we use in this paper was previously applied to systems with only
input delays [13].

Now we observe that if a realization of T(A) is given (i.e., if (la) and (lb) are
given) we can read the numbers n, m, p. The numbers m, p are determined by T(A)
(which is a p m matrix). The number n dim x depends on (S), and will be denoted
n (S). The control process (S) is infinite dimensional, but the number n (S) is always
finite.

The organization of this paper is as follows. Some preliminary material is intro-
duced in 2. In particular, to-canonical and c-canonical (shortly, canonical) realiz-
ations are defined. In 3 we give a condition which characterizes those transfer
functions which admit to-canonical realizations, using a Hankel matrix. We shall see
that there are systems of class 5 whose transfer functions do not admit canonical
realizations in class 5. In 4 we shall prove, under special assumptions, that if (S) is
a canonical realization of its transfer function, then n (S) is as small as possible. This
means that we can associate with (S) the "dimension" n (the rank n, in the terminology
of [17]) and that we can say that canonical realizations are minimal.

Now we give a characterization of those transfer functions which admit a realiz-
ation of class 5. We observe the following properties of T(A): T(A) is a meromorphic
function, T(A HA)/d (A), where

i. H(A)= Y7] Ki(X)X i, where Ki(X) is a p m matrix of entire functions,
ii. d(A det A(A) Y7=0 di(A)X , where di(X) are entire functions, and d, (X) 1.
THEOREM 1.1. T(A) is the transfer function of a system (S) 5 if and only if it

is a meromorphic function
H(;

T(A) d(X)’
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such that conditions i, ii are satisfied and, moreover there exist scalars li(s) and p m
matrices Ci(s) of class 72, such that

o 0I_ eXSdli(s) di(A ), I_ dCi(s) eXS Ki(h ).
h h

Proof. The necessity is obvious. To prove sufficiency we observe that a realization
of T(A) is given by

l,(s) o o o
A(s)= 0 l,(s)I 0 0

lo(s)I l,_l(s)
(s)

I. (s

(L 0 are the m m identity and zero matrices), while C(s) is

C(S) [Co(S), ., Cn_x(S)].

Of course the realization of T(A) which has been constructed in the above theorem
may not be canonical in any acceptable sense.

2. Known facts and preliminaries, We recall some properties about the equation

I_(2) . Aix(t-hi)+ A(s)x(t +s)+f(t), >=0
i=0 h

(see [3], [6]). Let/, 0 denote the identity and zero matrices or operators, as deduced
by the context.

The spectrum of (2) is the set of complex numbers

cr {A, det A(h d (h) 0}.

The set cr is never empty and for any real a, the set r {h, Re h > a} is finite (may
be empty).

In this paper to will always denote a number such that if IAI to, then h r. The
set

I 1< o}
is always finite (may be empty), because d (h) is an entire function.

If f(t) is identically zero, (2) defines a strongly continuous semigroup of bounded
operators S(t) on M2= R L2(-h, 0; R"). Let A be the infinitesimal generator of
S(t). Then r(A)= r. If , there exists a finite dimensional subspace N M
which reduces S (t), and

N= @ U (hi-A)".
A n>O

Let m (Z0) be the multiplicity of the root Zo of d(Z). Then

n=dimN= re(A).

P will be the projection of M on N.
If u(t) is a given piecewise continuous function, Ht denotes the M-valued

function

t (i=OBi(t-hi)@: (S)u(t
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On No L2 we consider the control process given by

(3) X(t)=S(t) + S(t-s)PoBusds, & eNo.

(observe that, according to the conditions given in 1, the initial datum is an element
(, v No L2, with a piecewise continuous v (t)).

Let B (A) dB (s) e ds.
DEFINITION 2.1. We say that the system (S) is co-controllable when

(4) rank [A(h ), B (h )] n, Vh, IAl<co.
and that (S) is oo-controllable (or spectrally controllable, or fully stabilizable), when it
is co-controllable for every co.

We know from [11] that, if ro is not empty, (S) is co-controllable if and only if
system (3) is reachable, i.e., if and only if there exists T > h such that for every X1 No,
and continuous v L2 we can find a control u(t) such that u0 0, UT V, and such
that the solution of (3) with X(0)= 0 satisfies X(T)= XI.

It is well known that condition (4) plays an important role in the theory of delayed
systems 12].

Now we consider the observability properties of (S). Let us assume that u(t)= 0
for _->-h. Let o’o be nonempty. If the initial data X(0) belongs to No, it is known
[16] that the condition

rank [A*(A), C*(A)] n, VA, I 1<o ,
is necessary and sufficient for y(t) to be zero if and only if X(0) is zero (i.e., so that
the projection of (S) on No be observable). This observation suggests the following
definition:

DEFINITION 2.2. (S) is co-observable if (5) holds, and is c-observable when it is
co-observable for every to.

Remark 2.1. Our definition of co-observability should be compared with the
definition of co-detectability in [11].

The system (S) that we are studying has also input delays, so that interpretations
of (5) should be given, which take into account the fact that the initial data for (la)
is not X(0), but Z(0). A simple interpretation is the following one. Assume that u(t)
is zero for 0. Observe that, if u(t) is differentiable, the solution of (la) is also a
solution of the equation

it= Aix(t-hi)+ A(s)x(t+s)ds+ Biu(t-hi)+ B(s)u(t+s)ds,
=0 h =0 h

With this equation we associate the output (lb) and we call the obtained system (S’).
Of course the solutions of (S) and (S’) are the same only if u(0) 0. (S’) is co-observable
when the matrix

A*(h) 0 C*(h)]B*(h) hi 0

is of full rank for ]hi< co. For h 0 this matrix is of full rank if and only if (5) holds,
while for h =0 it may be possible to find initial conditions x(t)=Xo, u(t)-Uo for

I-h, 0] which give zero output. However, we assumed that u (0)= 0, so that u0 0
and, if (5) holds, x0 0. Hence (5) is a necessary and sufficient condition for the co-
observability of (S’), if we impose the (natural) condition u (0)= 0.
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Another condition which is equivalent to (5) and which should be compared with
[11, Thm. 3], is expressed by the following theorem:

THEOREM 2.1. Let u(t) be zero for t>0. Let 3’ be any number such ,that when
A tr, A tr,o, then Re A < -3’. (S) is to-observable ifand only ifwhen limt_.+ y(t)e t 0,
then lim_,+, e Vx (t) 0.

Proof. Let h + r. Then
h

X(h +r)=S(h +r)X(0) + J0 S(h +r-s)(Bu) ds

Io=S(r) S(h)X(O)+ S(h-s)(Bus) ds =S(r)X(O).

This shows that the first component of X(h + r) is a solution of (la) with u(t)= 0 for
every t. If condition (5) holds and if exp (3"t)y (t) 0 for + eo, then X(h + r) has a
zero component on the eigenspaces relative to eigenvalues with Re h >-3" and also
exp (3"t)x(t) tends to zero. The converse is obvious. 71

Now we can define canonical systems.
DEFINITION 2.3. We say that (S) is an to-canonical realization of its transfer

function when (S) is to-controllable and to-observable. We say that (S) is an
canonical realization of its transfer function when it is to-canonical for every to.

Remark 2.2. Other definitions of controllability (and observability) for delay
systems have been proposed. For example, the definitions of L2, M2, F-controllability
[3] have been widely studied. All of them imply spectral controllability. An analogous
observation holds for the observability property.

Let to be such that r,, # . The elements of No are equivalence classes of pairs
(x,x 1) with x in L2(-h, 0; Rn). In each class there is an element whose second
component x is continuous. We choose this element to represent its equivalence
class. (S,,) will be the control system on No x L2, given by (3), with the output
y(t) ((X(t)) where " No, --> R p is defined as

0

(X(t))=Cox(t)+Cx(t-h)+ .+Cxl(t-h)+ f C(s)x(t +s) ds.
d_h

Let us observe that ( is a linear operator which is bounded, since its domain is the
finite dimensional space No.

Remark 2.3. In the following ( 3, 4), when there is no ambiguity, we drop the
symbol oo-, and we say simply controllable, observable and canonical realizations.

3. Canonical realizations. In this section we study the properties of to-canonical
realizations. We follow the same lines as in [13]. Let to be fixed. There are numbers
r < to < R such that T(A) has a Laurent expansion in the region

Let

From [19]

T(A) f(h + Y LA -,
k=l

analytic.

(r’ is any number such that r < r’< R).
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Let H,, be the matrix

L1 L2 L3

H,o is the Hankel matrix of the principalpart of T(A) in II. Let rn,o be the rank of Ho.
Let T,,(A) be the transfer function of ($,,), and R(A)= (AI-A)-1 be the resolvent

operator of S (t). We compute T (I). Let Z (0) 0.

(A) e-X’y(t) dt e S(t-s)P(us) ds dt

+

=d R (A)P e
0

=[R(A)P(2dB(r)ex) (A)]0

From [10, p. 178]

R(A)P.,-
1 I2’i Kl=r’

A standard calculation shows that

where

Hence

1
R(’)

A Z( dff, IA > r’.

a_(C)v )R ()O A-1()e Cv [ e c(-s)O (s) ds

o

v 0-I_ dA(s) e
h

c(s-r)o l(r) dr) I)0) M2for 0 0’

( r) ( A (()I_hdB(r)e xr

)R ()P,o h dB (r) e

_
0 \A-.(r)e o h_ dB (r) e

Hence, recalling the definition of ’,
ofo___ 1 i [eC:OA-()]di_ dB(r) ero(X) dC(O)

h ]= ( --") h

dC(O) e
-() o

dB (r) e d(
2i Cl=r’ h (A-()

We call (A) the function

1 1
T(z)dzr(a)= ,=’Z-z

1
A_dC(0) e zo (z) dB (s) e dz.

h
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Let r" be any number such that r’ < r" < Ih I. 7o, (h) is the function

1 I To,(z)
dzTo, (A) /_z[=r" I’---Z

1 [ l { 11 dC(O) e c
A- (()

d( dB(r) e dz
2i .l=,,h-z cl=’ , (z-ff h

dC(O) eC-(ff) riB(r) e dz dff

dB (r) e dz d.=2i =’ dC(a) eCh-() z=r",a--Z Z--(

Observe that z (1/(A-z)) riB(r)e is analytic for ]z] < r"+ e, for some positive
e. Hence

T(A)
cl=’ dC(O) eC-(ff)

h _ff dB(r) e c dff (h).

Observe now that 7(h) and 7o,(h) are the principal parts of T(A) and To,(h) for

Now we calculate/-)o,, the Hankel matrix of the coefficients of the principal parts
of To, (X) (i.e. of TO,(X)).

From 2, (S) is w-controllable if

rank [A(A ), B (A)] n,

Let Ao, be the infinitesimal generator of P.,S(t)PO,. Obviously (see [12]) the above
relation holds if and only if

(6) rank [AI Ao,, eo,B (A)] no,

(no, dim No,). Let B () be such that
0

PO,B(A)=OO,(O)BI(A)=dO,(O) | dB(s) e xs

3_h

where o,(0) is a matrix whose columns are a basis of No,. Condition (6) is equivalent
to

rank [B(AO,), A,,B (AO, ), A"- B (AO, no,,

where B (Ao,) is defined as
0

Ba(Ao,) | exp (Ao,s) dBa(s).
h

The matrix above in square brackets will be called the w-controllability matrix of (S)
and denoted with the symbol o,. In an analogous way we see that (S) is w-observable
if and only if the rank of the matrix

e’o, [CI*(AO,),A* *o,C1 (Ao,),..., (A’-I)*CI(AO,), .]

is no,. Here

0

C’ (Ao,)= f_ exp (A*s) dC (s)
h
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and Cl(s) is given by P,oJh e xs dC*(s)= cI),o(0)h e ’ dC*a (s).
LEMMA 3.1. H,o H,o K,o, where

K
Proof. We have already shown that ’(A)= 0, (X). Hence H , since H is

the Hankel matrix of the principal part of T() for I 1< i.e. of (). Now we show
that K. is the Hankel matrix associated with T(A), which is the transfer
function of a system with delays acting only on the input and output variables. Hence
there exists matrices L(s), M(s), A such that

o o

T(A) (_ dL(s)e) (AI-)-I

_
dM(s)e x.

h h

For IAl> max {I/x l, 6 o’(*)} we have that

To(A)= hdL(s) e x I+ hdM(s)e

/ =0 h r=O k =0 h

dL(s) -. Y. A exp (Xr) dM(r) +[(A)
=0 h k=l h

as in [12, p. 33], where f(A) is analytic. Hence

dL(s)+ dL(s)
s s

+ dL(s)..X2+To(A) g(A)+2 h h h

0I_ exp (e{r) dM(r)
h

+ hdL(s)X+ hdL(s) + hdL(s) S2 +""

0

x

_
exp (r) dM(r)

h

l(X) + E dL(s) exp (As) - exp (r) dM(r)
k=l h h

and I(A) is an analytic function.
Hence/-., =/ .,.,,

0 : 0

*= [(I_ dL(s)exp (s)) ,* (f_ dL(s) exp (s)),...],
h h

0 0

o, [f_ exp (r)dM(r), f_ exp (r)dM(r),...].
h h
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Now we prove that ,o ,o. Observe that A and M(s) satisfy ( =^= Laplace
transform)

(hI -)-l (I_h dM(s) eXSu (s) + oo)
o

=(S(t)Po I- dB(s)u(t+s)+$(t)qo
h

(,I-Ao)-1 Poo dB(s) e (I)+o
h

(M-A)- (0) dB(O)e (I)+o for o e N.
h

Hence A, B?(A) Ih exp (r) dM(r). In an analogous way we Se that ff d.
In fact

o o

_
dL(s)eXS(hI-)-l(.) =((S(t+S)P))= I_ dC(s)eXSp(hI-A)-lP.

h h

Since A, we have that

([xa_’-- dL(s) exp (s)] dC(s)P exp (Ao,s (0) exp s)c (s).(A*
h h

This finishes the proof.
Let us recall that m rank H, n dim N, and put rank H.
LEMMA 3.2. m (so that it does not depend on the realization of T(A)), and

Proof. m rankH rank . Hence is not going to change with the
realization of T(A).

m rank rank6 n,

since rank n and rank
If (S) is an w-canonical realization of its transfer function, we have that

rank n, rank n,

so that m rank n.
DEFINITION 3.1. (S) is an w-minimal realization of T(A) if the dimension of N

is as small as possible, i.e., it is m. The above considerations imply that, if (S) is an
w-canonical realization of its transfer function, it is also an w-minimal realization.
The w-dimension of (S) is the number dim N.

TnEORZM 3.1. T(A) has an w-canonical realization if and only if it has a
realization with

n rank g.

Proof. The necessity part has already been observed. Let (S) satisfy

no, dim No, rank H,o rank

Since rank 7* <= no, rank o -< no, then rank 7,oY,o =< no, so that n,o rank 60, =<
no, and rank 7"0, no, rank Yo, no. Hence, ($) is an w-canonical realization of its
transfer function. [-!
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Theorem 3.1 is a criterion which might be used to test whether a given realization
of T(h) is canonical. Of course, in concrete examples, it is not easy to compute the
number n,o. However, Theorem 3.1 allows us to obtain some interesting consequences.
First of all observe that n,o n dim x when T(h) has been obtained from a system
which contains only input delays. Hence in this case it reduces to [13, Thm. 3.1].
Theorem 3.1. also gives some information about canonical realizations.

THEOREM 3.2. A realization (S) of a transfer function T(A)e is o-canonical
if and only if its to-dimension is equal to mo, for each to. In this case, ($) is to-minimal
for each to.

Another interesting consequence of Theorem 3.1 is the following:
THEOREM 3.3. There exist systems like ($) whose transfer functions have no

to-canonical realization in the class of the systems whose dynamics are given by (la),
(lb), when tro,# . In particular, they have no c-canonical realization.

Proof. If tro, # , the w-dimension of ($) is at least 1, since a functional differential
equation has only eigenvalues. Consider the system

(7) -u(t)-u(t-1) y(t)=x(t).

Its transfer function T(h)= (1- e -x)/h is analytic, so that H 0 for every to. Hence
the transfer function of (7) has no w-canonical realization for those to such that
tr . The spectrum of a functional differential equation is never empty. Hence
numbers to such that o- always exist, so that T(A) cannot have o-canonical
realizations. [3

Remark 3.1. Let T(h) be given. Assume that T(h) has no o- canonical realiz-
ation. In 5 we shall show that it can be realized (in a class of systems different from
6) by a system which is "canonical" according to some suitable definition.

Remark 3.2. There are functions T(A) which have to-canonical realizations for
every to > 0, but which do not have -canonical realizations. For example,

T(,) E
1

=0 (h- k)
Remark 3.3. One could guess that only transfer functions of the type

T(X)= E Lkh-k
k=l

can have canonical realizations. The next example shows that this is not true.

T h
l e X

( lo + -1(01) + -1(10)
has the canonical realization

Ycl x2(t) + u(t)- u(t- 1),

2 u(t),

y(t)=x(t),

y(t)=x.(t).

Remark 3.4. If 601 602, then mo,1 --< mo,2 for every realization (S) of T(A). Hence,
if (S) is canonical, then from Theorem 3.1,

dim H,,I mo,1
-< m 2

dim H,o2.

4. Minimality properties of canonical realizations. Recall that n(S)=n
dim x(t).
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The following result is easily proved:
THEOREM 4.1. Assume that

rank Ho, n

for large to. If (S) is a canonical realization of T(A), then n(S)= n, and n(S) is as
small as possible.

Proof. It is clear that dim N,o n, for large to. Hence (r, the spectrum of a canonical
realization of T(A), is finite, i.e., d (h) is a polynomial of degree n. Hence, n dim N,o
dim x n(S), and n(S) is as small as possible, since dim N, is minimal (Theorem
3.2.). [

Now we recall that a system is called spectrally minimal when the spectrum of
the infinitesimal generator coincides with the set of nonanalyticity of T(A) (with the
set of poles of T(A), in our case) [1]. The next theorem implies that a canonical
realization of class 6e is spectrally minimal. In fact we can prove a stronger statement.
Let T(A) be given. Let Ao be a pole of T(A). If ui(/t) are entire functions, we can write

T(/t )ui (/t) v
(, o)’,

+f’(x

for some vector vi, some entire number ri and some function fi(/t) such that

lim f (/t)(/t -/to) <r, sgnr,> O.
A-+Ao

Let q/= {u(/t),..., u:(/t)} be a set of entire functions such that the corresponding
vectors vg are independent, and the numbers r are positive. Let m (q/) be the sum of
the exponents ri. We say that the number

mT (/tO) rnax {m (o//)}

is the order of the pole/to of T(/t) (compare [15, Ch. 2]).
THEOREM 4.2. Let (S) be a canonical realization of T(/t). If/to is an eigenvalue

of multiplicity too, then mo is equal to mT(/to).
Proof. Let A0 be the restriction of A to the generalized eigenspace of/to. We have

T(/t)u(A) {( (/tI Ao)PxoJ + (/tI A)(l Pxo):}tL

(](/tI-A)(I-Pxo) is bounded near/to. Hence we must study

To(/t d(/tI AolPxoJ,
which is the transfer function of a system without state delays, and with tr(Ao)= {/to}.

Let vl,’ ’, vs be the eigenvectors of Ao. The equation

Aox
has the solutions

xi(t) (vit ’-1 +p(t)) exp (/tot).

pg(t) is a polynomial of degree less than ri- 1, and Y__I rg mo. Hence xi(/t) has a pole
in /to, of order r. We assume that the control system of transfer function To(/t) is
controllable, and we prove that, if mT-(/to)< too, then it cannot be observable, so that
(S) is not a canonical realization of T(/t). Since (S) is controllable, there exists a
control such that x(T, u) p(0), for some T, and ur(" 0. Call u(t) the extension of
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this control which is zero for > T. It gives an output

(/ To(/ )/i (/) C(/ )g(/
eXrC(A)v +hi(A).

g(A) is the Laplace transform of the function

xlt, u), O<=t<=T,
0 t>T.

Hence g(A) and ui(A) are entire functions, hi(A) has a pole of order less than r. The
vectors vi are independent. If mr(A0) < too, then for at least one index i, the correspond-
ing T0(A)ug(A) has a pole of order less than r, i.e. C(ho)Vi 0. Since v is an eigenvector
of A0, we deduce that the system under study is not observable.

Now we can study the question of the minimality of the number n (S). We proved
already that n (S) is minimal, when

dimH <- n

for every o, without further assumptions.
In the following, we need an asymptotic estimate of the roots of d (h), which is

given in [14], under the following special assumptions on A(s)"
Condition 1. A (s) is a.e. differentiable.
Condition 2. There exists a positive number y such that A(r)= 0 on [-y, 0].
THEOREM 4.3. Let (S) be a canonical realization of T(h ). If Conditions 1 and

2 hold, then n (S) is minimal.
Proof. Let (S’) be a realization of T(A), with n’ =n(S’)<n(S)=n. Let d(h) and

d’(h) be the characteristic polynomials of (S) and (S’).

d’(x)=x"’+... +d,(a).

(S) is canonical. Hence the poles of T(h) are the poles of (d(h))-1 with the same
multiplicities. Hence d’(h) has at least all the zeros of d(h), with at least equal multi-
plicities. We can see that this is impossible.

Let us consider the zeros of d(h). We recall, from [14, Ch. 3], that there exists
a finite number of algebraic equations

(8) EkZk 0
k=0

such that:
a. s _<- n, and s n for one of these equations.
b. Let Z1,..., Zs be the s roots of (8) (some of them may coincide). Hence,

either Z,..., Zs, are roots of d(s), or, for every Z {Z,..., Zs}, d(s) has the
following chain of roots:

z. -(a) In
1 a}r++ ia [+/-{2p-sgn argZ] +f(p)

where lim,_+oo f(p) O.
a is a number which depends only on the equations that have been chosen, among

those in (8). Hence there is a number a which corresponds to n chains of roots (which
may not be distinct).

The same argument applied to the function d’(h shows that the equation d’(h) 0
has at most n’ chains of roots corresponding to the choice of any number a. Hence
d’(A) cannot have all the roots as d(A), i.e., (S’) is not a realization of T(A).
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This finishes the proof.
Remark 4.1. We conjecture that the above result can be proved without using

Conditions 1 and 2.. Final remarks and comparison with previous results. Now we compare several
different approaches to the problem of realization. In this section we never drop the
symbol m-, and the word "canonical" will be used according to the definitions that
will be specified later on.

First of all we consider the question raised in Remark 3.1. It is well known [3]
that any system with delays can be written as an abstract system in a Hilbert space X

(9) t Av +Bu, y Cv,

where A is the generator of a strongly continuous semigroup of bounded operators
S(t) on X, while B, C are linear operators, B" R X, C"X R p. C is bounded if
there are no state delays, or if there are no discrete output delays. (If input delays
act on the system, then v(t) is somewhat more involved than Z(t). See [3] for details.)
Abstract systems in Hilbert spaces are (weakly) reachable when

span S (t)B X

and (weakly) observable when span $*(t)C* =X. It is known [4] that (9) can be
reduced to a canonical (i.e., weakly reachable and weakly observable) system without
changing its transfer function. Now consider the following example: Let

-,k -2Xe -e
T(A)= a2

which is the transfer function of the system ($’)
-1t"

(10) =| u(t+s) ds-u(t), y =x(t).
d--2

T(A) is an entire function. Hence it has no az-canonical realization. However ($’)
may be written as a system in Hilbert space (in a very simple way, since it does not
contain discrete delays), and an abstract canonical realization of T(A) (not as a system
of class , of course) can be constructed. This example explains the observation in
Remark 3.1.

The problem of realization of systems with delays has been previously approached
via algebraic methods (see for example [8], [17], [18]). In the approach of [8] no
canonicity question is raised, but methods to get minimal realizations are presented.
This method can be shortly described as follows: We write (la), (lb) as convolution
equations,

p*x =A.x +B.u, y C.X

where is the convolution product, p is the derivative of the 8 function, A, B, C are
matrices of distributions with support bounded on the left. Only a finite number of
distributions O {01,’ ", 0q} need to be specified, so that the matrices A, B, C have
elements in the smallest ring RIO] which contains (R) and R6. The operational transfer
function of this system is W C(p!-A)-IB whose elements are in the smallest field
which contains p and RIO]. For example, (7) can be written

p.x=(6-61).x, y=6.x (6=6(t-1)),

and W (6-6)/p. In [8] a method is given which provides decompositions of any
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given W of the form W C(pI-A)-IB with the size of A as small as possible. This
method can be used to try to find m-canonical realizations as follows if a transfer
function T(A) is given:

a. Write W(p) (this can be done by inspection in simple cases, or by writing
any realization of T(A), for example the one given in Theorem 1.1).

b. Use the method of [8] to construct minimal realizations. If we are lucky enough,
this realization might be an m-canonical realization. We shall give an example later
on. We note that at the moment we do not have any better method of constructing
m-canonical realizations.

The approach of [17] can be applied when a system has only discrete delays, and
no continuous delay. In this case, /-/’i is the operator (txix)=x(t-hi): C(-hi, +oo)-+
C(0, +oo). The system (S) can be identified by a triple of matrices (A, B, C) with
elements in the ring of polynomials in the symbols/zi, which is denoted R[/z ]. The
pair (A, B) is reachable when

R [/x span [B, AB,..., An-IB ].

System (S) is reachable when (A, B) is reachable, and coreachable or strongly observ-
able when (A*, C*) is reachable [18], [9]. It is observable when

f’) Ker CA {0}.
i=0

The transfer function of (S) is now defined to be

H(a, H(A, tx C(a,I -A)-B,
a rational matrix of X, /z. (S) is a canonical realization when it is observable and
reachable. A system which is reachable, is oo-controllable, but a system which is
observable, need not to be oo-observable. (Again, this is an example of the situation
referred to in Remark 3.1.) Since reachability and observability are not dual definitions,
it seems that reachable and coreachable realizations are more interesting. Of course,
a reachable and coreachable realization is oo-canonical. Since it is of minimal rank,
any algorithm that provides minimal realizations can be helpful investigating the
existence of oo-canonical realizations, exactly as above, but in a simpler way, although
a given realization of T(X) can be minimal in the class of realizations with discrete
delays, but not in the class 6e (observation due to E. Sontag).

We finish this paper with an example which illustrates the above arguments. We
want to find an oo-canonical realization of the transfer function

l_e-X_X2e -x

We can observe that T(X)= H(, e -x), when

1- -A2

H(A,/x)

so that we can use the method of [17] to construct a realization with only one lag. In
this case the Hankel matrix has rank 4, so that the rank of a minimal realization is
4. A realization of minimal rank is

i xi+l, 1 <= <-_ 3,

y(t) Xl(t)-x(t- 1)-x3(t- 1),
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which is not o-observable. At this point we cannot say that no c-canonical realization
exists, because it might be possible to realize T(A) in a ring that is richer than the
polynomials in one symbol. We observe that the method of [8] applied to the ring
generated by 8, 81 gives a realization of rank 4. Now we note that

1-e- f e ds

so that we can consider the operational transfer function

g(s) ()
W(p)

P P

where g(s) 1 when 0 s 1, and zero otherwise. Observe that

h 3T(h) (p3W(p), eat).
The Hankel matrix of W(p) is now

0 --81 g 0 0- g 0 0

g 0 0
0 0

which has rank 3. Hence W(p) admits a realization with n(S)= 3. Using known
algorithms it is easy to find the realization

o

y(t)=-x2(t-1)+I_ x3(t+s)ds,

and we were lucky enough to find an -canonical realization.
Remark 5.1. Let us observe that the minimality of a realization as defined in 4

is a property of the transfer function, while the minimality of the realization of a
transfer function over a ring is a property of the transfer function and of the ring,
which is not uniquely determined by the transfer function.

Acknowledgment. The author thanks the referees for the careful reading of this
paper. They discovered a mistake in the proof of Theorem 1.1. and suggested the
introduction of 5.
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ADMISSIBLE INPUT ELEMENTS FOR SYSTEMS IN
HILBERT SPACE AND A CARLESON MEASURE CRITERION*

L. F. HOt AND D. L. RUSSELL$

Abstract. We study the control system

/ Ax + bu, x X, u scalar,

where A generates a semigroup on the Hilbert space X, but, in general, the control input element b X.
Many boundary value control systems, point control force situations, etc., can be studied in this context.
We define and analyze "admissible" input elements b and develop sufficient conditions for b to be admissible
in terms of the Carleson measure theorem of HP-theory.

Key words, distributed parameter control, infinite dimensional systems, unbounded control elements,
theory of distributions, Carleson measure

1. Introduction. One commonly studies linear, time invariant control systems in
a Banach space X in the form

(1.1) 2 =Ax +Bu, x eX, u U,

where A is the generator of a strongly continuous semigroup of bounded operators
{S(t)lt >- 0} on X, and B is a bounded operator from the control space, U, into X. If
u [0, o) U is locally (Bochner) integrable, generalized (or "mild") solutions of (1.1)
corresponding to an initial state

x(O)=xoX

can be represented by the "variation of parameters" formula (see, e.g., [3], [11])

(1.2) x(t)=S(t)Xo+ S(t-s)Bu(s) ds,

and a number of properties of x(t) can thereby be deduced.
It is well known, however, that most of the interesting infinite dimensional control

systems do not arise this way, because the degree of controllability of a system (1.1)
with B bounded is rather restricted if, as is usually the case, U is finite dimensional
or for some other reason the operator B is compact. Indeed, most of the mathematically
intriguing examples arise in the context of partial differential equations with boundary
value control inputs, control forces exerted at isolated points, etc., and in the context
of functional equations which involve values of the control of discrete instants, viz.
u(t), u(t- T1)," , u(t- T,). In each of these cases the formulation (1.1) is inadequate
and one must consider input operators B whose range is not restricted to the space X.

A number of authors have addressed the problem of interpretation of (1.1) for
operators B of rather general type. We particularly cite the contributions of Curtain
and Pritchard [3], Zabczyk [22], Fattorini [6], and Washburn [20]. It seems fair to
say that, as brought out in [3], .the theory is more extensive and generally applicable
in the case of systems of "diffusion type", ordinarily involving holomorphic semigroups,
than in systems of "wave" or hyperbolic character.

In the present article we shall restrict our attention to spacesX which are separable
Hilbert spaces and to finite dimensional control spaces U. Taking U to be R m, (1.1)

* Received by the editors March 31, 1982. This research was supported in part by the Air Force Office
of Scientific Research under grant AFOSR 79-0018.

t Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019.
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
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becomes

(1.3) 2 Ax + Y biu
i=1

where bi is the control input element associated with the/’th control component u i.
Since every solution of (1.3) is a linear combination of solutions of x Ax and the
individual systems x Ax + biu , ] 1, 2, ., rn, we may, without loss of generality,
confine our discussion to systems

(1.4) 2 Ax + bu

wherein the control u is scalar valued. Much of our theory can be extended to cases
wherein U is infinite dimensional, but we will not do that here.

What distinguishes the present study from earlier contributions is the attention
which we pay not only to the relationship between the operator, A, and the input
element, b, but also to the relationship between b and the semigroup S(t) generated
by A. In cases where A has discrete spectrum {Aklk K}, K being a countable index
set, this amounts to a study encompassing the input element b, the eigenvectors
{bklk e K} of A, the corresponding eigenvectors of the dual operator, A’, as defined
in 2, and the exponential functions exp (Akt), k K. It is in particular reference to
the latter that what is probably the most important idea of this paper is developed.
We show that a sufficient condition for b to be an "admissible input element" (definition
in 2) can be given in terms of a measure on Borel subsets of the complex plane
whose support is {-Alk e K}. When that measure turns out to be a Carleson measure
the input element b is admissible. This result brings out yet again the intimate
relationship between the control theory of infinite dimensional linear systems and
parallel developments inHp theory [5], [8], [12] and the related theory of completeness
and independence of sets of complex exponentials.

2. Admissible input elements. Let X be a separable Hilbert space and let A be
a closed operator on X with domain, (A), dense in X, generating a strongly
continuous semigroup of bounded operators S(t) on X for t>=0. For b sX the
(generalized, or mild) solution of

(2.1)

(2.2) x(O)=xoX,

is given by the "variation of parameters" formula

x (t) S (t)Xo + S (t s)bu (s) ds,

and may be seen to be a continuous function x:[0, oo)X. Whether 2 (t) is defined
for each =>0 and (2.1) holds is more complicated: sufficient conditions are that
b @(A) or that u is ditterentiable as a function of [3], [11].

In this paper we wish to consider (2.1): (2.2).in certain cases where b does not
lie in X and to provide, for such b, a formula parallel to (2.3). Our approach is similar
to that used in [14].

Identifying X with its dual X’, we denote the duality relationship by (x, y ), x s X,
y X, linear in both x and y. Where X is the complexification of a real Hilbert space
X0 the conjugate element 7 is well defined for each y eX and, with (.,.) denoting
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the inner product in X,

(x, y)= (x, 7), (x, y)= (x, 9).

The bilinear form (., is symmetric, i.e., (x, y) (y, x), x, y e X, and, for all x e X,

(2.4) IIX[Ix sup
[(x,

,x Ilyllx
y#0

The symbol A’ will be used to denote the dual of A relative to the bilinear form
(.,.), that is,

(Ax, y) (x, A y ), x (A ), y (A ’).

The operator A’ is closed with domain (A’) dense in X. It is known that if A
generates a semigroup S(t), then S(t)’ is also a semigroup generated by A’. See [4]
for details.

Let Y be a dense subspace of X which is a Hilbert space in its own right with
norm I1’ IIY stronger than I1" IIx so that the injection map

f=Y-)X, f(y)=y, yY,

is one-to-one and continuous with dense range Y c X. We further suppose that Y is
invariant under the action of S(t)’ y Y =), S(t)’y Y, and that this map is continuous
with respect to Ils(t)’yll, Ilyll, and the usual topology of [0, c).

Let Y’ be the dual of Y with respect to X as described, e.g. in [1], [14], [15].
This means that Y’ is the closure of X with respect to the norm

I(x,(2,5) IlxllY,=SUp
y0

It is known that Y’, so defined, is a realization of the dual space of Y, and it is easily
verified that the bilinear form (x, y) may be defined, by continuity, for x e Y’, y Y as

(x, y) lim (Xk, y)
koo

where {xk} is a sequence in X converging to x in I1’ I1,. So defined, (x, y) generates,
as x ranges over Y’, all continuous linear functionals on Y. We have

XXY’.

DEFINITION 2.1. In the system (2.1), i.e.,

Ax + bu, u Lo[0, ),
b is an admissible input element if there exist Y. Y’, as above, with b Y’, such that
for every T > 0 the continuous map

Lw Y C[0, T]

defined by

(2.6) (Ly)(t) (b, S(t)’y), y Y, [0, T],

has a continuous extension to

LT- :X - L210, T].
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Remark. It is clear that this amounts to the statement that in the dual observed
system

3 =A’y, z =(b, y),

b is an admissible observation element; that is, for y Y,

z(.)=(b,S(.)’y)C[O, T],

this relationship extending continuously to z (.) L2[0, T] for y X.
To verify that Definition 2.1 enables consistent definition, at least in a generalized

sense, of solutions of (2.1), (2.2) when b is an admissible input element and to establish
some of the properties of the resulting solution, we present

THEOREM 2.2. If b is an admissible input element, the formula

(2.7) (x(t), y)=(xo, S(t)’y)+ Jo (b,S(t-s)’y)u(s) ds, y Y,

defines, for each >=0, a unique element x(t)X. Given T>0 and u L2[0, T],

(2.8) x (t) S (t)Xo +B (t)u, [0, T],

where B(t) is the strongly continuous family of bounded operators B(t):L2[O, T]X
given by

(2.9) {B(t)u, y}= {b, S(t-s)’y}u(s) ds, y Y.

Pro@ From (2.8) and the fact that Y is dense in X, it is clear that

x (t) S (t)Xo (t) B (t)u

where, for y Y,

((t), y)= J0 (b, S(t-s)’y)u(s) ds.

Let x X and let {y} be a sequence in Y converging to x with respect to I1" IIx. Since
b is an admissible input element, the corresponding functions h defined by

(2.10) h(t-s) (b, S(t-s)’y)

converge in Lz[O, T] to a function h L[0, T]. Defining

(so(t), x)= J0 h(t-s)u(s) ds,

we see that for [0, T]

If(so (t), x )ll-<-IIh Ik=co,llu I1,.=o,-<-IItll IIx IIx Ilu II=co,

since (cf. (2.6), (2.10)) h =LTx. Hence (t)X’=X. This also gives

II(t)llx <--IItll Ilu II,.=to,a,

showing that for e [0, T], B (t) is bounded with
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To establish that so(t) is continuous in for each fixed u EL2[0, T] (and, hence,
that B (t) is strongly continuous in t), let 0 -< <- f -<_ T and form, for y Y,

(:(f)- :(t), y)= Jo (b, S(t-s)’y)u(s) ds Jo (b, S(t-s)’y)u(s) ds

Io +

+ Jo (b, S(t-s)’y)u(s) ds (with r s-(f-t))

Jo (b,S(t-s)’y}(u(s +(t-t))-u(s)) ds

f--t

+Jo (b, S(t-s)’y}u(s) ds

<--IILTIIIlYlIx(Ilu (" / (t- t))- u II=to,, /
Since Y is dense in X and since for fixed u e L2[0, T] we have

lim

lim Ilu(’ + (t- t))- u [[c2to., lim Ilu(’ + (f-t))- u [Ic2to.,1 0.
tf

We conclude that for fixed u e L2[O, T], and t, f as described,

lim II(g)-(t)llx lim [Ise(f)- (t)llx 0,

and thus :(t) is continuous in X. This completes the proof of the theorem.
Let H be a separable Hilbert space and let {Pklk K} be a sequence in H, K

being a countable ordered index set. The Pk are strongly independent if no Pk lies in
the closed span of {pill k}. If, in addition, there is a positive number c such that
whenever

(2.11) p Y. ckpk,
Ko

the ck being complex and Ko an arbitrary finite subset of K, we have

(2.12) E [clz--<czllpll2.,
Ko

we say that the p are uniformly 12-independent, since (2.12) implies

(2.13) 2 I1 <-- c=llpll
K

whenever {} e 12 and p rap is convergent in H.
If there is a positive number C such that

Illc= E [1,
Ko

p as in (2.11), we say that the sequence {Pk} is uniformly 12-convergent since this
property implies that if {a} s the series EK apk is convergent in H and

(2.14) IIpll c Z Il,
K
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Recall that a sequence {Pk} in H forms a Schauder basis for H if for every p H
there are unique coefficients ak such that the series Y. akpk converges to p in H [21].
A Schauder basis which is, at the same time, both uniformly /2-independent and
uniformly /2-convergent is a Riesz basis. For evident reasons we shall also use,
synonymously, the term uniform/2-basis. If {Pk } is a uniform 12-basis for H then every
p in H has a unique convergent representation

with (cf. (2.13), (2.14))

K K

For the remainder of this section we suppose that:
(i) The operator A with dense domain @ (A)_cX generates the strongly con-

tinuous semigroup of bounded operators S (t), -> 0;
(ii) tr(A), the spectrum of A, consists of discrete, simple eigenvalues Ak, k K,

and the corresponding normalized eigenvectors, k K, form a strongly independent,
uniformly/2-convergent Schauder basis for X.

Since the , k K, are strongly independent and have closed span equal to X,
there exist unique biorthogonal elements , k K, such that

1, k =l,
(Ok’l)=

O, kel,
k, leK.

As is well known, the are eigenvectors of the dual operator A’ corresponding to
the eigenvalues Ak, k K. We further assume that"

(iii) The eigenvectors 0 of A’ have the property

(this is true, for example, if Y = ((A’)) for some positive integer r).
If x e X, the fact that the &k form a Schauder basis in X implies the existence of

unique k, k e K, such that

(2.15) x
K

the series converging in X. From this it is evident that

=(Ok, X), k K.

We are not assured, in general, that the k are square summable, but the uniform
/2-convergence property of the k shows the square summability of the sequence {k}
to be a sucient condition for convergence of (2.15).

Since we assume the 0 lie in Y, given any element b e Y’ (and this includes
b X) we may define

(2. 6) b (6, b

and obtain a set of coecients b, k K, associated with b. In general it is not possible
to recover b from the coecients bk. (An example is X L[0, 2], Y H[0, 2],
Ok(X) (2)- e k, k =0, 1, 2,. .. The 0k (=k) here form an orthonormal basis for
X and belong to Y but there is a nonzero element, namely 8(0- 8(2, in Y’ for which
all of the bk are zero. This arises, of course, because the closed span of the Ok in Y
is not equal to Y.) As a consequence it is not generally meaningful to write b r bkk.
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Nevertheless it may be meaningful to consider the initial value problem (2.1),
(2.2), i.e.,

Ax + bu, x (0) Xo X, u L2oc[0, ),

for certain b e Y’, namely, those that we have already characterized as admissible
input elements. We wish now to show that the class of such admissible input elements
can be characterized in terms of the coefficients bk and the eigenvalues hk. If x(t) is
the solution of (2.1), (2.2) established by Theorem 2.2 for an admissible input element
b, then, in particular, for >-0,

(x(t), k) (Xo, S(t)’tpk)+ (b, S(t-s)’k)u(s) ds e xtxo,k + eX(t-S)u(s) ds

where

xo E xo,.
K

We do not know that the numbers eXtXo, are square summable, but the series

hkte Xo,
K

must converge to $(t)Xo by virtue of the (assumed) Schauder basis property of the. It follows that a sucient condition for x (t) to belong to X is that the numbers

(2.17) ((t) b Jo eX(t-u(s) ds

should be square summable for each 0. Equivalently, making a trivial change of
independent variable,

&(t) b Jo ey(s) ds, [(s) u(t-s).

The necessity of considering an infinite number of values of can be obviated by
taking f to be an element of L[0, T], T>0 fixed, and defining f(s)O in It, T] for
< T. The map

T

(2.18) (k =b Io eXSf(s) ds,

so defined may be designated as

(2.19)

(2.20)

f L210, T],

L’T" L[O, T] oX,

L’(f) x E &,,
K

and it is easy to see that L is the dual of Lr ’X L2[0, T] as defined by (2.6). Thus
the boundedness of Lr, as required in Definition 2.1, may be obtained as an immediate
corollary if it is.shown that L-, defined by (2.18)-(2.19), is bounded. For our present
purpose this is the route of choice.

Extending f further via f(t)= O, > T, the Laplace transform of f is the entire
function

T
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In terms of we clearly have

srk bk4(-h), k K,

and the following proposition is evident.
PROPOSITION 2.3. The operator LT (equivalently L’r) is bounded lust in case, for

every f L2[0, T] the Laplace transform off, 4’, has the property

(2.21) E Ib4 (-a)lz < oo.
K

We are fortunate that the inequality can often be established with the use of the
concept of a Carleson measure and the corresponding Carleson measure theorem as
it applies to the space

(2.22) H2 =- H2{z IRe (z) > c }, c real.

The space H2{zlRe (z)> c} consists of those complex functions 4(z), analytic in
Re (z)> a, bounded in each half plane Re (z) _-> a + 6, a > 0, and satisfying

(2.23) | 14(sc + ir)l2 dr/-<M, > c,

where M, is a positive number depending only on 4 (and not, in particular, on ). It
is known (see, e.g., [10]) that each such function has a limiting "boundary" function

(2.24) ,b, () 1 4, ( + in)

defined almost everywhere in -oo-’.r < oo and () is measurable with

Each H is the Laplace transform of a unique function Lo[O, m) such that

fo le-7(t)l dt <.
Let be a (nonnegative valued) measure defined on the Borel subsets of {z z > a }.

Then is a Carleson measure if for every real and every h > 0

(2.25) , ({z Ir h -<_ Im (z) -<_ r + h, a < Re (z) _-< a + h }) -< Ah

for some positive A depending only on Ix (not on h).
For a Carleson measure we have
THEOREM 2.4. If IX is a Carleson measure on {z IRe (z) > a } with A as in (2.25),

if 4) H2 and 49 is given by (2.24), then

(2.26) 5 I& (z)l2 d/z (z) _-<
{zlRe (z)>a}

1’00-20A I& (r/)l2 dr/.

A proof of this theorem is offered, for the sake of completeness, in 4 of this
paper. The relevance of this theorem for our present studies is exhibited in the selection
of a particular measure Ix. For b e Y’ and a given discrete spectrum {A} for A, let
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be defined by

(2.27) tz (-) Ib z, k e K,

(2.28) tx({z[Re(z)>o}-{Aklk eK}) 0.

In this case the left-hand side of (2.26) becomes (el. (2.21))

Y. Ib,b (-a)l2.
K

The Plancherel theorem, on the other hand, gives

when the support of f is restricted to [0, T]. Thus
T

E: Ibkb (-Ak)l2 <=2,000 e 21lrATr Io If(t)la dt

and, in view of our earlier discussion, we have
COROLLARY 2.5. A sufficient condition in order that b Y’ should be an admissible

input element for the system (2.1), wherein cr(A)={Aklk K} and the corresponding
eigenvectors 49k, k K, form a strongly independent, uniformly la-convergent Schauder
basis for X, is that the measure b,{xk} defined by (2.27), (2.28) should be a Carleson
measure in {z IRe (z) > c } for some real .

We remark that the assumption (i) above together with the Hille-Yoshida theorem
[4], [11] implies that the complex numbers -1k, k K, are, indeed, confined to some
right half plane Re (z) > c. The fact that the support of f is restricted to [0, T] implies
that the corresponding Laplace transform b is entire and satisfies an inequality (2.23)
for every real a (M M, here).

3. Identification of admissible and inadmissible input elements; examples. Our
first task in this section will be to develop a method whereby input elements b not in
the state space X may be identified as particular elements of a larger space Y’. The
assumptions made will be somewhat more restrictive than those introduced in 2.
They are by no means necessary conditions.

Let us suppose that the operator A, generating a strongly continuous semigroup
S(t) on the Hilbert space X, has (dense) domain (A) and that A possesses discrete
eigenvalues Ak, k s K, with

lim
p(k)-o

Here p(k) denotes the number of elements s K such that < k with respect to the
assumed order relation on K. The corresponding normalized eigenvectors 4k are
assumed to form a uniform basis for X. We denote the dual operator by A’. It has
the same eigenvalues Ak, and the corresponding eigenvectors k, k K, will be assumed
normalized so that

1, k =l,
(0k, bt)=

0, k I.

The & also form a uniform basis for X, as is well known. Then it is easy to see that

(a) {y =Y Xk4k IAkXkl2<
K K
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and that

@(A’) { y F, yO
K K

For the work of this section we take Y @ (A’) with the graph norm

Ily X + I )ly 
K

where

Y Y Y0
k=l

in X. Then Y X and the injection mapping is continuous. It will often be possible
to identify .a Hilbert space Z X with continuous injection map such that I1" IIz is a
familiar (e.g. Sobolev) norm and Y is a closed subspace of Z on which the norms
I1" IIz and I1" IIY are equivalent.

We will be concerned with two different extensions of the operator A. We suppose
first of all that there is an element eX not in (A) and that L is an operator on
X such that

(L) {: +uI @ (A), u scalar}, Lx Ax, x (A).

We will refer to L as an "operational extension" of A. Its significance arises from the
fact that many of the inhomogeneous boundary value problems arising in applications
can be expressed in the form

(3.1) d- Lx,

with the restriction

(3.2) x +u (L).

The second extension of A, which is a map

X ---> Y’,

is a standard one, often used, e.g. in [14]. If y, rt e @(A), @(A’), respectively, we have

<Ay, /) <y, A’ >.
Since A’ Y (A’) X is continuous, the form (y, A’r/) extends to (x, A’r/), x X,
by continuity and density of @ (A) in X and, so extended, (x, A’r/) defines, for each
fixed x X, a continuous linear functional on Y, i.e., an element of Y’. We define

ft." X ---> Y’ ( (A’))’

by

x 6X, rI Y= (A’).

Our first goal, with reference to the system (3.1), (3.2), is to replace it by an
infinite set of scalar ordinary differential equations

(3.3) -"’---- hxk + bu, k K,
dt
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where

x (t) E x(t),
keK

convergent in X. In order to do this we recognize first of all that

K

represents not Lx, but rather Ax, since

(fi,x, d/,) (x, A’k) (X, A,, k)= A,Xk.

We rewrite (3.1) in the form

(3.4)
dx
dt

an equation in Y’. Then, since x is to have the form (3.2) with : e (A), and since

L fi. A:, e (A),

(3.4) becomes

dx fitx + (L -Ax)u.
dt

We define b e Y’, a continuous linear functional on Y (A’), by

(3.5) (b, ?) (L fi., ?) (L, n) (, A’)

for e (A’) Y. We then have

K

where the control input coefficients, b, are given by

(3.6) b (b, 6)= (L, 6)-(, A’6) (L, 6)-h(, ).

In most examples we shall have L 0. Then, if

E,
K

convergentin X, we obtain, in place of (3.6),

(3.7) bg -h, k e K.

Also, in this case, the equation (3.5) becomes

(3.8) (6, n) -(x, A’n).

The equation (3.5) (or (3.8)) will generally be used to identify the functional form of
b while (3.6) (or (3.7)) will be used to identify its expansion coefficients in terms of
the eigenvectors of the operator A. While not all admissible input elements can
be treated this way, the class is large enough, we believe, to warrant the detailed
description we have given here.

Example 1. Heat equation. Let x (s, t) satisfy

Ox O:x
(3.9)

Ot Os’ 0 < s < 1, > O,
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with boundary conditions

Ox
(3.10) x(0, t) 0, ax(1, t) + 3 s (1, t) u(t),

where a, fl are real numbers, not both equal to zero. In this case we take

x L[O, ],

2x
Ax 2, x (A) {x H2[0, 1]Ix(0) 0, ax(1) + fix’(1) 0},

3s

32x
Lx =---, x (L) {x n2[0, 1]Ix(0) 0},

Os

(3.11)

With

we see that if x, y @ (A),

s

(s)=
a +t3’ c+t3 0,

s(2-s), a+/ =0.

(x, y)= fo x(s)y(s) ds,

(Ax, y)-(x, Ay)= Io (x"(s)y(s)-x(s)y"(s)) as

d
-s (x’(s)y(s)-x(s)y’(s)) ds

x’(i)y(a) x(1)y’(a) (since x (0) y (0) 0)

l( ) ()x’(1)+x(1) y(1)-x(1) ay(1)+y,(1) /3#0,

x,(, +-o ,,)-(x +-,),,,o oo

=0,

and we conclude A A’. In the first case of (3.11), a + fl # 0, L 0 and we have,
for r @ (A’) @ (A),

(b, r/) -(, A’r/)
1 fl

a + o
sn"(s) ds

(-s, ’(s)l + n (s)lo)

1
n(), to,

1
n’(1),,

-n’() + n()
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Thus we have

(3.12) b

1
#(), 0,

18,(), tx :0.

The two agree if neither a nor/ is zero because the linear functional (1//3)8(1+
(1/a)81 is zero in (@(A))’ Y’ in this case.

The eigenvalues of A are hk =--o where, for k 1, 2, 3,. .,
(3.13) sin (wk) +/ok cos (wk) 0.

Let

sin G, cos G,
4,, +,o,

and (3.13) becomes

cos (o 0) 0,

so that

wk--Ok zr, k 1, 2, 3," ",

giving

r + sin-tok
2

It is easy to see that 1/tok =O(1/k) as k -c so

(3.14)
tOk 7r+O

(3.15) ok r+= kTr,

Defining

’ Jo sin (oks)2 ds,

it is easily seen that in all cases the ’k are nonzero and

1
lim ’k

Then the eigenfunctions

1
Ck (s) sin (oks)
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form an orthonormal basis for L2[O, 1]. It follows that the coefficients of the input
distribution elements (3.12) are given by

(3.16) bk

1_ sin (o),

o cos (o)
OPk

aO.

We consider here the case/3 0, saving the analysis for/3 0 until later in this
section. If/3 0, formula (3.16) shows the bk to be uniformly bounded. The complex
numbers --Ak =o have the property (from (3.14))

(3.17) --hk zr+O(1).

Thus the number of such -h in any set Jim (z)-zh, a Re (z)a +h, is O(h /),
and it follows that the measure g withg(-h)=lbk]2, g ({Re(z) >=a}- Uk= {-h}) 0,
is a Carleson measure. Hence if fl # 0, the boundary input (3.10) is admissible.

In this case the result is easily obtained without the Carleson measure theorem,
for, if the coefficients c are square summable and T > 0,

bc e xkt <_- sup {[b [} [c 12 e 2xkt dt
k IIL2[0,T] k

<--sup {Ib Icl2 E e2Xtdt
k =1 k=l

(3.18)

=sup{[GI} Ic[a
k 2hk

since supg {[b[}<o, and we conclude that the function sequence {bk e -xt} is 2-
convergent in L2[0, T]. Our next example is chosen in such a way that a simple
argument of this types does not apply, and the Carleson theorem is actually needed.

Example 2. Another heat conduction system. As a further example we ask the
reader to consider the system shown in Fig. 3.1.

z---0

x=lx=0

z

FIG. 3.1
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The shaded horizontal bar, B, represents a layer of material, whose depth will
be assumed negligible, and whose heat conductivity, k, is small in comparison to its
specific heat R, while the region f consisting of the half strip

f:0=<x =<1, z-<0,

is assumed filled with a material whose specific heat, r, is small by comparison with
its conductivity, K. The heat flow equations are thus

(3 19) R 07’= k OT-K 0___r
Ot Ox 2 Oz’

Or 0 r
(3.20) rm=K +

together with boundary conditions

(3.21)
0T

(0, t) 0,
Ox

(3.22)
Ox

(0, z, t) O,

OT
-x (1, t) 0,

-x (1, z, t)= g(z)u(t),

(3.23) lim 0_y_z (x, z, t) lim r(x, z, t) 0,
3Z

(3.24) r(x, 0, t)= T(x, t), O<=x <- 1.

The inhomogeneous boundary condition along x 1, z <-0 represents the input heat
flux. In (3.19), (3.21), T(x, t) is the temperature in the bar, r(x, z, t) the temperature
in f.

If we assume k, r very small by comparison with R, K, we may, as an idealization,
replace (3.19) and (3.20) by

(3.25) n 0__T=-KOr
3t 3z’

32r O2r
(3.26) 0x2+=0,Oz 2

retaining the boundary conditions (3.21)-(3.24). We take as our basic state space

3- {.T T(x)IT e La[0, 1]}.

We define an operator A on 3 with domain

(A) H[0, 1]

as follows. Given T e (A), we let r r(x, z) satisfy (3.26) in 12 together with

(3.27)

and

(3.28)

(3.29)

(3.30)

r(x, 0) T(x), 0-<_x <_- 1,

0- (0, z) 0, -x (1, z) 0,

lim
-,-ooOz

("z)=O inLZ[0,1],

lim r(’,z)=0 inH[0,1].
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From [14], for T e HI[0, 1] we have - H3/2(). The trace theorem [1], [14] then gives

oz (’’ o) L[0, ],

and we define

K Oz
(3.31) AT (.,0).

R Oz

So doing, (3.25) becomes

(3.32)

and (3.31) is subsumed in the definition of A.
LEMMA 3.1. The operator -A is the positive square root of the Stiirm-Liouville

operator

ST=
K2 dT
R2 dx 2

with

(T)= TeH2[0,1]x(0)=x(1)=0

Proof. We compute (-A)2T for T (T). For such T the solution of (3.27)-
(3.30) HS/2(f). If we let

K 0"
(x, z) =- (x, z),

then

(., 0)=-AT

and

K2 027.(-AI2T=-A(., O)=- Oz 2 O)

since z H5/2(’) together with (3.26) implies that

32r 02r
ax 0)+ 0)=0

OZ 2 in L.[0,. 1]

K2 d2T
R 2 dx 2’

and T -r(., 0).
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The positivity of -A follows from the divergence theorem. If T (A) and if
,r "r(x, z) is constructed as above, we have

(V gradient)

Ia I [div (’r(x, z)V’r(x, z))-’r(x, z)A2"r(x, y)] dx dz A2 Laplacian)

I I div (z(x, z)Vz(x, z)) dx dz (from (3.26))

(gT
"r(x, O) z (x, O) dx (T, -AT)cO.l (using (3.27)-(3.30)).

This completes the proof.
Accordingly, A is selfadjoint with eigenfunctions

(3.33) bo(X)-- 1,

and eigenvalues

4k (x) x/ cos (kTrx), k 1, 2, 3,.

K
(3.34) ho 0, hk -- kzr, k 1, 2, 3,

Let w(x, z) be the solution of the following inhomogeneous boundary value
problem:

02W 02W
Ox 2 +Oz2=0 inf,,

Ow Ow

Ox
(0, z) 0, --x(1, z)=g(z),

lim --Ow (x, z) lim w (x, z) 0,
z--,- (gz

w(x, 0)=-0, O<=x <= 1.

We will assume that g(z) is such that the resulting w(x, z) e H2(f).
In this case the inhomogeneous equation can be interpreted as

=AT+bu

where b b (x) is given by

K Ow
b(x) (x,O).

R Oz

To compute the coefficients of the expansion

b(x)= Z bkb,(x),
k=O
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we note that since A is selfadjoint, 0k (x)= &k(X), and

(3.35) bk J0 Ck(x)b(x) dx.

Let k(X, Z) be the solution of

with

02(I)k02----k q-
2Ox 2 Oz

0 inf

(x, 0) (x)

and homogeneous boundary conditions of the type (3.27)-(3.30) otherwise. Then,
with A2 02/Ox 2 + 02/OZ 2,

0 In[(X, Z)A2w(x, z)-- w(x, z)A2(x, z)] dx dz

In div[(x, z grad w (x, z w (x, z) grad (x, z )] dx dz

Ioa [k(X, Z) grad w(x, z)- w(x, z) grad k(X, Z)]" v(X, Z) ds

I=--- ,(x)b(x) dx + (1, z)g(z) dz,

giving (cf. (3.35))

b,= ,(1, z)g(z)dz.

Now it is easily checked that for k 1, 2, 3,.

so that

and thus

(x, z) (/ cos kTrx)(exp (k’n’z)),

Ok(l, Z) (-1)k4 exp (k’n’z)

IR
exp (kz).

The Carleson measure theorem can be used in a sligh’tly different way from that
set forth in Corollary 2.5 to show that if g s L2(-c, 0] then the bk are square summable
and b is, consequently, an element of L2[0, 1]. Writing r -z, g (-’) ff(r), we see that

b
(-1)4K I)R

exp (-kzr’)g(’) dr.

Since the measure/ assigning the value 1 to each of the points kzr, k 0, 1, 2,. .,
is clearly a Carleson measure, and since (--1)kx/ K/R changes only in sign, {b}6 .
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If g(z) is just bounded and measurable on -oo <z-<0, we can almost trivially
obtain

and the b will be square summable.
It is obviously possible to replace g(z) by distributions of various types. Taking

g(z) (0 corresponds to a point heat source at the corner x 1, z 0 and leads to

(3.36) bk R

In our present example X L2[0, 1], Y @(A)= HI[0, 1] and Y’= H-[0, 1]. The
coecients (3.36) may be recognized as those corresponding to 8( (referring now
to distributions along the x-axis).

Any measure assigning to the points -h =Kk/R values [b[ which are
bounded evidently yields a Carleson measure, and we conclude that all of the above
cases correspond to admissible input elements. In this case the argument represented
by the inequalities (3.18) will not work because the series = (-1/2h) is not
summable in this example.

Example 3. Hyperbolic and neutral systems. A wide variety of systems involving
linear hyperbolic partial differential equations in two independent variables x, t, or
neutral functional equations, lead to systems of the form described at the beginning
of this section, the eigenvectors, , of A forming a uniform l-basis for the state
space X and the eigenvalues h confined to a vertical strip a <Re (h)< in the
complex plane. It also usually turns out in these cases that the number of in any
rectangle

a <Re (h) <, 7 <Im ()<8

is less than or equal to M(8-), where M is a fixed positive number. It is evident
that the measure (2.27), (2.28) is a Carleson measure in these cases whenever the
control input coecients b constitute a bounded set.

Example 4. Linear surface waves. If the operator A is defined as in (3.31) but,
instead of the first order system (3.32) we consider the second order counterpart

(3.37) ’+Ar 0,

we obtain the linearized equations for small amplitude waves on the surface of an
incompressible fluid. The theory is more fully developed in [16], [17], [19]. With

rl ’, (3.37) is equivalent to the first order system

(3.38) () =(?A
To obtain a topology corresponding to the energy of the system, one defines

where

2 -lrIlCll o 0,, + A )Lg[0,],
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The restriction to L0[0, 1] corresponds to conservation of fluid volume. On the domain

the operator A is invertible. Its eigenvalues are (cf. (3.34))

K
(3.41) ,t -- kr, k=1,2,3,...,

with the same eigenfunctions (x), k 1, 2, 3,. ., as shown in (3.33). Correspond-
ingly, the operator N has eigenvalues

(3.42) iw, -iw, w k/yk/ k 1 2 3,

and the eigenvectors, orthonormalized with respect to [. le and the corresponding
inner product, are

(3.43) 0=
i -i

To discuss admissible input elements in this case we let , _ be nonnegative
numbers, k 1, 2, 3,. ., and define

{im}=, {-im}=_, k=1,2,3,...,

{Re(z)}-U ({im}U{-im}) =0.

Let (), -m < m < m, be defined as the piecewise linear function such that in the
interval [i, i+]

(3.44) (
k+lk

Since

k+

1/2[w (w) do
1/2&+1<-<,,<+1

[<.o,<+- o.,,<]

-+ 41-(1 +i+), k -+

we conclude that/x is a Carleson measure just in case there is a constant C such that

(3.45) If l/2fl

whenever 0<o-< z, together with a comparable condition involving the B-k and
negative values of w. But (3.45) is true just in case

k=1,2,3,...,

and the comparable condition for negative k is

k=1,2,3,...
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Thus for the inhomogeneous system

the input element (bb) with

is admissible, from this criterion, if

(3.46) k 1/=(I/k 1= + I_1=) < C
for some fixed positive number C. It will be noted that this is (slightly) less restrictive
than the requirement

Example 5. Negative results. For any system similar to the one in Example 4
but with Iok+1- o1 O(1/k 1/2+ e) the Carleson measure condition will be stronger
than requiring b e X. Hence failure of the’ Carleson measure condition cannot be used
to show that an element b is not admissible, for any b eX is admissible.

To illustrate what can be done in a negative direction, we return to Example 1
with fl =0. This situation has been studied,, using a different approach, in [13]. We
present here an argument more in the spirit of the present work. As shown in (3.15),

(3.47) A -o _k2 2

and (cf. (3.16) and without loss of generality, taking a 1)

(3.48) b / kTr cos (kTr) (-1)/ kTr.

Since/3k Ib 12 2k 27r 2 while (k + 1)2zr2 k 2r2 2kr2 + zr 2, it is not hard to see that
the measure tz =/Zb,{Xk}, X(--A)= Ibm[2 is not a Carleson measure in this case. As we

have remarked, this by itself is not enough to show that the input element with
coefficients (3.48) is not admissible. To show this, we ask the reader to consider the
function

(z)=(z+l)-,
analytic in the complex plane minus the cut consisting of {zlz real, z <=-1}. If r > 1/2,
4 is square integrable on any vertical line {z IRe (z) :, : >_- 0} with uniformly bounded
L2 norm and (z) is bounded for Re (z)>=0. It follows that (z) is the Laplace
transform of a function fi =fi(t) with fr L2[0, oo). Then

bk [., e-lEEtfr(t) dt (--1)kX/ kTr(kE’tr2)
(3.49)

(- 1)kx/ kzr

This expression is not square summable if r satisfies the inequalities

1 2r _>- ,
so we require

1/2<r<_--1/4.
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Let E be the closed subspace spanned by the functions e -k22t in L2[0, CO) and let
ET, T > 0, be the subspace of L2[0, T] consisting of restrictions to [0, T] of functions
in E. If/r is the orthogonal projection of fr onto E we clearly have

Io e-’2t (t) dt= e-tfi(t) dt.

It is shown in [7], 18] that the natural restriction map R E ET is onto, (obviously)
bounded and (not so obviously) boundedly invertible with respect to the induced
L2[0, ), L2[0, T] topologies of E, ET, respectively. Thus, with p(t)= e-=t,

-k22te (t) dt (, p)0.
T

(P,, R-’Rpg)LO,)= ((R-’)*P,, Rpg)LfO,T? I e-k2tr(t) dt
o

where

r (R-i)*fr E ET c L2[0, T].

It follows that qr is an element of L2[0, T] such that the numbers
T

--k2"rr2(-1)x/ kTr e tqgr(t) dt, k 1, 2, 3,...,

are not square summable. From earlier developments, the input element b with
coefficients (3.12) corresponding to the boundary condition (3.10), with fl 0, a 1’

x(1, t)=u(t),

is not an admissible input element.

4. A proof of Theorem 2.4. It is clear that the Carleson measure theorem in
H2, Theorem 2.4, is central to our work in this paper. This result, in one form or
another, has been known for somewhat more than a decade. A proof for/-/2(D),
where D is the unit disc in the complex plane, appears in Duren [5]. A proof for
functions in H is given by Koosis in his recent book [12]. The reader is also referred
to the recent book [8] by J. Garnett. Because the result is not particularly well known
outside the circle of mathematicians working in Hp theory and because the results
are rather scattered and not readily available in precisely the form we require, we
offer here a proof of Theorem 2.4 which is a direct adaptation to the half plane of
the result for the unit disc appearing in Duren’s book [5]. The proof given here
originally formed part of the first author’s doctoral dissertation [9]. As in Duren’s
work, the proof makes use of a relatively simple case of the Marcinkiewicz interpolation
theorem [23, Chap. XI] and, again following Duren, we do not quote the general
Marcinkiewicz theorem but, rather, give a direct proof for the simple special case
required here.

We begin with a covering lemma of Vitali type.
LEMMA 4.1. Let {Ix Ih E A} be a family of intervals in R 1. Suppose there is a

positive numberK such that for any finite collection {Ixl, Ix_, , I} ofdisjoint intervals
in

(4.1) Is>, l < K.
k=l
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Then we can choose a sequence {Ixklk 1, 2, 3,...} of disfoint intervals from with
the property" ]:or every h A there exists k {1, 2, 3, ..} such that

where Jk is the interval having the same center as Ixk but five times the length of Ix.
Proof. From (4.1) it follows, in particular, that the length, IIx I, of Ix is uniformly

bounded (take n 1, h h). Define the sequence {Ix} inductively as follows. Let Ix1
be such that

IZ ll--> sup I.
XA

For k 2, 3, 4, let Ix be disjoint from Ix,, 1, 2, , n 1, and such that

(4.2) Irl_->1/2sup/Itl h cA, Ix Ix, =6,/= 1,2,""" ,k-l}.
Since the Ix are disjoint it follows from (4.1) that

(4.3) lim Ilxk 0.
k-c

Let Ix e N. Then there exists k such that

(4.4)

Otherwise (4.2) and (4.3) could not both be true. Let ko be the smallest integer such
that (4.4) is true. Then

and, together with the fact that Ix Ixo b, this implies that Ix c Jk, completing the
proof.

We subdivide the rest of the proof of Theorem 2.4 into several propositions for
clarity. The proof is given for the half plane Re (z)>0, without loss of generality,
and we designate H0 simply by H2.

PROPOSITION 4.2. Let qb H2 and let 4o(i be the corresponding boundary func-
tion in L(-, ). For z 0- + iz, 0- > 0, let I be the interval

(4.5) L [z 0-, z + 0-]

and let

(4.6) (z) sup
1 It, [o(it)] dt,

where z is the set of all finite intervals containing Iz. Then

(4.7) I (z)l =< 10 4 (z).

Proof. From the Poisson integral formula in the half plane we have

1 ro(it dt
4, (z) I

0
-27r :_ +(z-t)2
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so that

I(z)l<_-

IT/" N=0
Itbo(it)14tr dt+ I,-TI<-- ]o(it)ltr dt]

<_---
2_2 (z) + 2(z77"

10o
=(z).

PROPOSITION 4.3. Let L1(-c, ) and, for z tr + it, tr > 0, let Iz be given by
(4.5) while (cf. (4.6))

(4.8) (z)=sup 1 ft
Let I be a Carleson measure and, for s >= 0, let Es be the Borel measurable subset of
{z IRe (z) > 0} given by

E {z IRe (z) > 0, (z) > s }.

Then, with A as in Definition 2.3,

5A
(4.9)

Proof. Let o be the family of all finite intervals in R such that

(4.10) II-( 14,(t)l dt > s.

If 11, I2, , I, are disjoint, then (4.10) gives, for every n,

(4.11) tIl<=l- It ItO(t)ldt<=l[[[[Ll(-’’-
k=l S k=l S

Thus o satisfies the hypotheses of Lemma 4.1 and we can find a disjoint sequence
{Iln 1, 2, 3,...} such that, J, having the same center as I, but five times the
length, each I e is contained in some J,.

If z e Es, then Iz c I for some I e o and we have, for some n,

Then clearly,

This being true for all z e E,

EcLI S,.
n=l
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The positivity of -A follows from the divergence theorem. If T @(A) and if
r(x, z) is constructed as above, we have

(7 gradient)

In I [div (7"(x, z)’r(x, z ))-’r(x, z)A2"r(x, y )] dx dz (A2-" Laplacian)

In I div (r(x, z)Vr(x, z)) dx dz (from (3.26))

07"
,(x, o) (x, o) dx (r, -Ar)o, (using (3.27)-(3.30)).

This completes the proof.
Accordingly, A is selfadjoint with eigenfunctions

(3.33) b0(x)-- 1,

and eigenvalues

cos(kTrx), k=1,2,3,’",

K
(3.34) A0=0, Ak=--kTr, k=1,2,3,....

Let w(x, z) be the solution of the following inhomogeneous boundary value
problem:

02W 02W
0X 2 -t-0Z2 0 in l),

OW OW

Ox
(O,z)=O, x-x (1, z) g(z),

lim 0w (x, z) lim w (x, z) 0,
3z

w(x, 0)=-0, O<=x <- 1.

We will assume that g(z) is such that the resulting w(x, Z) H2(f),).
In this case the inhomogeneous equation can be interpreted as

=AT+bu

where b b (x) is given by

K Ow
b(x) (x, 0).

R Oz

To compute the coefficients of the expansion

b(x)= Y bkd,(x),
k=O
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Hence, from (4.9) of Proposition 4.3,

5A

so that

<_- 5A J0 llOrllt’l(-’)dr

< 5AII4,0(i

Then (4.14) gives the inequality (4.12).

(using (4.13)).

The proof of Theorem 2.4 is completed by combining (4.7) of Proposition 4.2
with (4.12) above to give

IR [b(z)12dtz(z)--lO--O2fR ((z))2dlz(z)<-l’OOOaI-lc(it)[2dt
(z)>0 7"r (z)>0 71"

as claimed in (2.26), except for the trivial detail of replacing b0(i’ by b b (a + i. ).
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SINGLE-VALUED REPRESENTATION OF SET-VALUED MAPPINGS II;
APPLICATION TO DIFFERENTIAL INCLUSIONS*

A. D. IOFFE)

Abstract. We consider a set-valued mapping Q(t, x), the first argument ranging through a measurable
space and the second through a space with a different structure (topological, metric, differentiable, etc.).
We are interested in representing O by a single-valued mapping with properties compatible with the
structures, i.e., in the existence of a (topological) space Z and a mapping f(t, x, z) measurable in t, continuous
in x, z and depending on x as dictated by the structure of the space of x’s (say, continuous, Lipschitz or
differentiable in x, etc.) and such that f(t,x,Z)=O(t, x) for all t, x. Approximate representations (i.e.,
those for which the latter equality holds approximately) of convex-valued mappings are also considered
and certain applications, mainly to differential inclusions, are discussed.

Key words, representation of set-valued mappings, differential equations equivalent to differential
inclusions

AMS subject classification. 34A60, 49E10, 49A50.

1. Introduction. To a large extent, this paper was motivated by the following
question. Given a differential inclusion

(1) 2Q(t,x),

under what conditions is there a differential equation with control

(2) 2=f(t,x,u), uU

which is equivalent to (1) ?
Of course, only such an f may be of an interest which has certain analytical

properties, say, measurable in t, continuous in (x, u) and satisfying some additional
requirements as a function of x so that the differential equation be reasonably good.

A natural way to define equivalence of (1) and (2) is to require that any solution
to (1) should be a solution to (2) and vice versa. If for any (t, x) the set of possible
velocities at of those solutions x(. to (1) which satisfy x(t) x coincides with Q(t, x),
then (under natural measurability assumptions) this is the same as

(3) Q(t, x) =f(t, x, U) Vt, x.

According to the terminology used in [6], this equality means that f represents Q.
The principal results to be proved here are just representation theorems for Q or
certain portions of Q. The main theorem of [6] is crucial for proving them, but there
is an important difference in the situations considered. In [6] we studied multifunctions
M(t) depending on one argument ranging through a measurable space. Here the
multifunction depends on two variables t, x, the second taken from a space with a
different structure (say, topological, metric or differentiable) and we seek a representa-
tion depending accordingly on each variable.

To briefly explain the nature of the main new assumption that appears, let us
suppose for a while that we are interested in such an f which is C in x. If (3) holds,
then, whenever and u are fixed, the mapping x -f(t, x, u) is a CX-selection of Q(t,. ).
Thus, a necessary condition for (3) to be valid with f continuously differentiable in x
is that for any (t, Xo) and yoO(t, Xo), the set-valued mapping x-.O(t,x) has a

* Received by the editors March 2, 1981, and in revised form February 20, 1982.- Profosyuznaya 85-1-203, Moscow 117279, U.S.S.R.
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Cl-selection y(x) such that y(xo)=y0. Our principal result is that this condition
(together with natural measurability assumptions on Q) is also sufficient.

This fact is contained in Theorem 1. The second theorem deals with convex-valued
Q in which case an f exists which, in addition, is linear in u (cf. [6, Cor. 1.4]). Finally,
in Theorem 3 we are interested in the existence of an "approximate representation"
such that f(t,x, U) is close to Q(t,x) in a certain sense. The point is that "exact
representations" like those in (3) are usually possible with U having rather a compli-
cated structure (say, a closed set in a zero-dimensional, uncountable Polish space or
a convex subset of an infinite dimensional Fr6chet space) and only an approximate
representation can be obtained with U being a "simple" set in a finite dimensional
linear space.

The paper is concluded by a brief discussion of some possible applications. We
show in particular that differential inclusions with local sections introduced by
Boltyanskii [1] can be always equivalently represented by differential equations with
control. It follows that the maximum principle established by Boltyanskii for optimal
control problems involving such inclusions is a direct corollary of the standard Pontry-
agin maximum principle.

The results presented in the paper were essentially obtained in 1977 and partly
announced in [7].

2. Main theorems. To begin with, we shall briefly introduce necessary notation
and definitions to be used throughout the paper.

We shall be dealing with a measurable space (T, A/), a locally compact metrizable
space X and a complete metric space (E, p). For any Polish space Z, we denote by
(Z) the collection of Borel subsets of Z; //(R)YJ(Z) will denote the product
tr-algebra generated by all rectangles G B, where G J//, B Y3 (Z). We shall say
that / is a Souslin algebra if it is stable under the A-operation of Souslin or,
equivalently, if contains projections on T of /(R) (Z)-measurable sets, where
Z is Polish. A set-valued mapping M from T into a topological space Z is called
/- measurable if

M-(U) {tiM(t) U }eJ[

for any open U c Z. If (Z, d) is a metric space, this is equivalent to

d(z,M(t)) is J//- measurable in for any z Z.

Usually we write simply "measurable" instead of "//-measurable"
By C(X, E), or simply by C, we denote the space of all continuous mappings

from X into E with the topology of uniform convergence on compact subsets of X.
Inasmuch as X is locally compact metrizable and E is Polish, C(X, E) is itself a Polish
space.

We shall also consider a closed-valued mapping Q from T xX into E and a
collection L of continuous mappings from X into E. An L-selection of a set-valued
mapping M fromX into E is a sc(.)sL such that (x)M(x) all x. We set

OL(t,x)={E[ sO(x) for an L-selection :(.) of Q(t, .)}.

The following assumptions on L and Q will be adopted:
(H1) for any T, there is at least one L-selection of Q(t,.);
(He) L is a Polish space and the imbedding 7r: L C(X, E) is continuous;
(H3) d///is a Souslin algebra;
(H4) Q is //(R) (X)- measurable;
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(Hs) for any x e X, the set-valued mapping Q (t, x) is measurable, and for any
T, E, the function x o(Q(t, x), ) is lower semicontinuous.
THEOREM 1. Assume (H1), (Ha) and either (Hs) or (H3) and (H4). Then there

are a Polish space Z and a mapping f: T xX xZ E such that
(a) f is measurable in for any (x, z);
(b) f(t, z) belongs to L for any (t, z) and the family {,lt e T} oe mappings from

Z into L defined by qt: z f(t,., z) is uniformly equicontinuous
(c) f(t, x, Z) Qc(t, x) for all (t, x).
Proof. Fix a compact set K cX and set

pro(t, :(" )) sup p(Q(t, x), (x)).
xg

This function is obviously continuous in so( on C(X, E) (and hence on L thanks to
(H2)).

On the other hand, PK is measurable in for any :(. ) C. Indeed, if (Hs) is valid,
then q(t,x)=p(O(t,x),(x)) is measurable in and 1.s.c. in x whenever (.) C, the
latter because

Therefore,

Ip(Q(t, x’), (x’))-p(O(t, x),

[p (O(t, x’), (x))-p(O(t, x), 4:(x))[ + p ((x’),

sup q(t, x) sup q(t, x)
xK xK’

whenever K’ is a dense countable subset of K so that pi(t, :(’)) is the upper bound
of a countable family {q(t, x)lx K’} of measurable functions.

If, on the other hand, (H3) and (H4) are satisfied, then q(t, x) is (R) (X)-
measurable as the composition of a continuous and an J( (R) gd (X)- measurable map-
ping. Then {tip,(t, (" )) > e} is the projection on T of the (R) N (X)- measurable set
{t, xlq(t, x) > e, hence belonging to /since JJ is a Souslin algebra.

We note further that pc is nonnegative and pc(t, sc(.))=0 if and only if
(x) Q (t, x for all x K.

Choose a countable family {Ki} of compact subsets of X such that X I.A Ki, and
let

p(t, (. ))= Y 2-/p:,(t, (. ))(1 +pc,(t, so( )))-1.
i=1

Then p is nonnegative, measurable in t, continuous in (. on C(X, 17.) and p(t, (. )) 0
if and only if (x) belongs to Q(t, x) for all x. Thus

(t) {(. ) Lip(t, (" )) O}

is just the collection of all L-selections of Q(t,.). According to (H1), (t) for
every and, clearly, each (t) is a closed set (which follows from (H2) since Q is
closed-valued). We shall show that is a measurable set-valued mapping.

Let U be an open subset of L and {’(. ), ’2(" ), } a dense countable subset of
U. Since p(t, (. )) is continuous in ’(. on L, we have for any T

{tl(t) U } {tip(t, :(" )) 0 for a so( U}

N U {t[p(t,j(.))<a}edt.
6>0 i=1
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Thus O meets all the requirements of [6, Thm. 1], and we can find a Polish space
Z and a mapping F" T xZ --> L such that

(i) F is measurable in and continuous in z;
(ii) the family {tlt T} of mappings from Z into L defined by opt: z --> F(t, z) is

uniformly equicontinuous;
(iii) 0(t)= F(t, z) for every t.

It remains to set

f(t, x, z) f(t, z)(x).

COROLLARY. In addition to the assumptions of the theorem, letE andL be Banach
spaces and 0 a convex-valued mapping. Then the conclusion of Theorem 1 holds with
Z being a convex closed set in a separable Banach space W and

(4) f(t, x, w)-(A(t)w)(x)+a(t)(x),

where A (.) is a mapping from T inw the space of bounded linear operators from W into
L such that [[A(t)][ <_-1 for all and the mappings tA(t)w and t a(t) from T into L
are measurable, the first for any w.

Proof. In this case is a convex-valued mapping into a Banach space and, instead
of [6, Thm. 1], we can apply [6, Cor. 1.4].

This result was announced in [7] (with certain additional assumptions which are
in fact needless). The assumption that L is a Banach space seems to be natural only
if X is compact. To extend the result to the case of noncompact X, additional (though
not very restrictive) requirements have to be imposed"

(H6) E is a separable Banach space, L is a separable Fr6chet space and for any
compact K X the factor space LK L/N:, where

N: {:(. L[(x) 0 for x K}

is normable;
(H7) for any locally finite covering {Viii el} of X by open sets with compact

closures, there is a partition of unity {mi(" )1i I} subordinate to this covering and such
that

X mi(’)]i(’)L
iI

whenever i (") L for every I;
(Hs) for any partition of unity {mi(" )} chosen in accordance with (H7), the mapping

{:i(. )1i It-> Y’. mi(" )i("
iI

from Lt into L is continuous (L being considered with the product topology).
Remarks. (a) Subspaces N: are closed because L is continuously imbedded into

C(X, E). Therefore any factor-space L: is complete metrizable [2, Ch. 9, 3]. Thus
(H6) actually implies that every Lc is a Banach space.

(b) Elements of Ln can be naturally thought of as restrictions of elements of L
to K. Thus, the imbedding zr:: L: C(K, E) is well defined. If (H2) is valid, this
mapping is continuous.

(c) Since X is locally compact metrizable, any open locally finite covering of X
is countable.

THEOREM 2. We posit the hypotheses of Theorem 1 and (H6)-(H8). If in addition
Q is convex-valued, then the conclusion of Theorem 1 holds with Z being a closed
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convex subset of a separable Frgchet space W and f being defined as in (4), where the
collection {A (t)]t e T} of continuous linear operators from W into L is equicontinuous
and the mappings -A(t)w and a (t) from T into L are measurable, the first for any
wW.

Proof. Fix a compact set K = X, and let 4/c (t) be the collection of L/c-selections
of the restriction of Q(t, to K (which, in view of Remark (b) above, is the collection
of the restrictions to K of those elements of L which satisfy :(x) e Q(t, x) for all x e K).

The assumptions of the corollary will be obviously fulfilled if we take K and L/c
instead of X and L. Let a Banach space W/c, a closed convex set Z/c = W/c and
mappings A/c(" from T into the space of bounded linear operators from W/c into L/c
and a/c(t) from T into L/c be chosen in accordance with the conclusion of the corollary
so as to have

Qz.(t,x)=Q,,(t,x)=(A/c(t)Z/c)(x)+a/c(t)(x) tteT, xeK.

Now let {VI1 _-< < o} be a locally finite covering of X by open sets with compact
closures Kg, and let {m(.)} be a partition of unity subordinate to this covering and
chosen in accordance with (H7). We set

W--H W, z-Hzi
i=1 i=1

(W being considered with the product topology),

a (t) Y mi(’)ai(t),
i=1

A(t)w Y mi(" )(Ai(t)wi) (w (wl, w2, "))
i=1

(for simplicity, we have denoted W W/c,, Zi Z/c,, etc.).
It is easy to see that W, Z, A(.) and a(.) have all the properties listed in the

statement. Indeed, W is a separable Fr6chet space as a countable product of Banach
spaces, Z is closed and convex, a(t) and A(t)w belong to L thanks to (HT) and are
measurable in t. The family {A(t)lt T} is an equicontinuous family of continuous
linear operators in view of (H8) and because IlA,(t)ll <--1 for all and i.

Finally, if eQL(t,x), then, whenever is such that x e V, there is zieZi such
that =(Ag(t)zi)(x)+a(t)(x). Taking arbitrary zgeZi for other and setting z
(zl, z2,’’’ ), we have

Y mi(x) Y mi(x)((Ai(t)zi)(x) +ai(t)(x))
i=1 i=1

(A (t)z) + a (t)(x).

This completes the proof.
Remarks. (d) Both theorems are trivial if O does not depend on t; in which case

one can take Z to be the collection of all L-selections of O and define f by

f(x,z)=z(x).

() The space W may be infinite dimensional even if dim < co; likewise Z may
be noncompact even if Q is compact-valued. It is not difficult to make up an example
where such a Z does not exist at all. For instance, let X [-1, 1], R, L C1, the
space of continuously differentiable functions and O(x)= {y e R I0 <-- y <--Ix I}. Then the
assumptions of both theorems are satisfied and QL(x)= Q(x) for all x. However, no
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compact Z can exist such that there is a mapping f: [-1, 1]xZR with both f and
Of/Ox jointly continuous and satisfying f(x, Z)= [0, Ixl] for all x. (Indeed, in this case
we would have (Of/Ox)(O,z)---O since f(x,z)>=O and f(0, z)=0. By virtue of the
compactness of Z, it follows that max f(x, z) o (x) ]x 1.)

However approximate representations with finite dimensional W (if E is also)
and compact Z (if O is compact-valued) do exist. To prove a corresponding result,
we shall introduce the following notation"

B" is the closed unit ball in R";
S"- is the unit sphere in R n;
Yk ={a (al,..., ak )lag --> 0, Eag 1} is the standard (k 1)-simplex;
(.,.) is the inner product in R";
I" is the Euclidean norm in R";
h (P, S) is the Hausdorff distance between the sets P and S; diam P is the diameter
of P;
s (P, /) sup {(:, /)ls P} is the support function of P.
THEOREM 3. We adopt the following assumptions:

(i) (H), (HT);
(ii) E R";
(iii) 0 is a convex and compact-valued multi]unction measurable in andHausdorff

continuous in x;
(iv) Or(t, x) is dense in O(t, x) ]’or any (t, x).
Then ]’or any e > O, ,3 > 0 there are an integer k > 0 (depending only on n and e)

and a mapping g(t, x, a): T X y.k R" which is measurable in t, continuous in (x, a),
affine in a, belongs to L as a function of x and satisfies

g(t,x, Ek)cO(t,x)cg(t,x,E)+(e diam O(t,x)+6)B"

for any (t, x ).
The three lemmas to follow will be proved first.
LEMMA 1. Let P C_R" be a bounded convex set, and let (.11, .1) be an e-net

in S"-. Choose i P in such a way that

(i, .1i)>=s(P, .1i) -‘3, i= 1,..., k,

and let P’ be the convex hull of {1, ", }. Then

h (P, P’) -< e diam P + ,3.

Proof. Let : P\P’. Since P’ is closed and convex, there is a unique ’ P’ closest
to . We have setting .1 (:-’)/[:-:’1’

nS"-, (n,’)=s(P’, n), (n,-’)=p(P’,).
In particular,

P(P’, )= (,1, -i)+(.1, i-’) Vi 1,..., k.

Chose such an that [.1-.1[ < e. Since both sci and s’ belong to P’, we have

*1, *1, s P .1)<:0.

On the other hand, since both s and sei belong to P,

(.1, i) < (.1i, i) -[- E diam P

< (.1i, ) s(P .1i) "[- ,3 "q- E diam P

<= e diam P + ,3.
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Thus

O (P’, ) <- e diam P + 8

for any s P\P’ which yields the desired inequality because P’ c p.
LEMMA 2. Let M(x) be a Hausdorff continuous multifunction with convex and

compact values from X into R n. Assume that ME(X) is dense in M(x) for any x and
(H7) is valid. Then ]’or any l S-1 and 8>0 there is a (.)L such that (x)M(x)
for all x and

s(M(x), r/) _-< (E(x), rt)+6 Vx X.

Proof. Since ME(x) are dense in M(x), for any u X there is an L-selection u (")
of M such that

6
((u), n)>-_s((u), n)--.

The function x s(M(x), q) is continuous because M is Hausdortt continuous. There-
fore, we can find a family { Vu [u X} of neighbourhoods with compact closures such that

(tju(X), rl)>-s(M(x), rt)-6 Vu c=X, Vx

This family obviously covers X, and it remains to take a locally finite subcovering
{V,}, choose a partition of unity {mi(" )} in accordance with (H7) and set

(x) Y m(x), (x).

LEMMA 3. Under the assumptions of Theorem 3, for any 6 > O, 1 S"-I there is
a mapping (t, x): TXR" which is measurable in t, belongs to L as a function of
x and satisfies
(5) s(O(t,x), l)<=((t,x), ,1)+6.

Proof. Fix a compact set K cX and consider the function

ri(t,(.))=sup(s(Q(t,x), r/)-((x), r/)).
xK

This function is obviously continuous in ’(. on C(X, R") and hence on L. On the
other hand, since Q is measurable in and Hausdorff continuous in x, the function
s(Q(t,x), r/)-((x), rt) (for a fixed (.)) is measurable in and continuous in x so
that rc is measurable in (see the proof of Theorem 1).

Consider also the function

qtc(t, (" ))= max {0, r:(t, (. ))-6}.

It is also measurable in and continuous in (.). Moreover, q: is nonnegative and
qc(t, (" ))=0 if and only if rc(t, (" ))<-6, which is the same as

s(O(t,x), r/)<-((x), r/)+6 /x K.

Let now {Kili 1, 2,. } be a countable collection of compact subset of X which
covers X. We set

q(t, ( )) y -i2 qc,(t,(.))(l+qz,(t,(.)))-1.
i=1
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This function is measurable in t, continuous in (.) and nonnegative, too, and
q(t, (. )) 0 if and only if q:,(t, :(. )) 0 for all i, or, equivalently, if and only if

(6) s(O(t,x), n)-<_((x),,)+ Vx ex.
Let p(t, (.)) be the same as in the proof of Theorem 1. Since Q is measurable in

and Hausdorff continuous in x, (Hs) holds and therefore p is measurable in t,
continuous in x, nonnegative and p(t, (. )) 0 if and only if

(7) (x) O(t, x) Vx X.

The set-valued mapping

(t) {(. Lip(t, (. )) + q(t, :(. )) 0}

is therefore closed-valued and measurable (see the proof of Theorem 1). Since p and
q are nonnegative, (t) contains precisely those (. )e L which satisfy (6), (7), hence

(t) by Lemma 2. It remains to take a measurable selection of .
Proof of Theorem 3. Let r/1, , r/k be an e-net in Sn-1. By Lemma 3 there are

i(t, x): T x T R which are measurable in t, belong to L as functions of x and satisfy

j,(t, x) O(t, x), s(O(t, x), rli) <- (ji(t, x), rli) + a
for all (t, x). It remains to set

and apply Lemma 1.

k

g(t, x, a) E oiji(t, x)
i=1

THEOREM 3 allows us to obtain various "unconditional" approximation results.
Here is one of them.

COROLLARY. Let X be an open domain in a finite dimensional Euclidean space,
let E=R and let Q(t,x) satisfy condition (iii) of Theorem 3. Assume that for any

T, x X and for any y of a dense subset of Q(t, x) there are h > 0 and a Cr-mapping
: X-E such that sO(x) y and (u) Q(t, u) for all u X, [[u -xl[<h.

Then, whenever X’ is a compact subset of X, for any e > O, > 0 there are an
integer k=k(e) and a mapping g(t,x,a): TxT’x,kE which is measurable in t,
continuous in (x, a), affine in a, C in x and satisfies the conclusion of Theorem 3 for
all T, x X’.

Remarks. (f) It is to be noted in connection with the previous corollary that in
Theorems 2 and 3, (H1) can be replaced by its local version: for any T, xoX,
there is a c(.)L such that (x) Q(t,x) for x close to x0 and sO(x0) is a given element
of Q(t, Xo).

(g) Except for (H1), all of the hypotheses that have been used are rather natural
and general. Anyway, if we consider the differential inclusion(I), they are automatically
satisfied.

Indeed, in this case, T is a real segment with Lebesgue measure, hence (Ha)
holds, X is a finite dimensional domain and L is the space of Lipschitz or C1_ mappings
so that (n6), (H7) and (Ha) also follow; (H4) of course, imposes no practical restrictions
and (Hs) is needless since (Ha) and (H4) are valid. The Hausdortt continuity assumption
in Theorem 3 is somewhat restrictive but even this assumption is weaker than those
usually imposed to characterize the dependence of the set-valued mapping in the
inclusion on the state variable.

Thus (H1) is the crucial hypothesis. As was pointed out in the introduction, it is
also necessaryfor the results to hold. The weak point, however, is that there are no
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general criteria to verify the hypothesis though in a particular case it may be an easy
task. The only general result of such type known to the author is the selection theorem
of Michael [8]. It can be applied only in case L C, and we usually need more when
dealing with differential inclusions.

3. Applications.
3.1. Selections. The following proposition is an immediate consequence of

Theorem 1.
PROPOSITION 1. Under the assumptions of Theorem 1 there is a selection of Q

which is measurable in and belongs to L as a function of x.
As a particular case, we have
PROPOSITION 2. Assume that E is a separable Banach space, Q is convex-valued,

lower semicontinuous in x and either (H3), (H4) or (Hs) are satisfied. Then there is a
Carathdodory selection of Q, that is to say, a mapping (t, x): T X-E measurable
in t, continuous in x and satisfying (t,x) Q(t,x) for all t,x.

Proof. We set L- C(X, E) which ensures (H2). The lower semicontinuity and
convexity assumptions provide for (H1), thanks to the Michael selection theorem. It
remains to apply Proposition 1.

Earlier results of such sort were proved by Castaing [3], [4] and Cellina [5] (the
latter was not availablle to me). The first of Castaing’s results follows from Proposi-
tion 2. It is actually required there that (H3), (H4), (Hs) be satisfied simultaneously.
The second result of Castaing is not contained in Proposition 2 for X is allowed to
be Polish there, not necessarily locally compact. Instead, T is assumed Polish with (
being atr- algebra of measurable sets connected with a positive finite Radon measure
on T. (No assumption similar to (H) is used.)

It would be interesting to know if a locally compact X may be replaced by a
Polish space both in Propositions 1 and 2. Our proof obviously does not permit such
an extension (because of the separability requirement on L). Likewise, Castaing’s
proof heavily depends on the topological properties of T and and cannot be
extended to a broader class of measurable spaces. Of course, in the situation of
Proposition 2, Theorem 1 gives much more information than the proposition.

3.2. Equivalence theorem for differential inclusions. From now on, T is a real
interval, is the r-algebra of Lebesgue measurable subsets of T and X is a domain
in R n. We consider again the differential inclusion

(1) cQ(t,x).

Let L be the collection of all locally Lipschitz (or, say, Ca-) mappings from X into
R n"

PROPOSITION 3. Assume either (H4) or (Hs). If QL(t, x)=O(t,x) for all T,
x X, then the inclusion (1) is equivalent to a control differential equation

(2) =f(t,x,u), uU,

where U is a Polish space, f: T xX x U R" is measurable in t, continuous in (x, u)
and locally Lipschitz (or Ca-) in x.

Proof. As was pointed out in Remark (g), all of the assumptions of Theorem 1
are satisfied. Let U, f be a Polish space and a mapping T X U R" satisfying the
conclusion of Theorem 1. Then any solution of (2) is, clearly, a solution of (1) (because
f(t,x, u)Q(t,x)). Conversely, let x(t) be a solution of (1) defined on a subinterval
A c T. The mapping h(t, u)=f(t, x(t), u) is measurable in and continuous in u so
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that the set-valued mapping

M(t)={u e UI2(t) h(t, u)}

from A into U is closed-valued and measurable. If u(t) is a measurable selection of
M, then

2 (t) f(t, x (t), u (t)) a.e. on A

which completes the proof.
Assume now that X is compact and the solution x(t) of (1) is such that for

almost every T there is a Cl-selection (.) of Q(t,.) such that (x(t))= 2(t) and
II ’)llc <-k(t), where k(.)=>0 is a summable function. As follows from Theorem 1,
the mapping u f(t,., u) from U into C is continuous so that (t, u)f(t,., u) is a
Carath6odory mapping.

On the other hand, as follows from the proof of Theorem 1, any Cl-selection of
Q(t,.) can be obtained as f(t,., u) if u e U is suitably chosen. Therefore

inf {Ill(t, ", u)lllu M(t)}-< k (t),

and (see [9]) for any e > O, there is a measurable selection u(t) of M(t) such that

IIf(t, ", u (t)llc k (t) + e a.e.

If we set (t, x) f(t, x, u (t)), then q satisfies all the conditions which ensure continuous
dependence of the solution x(t) of the equation

(t, x)

on initial conditions and parameters etc. In particular, one can embed x(t) into a
smooth family of solutions of the differential inclusion (1). We refer to 10] for earlier
results of this type.

Thus any differential inclusion satisfying the assumption of the proposition can
be equivalently described by a differential equation with control having good analytical
properties if the inclusion is sufficiently good.

This class of inclusions contains, in particular, differential inclusions with "local
sections" considered by Boltyanskii and we conclude that the maximum principle
established by Boltyanskii follows immediately from the standard Pontryagin
maximum principle by way of the equivalent reduction justified by the proposition
and subsequent remark and applied in a neighbourhood of the optimal trajectory.

Moreover, it follows that the assumptions imposed in [1] are redundant. Boltyan-
skii assumes the existence of two kinds of C-selections of Q, the first like here and
the other similar to the above-mentioned q (t, x) and connected with the given solution
x (t). Such a selection, however, necessarily exists, as we have just seen, if the inclusion
is reasonably good.

We remark finally that in fact things are much simpler in the situation considered
in [1] because only set-valued mappings Q(x), not depending on t, are considered
there. In this case one can take U to be the collection of all Cl-selections of Q and
define f by

f(x,u)=u(x)

so that no reference to Theorem 1 is actually needed.

3.3. Concluding remarks. It would be interesting to find an internal characteri-
zation for set-valued maps that admit (local) Lipschitz selections through any point
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of the graph. Simple examples show that such a map need not be Lipschitz or even
u.s.c. (it is 1.s.c. if compact-valued). On the other hand, it seems to be unknown
whether any Lipschitz (or even convex-valued Lipschitz) set-valued map has a Lipschitz
selection.
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CONTROLLED MARKOV CHAINS AND STOCHASTIC NETWORKS*

VIVEK S. BORKAR’t

Abstract. Controlled Markov chains with average cost criterion and with special cost and transition
structures are studied. Existence of optimal stationary strategies is established for the average cost criterion.
Corresponding dynamic programming equations are derived. A stochastic network problem that includes
interconnected queues as a special case is described and studied within this framework.

Key words, stable strategies, optimal control, average cost, dynamic programming, stochastic networks,
interconnected queues

Introduction. Existence of stationary optimal controls for countable state Markov
chains with average cost and the corresponding dynamic programming conditions are
by now classical problems and have been treated in many texts, such as [2], [8].
However, these results have been usually derived under certain assumptions on the
transition matrix [2] or certain recurrence conditions [8]. For many practical problems
such as those arising in controlled queues, these assumptions fail. Naturally enough,
the usual argument of treating the average cost as a limiting case of the discounted
cost as the discount factor approaches unity fails to work for these problems. An
example of such complications is provided in the recent work of Rosberg, Varaiya
and Walrand [7]. They take a rather unconventional approach of treating average
cost as the limiting case of finite time-horizon problems, but the details of their
argument depend heavily on the specifics of the problem they consider, viz., the
control of two queues in tandem with a special cost structure. However, this and many
other problems arising in applications do have the following two aspects in common:
transitions are possible only between "neighboring" states and the cost of being in
"far away" states is high. (This will be made more precise later.) The purpose of this
paper is to use such special cost and transition structures to settle the existence-dynamic
programming question for a large class of such problems.

The approach taken here goes from the general to the particular. Results are
first established in an abstract discrete-time Markov chain setting 1-4 with a simple
extension to continuous-time 5 and then they are applied to the specific problem
of controlling a stochastic network 7. The latter has provided the motivation for
this work and includes as a special case interconnected queues. Among the potential
applications of such a set-up, one has"

(1) Optimal sequencing of traffic signals in a transportation network based on
sensor data on the traffic level in each link.

(2) Optimal time-sharing of common information channels in a multi-agent
management decision system or a computer communication network based
on backlog information.

In 1-5, many standard terms and facts from the theory of Markov chains and
of weak convergence of probability measures are implicitly used. Readers unfamiliar
with these should consult [5] and [1], respectively.

1. The discrete-time control problem. Consider a controlled Markov chain
{Xn, n 1, 2,. .} on a countable infinite state space S. Without any loss of generality,
let S {0, 1, 2,...}. Let P, denote the transition probability matrix, indexed by the
control vector u [u 1, u2, "] such that for each i, f S, ui is in some compact Polish

* Received by the editors February 12, 1982, and in revised form July 16, 1982.

" Tata Institute of Fundamental Research, P.O. Box 1234, Bangalore 560012, India.
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space D(i) and the (i, j)th element ofPu isp(i,j, ue) [0, 1] with Yisp(i,J, b/i) 1. The
functions p(i, j,. are assumed to be continuous. Let L 1--[issD(i) with the product
topology. Standard topological arguments show that L has a suitable metrization
under which it is compact and Polish. A control strategy (CS) is a sequence {:,} of
L-valued random variables such that for each n, , [, (1), :n(2),’’ "] satisfies:

P(X,+I i/f, v r(n))=p(X,, i, ,(X)) for S

where f, cr(Xi, <-n sej, j < n ).
If the{,} above is a sequence of i.i.d, random variables with a common distribution

we call it a stationary randomized strategy (SRS) and denote it by 3’[]. If is a
point mass concentrated at :0 L, we call it a stationary strategy (SS), to be denoted
by 3,{so0}. Note that under either an SRS or an SS, {X,} is a Markov chain on S with
stationary transition probabilities. The transition probability for a transition, say, from
to j, under an SRS ,/[] or an SS 3,{so0} will simply be E.[p(i, ], :(i))], p(i, ], :o(i))

respectively. (Here, Eo(. denotes the expectation with respect to and [:(1),
a dummy variable of integration.) Let PIll, P{sC0} respectively, denote the correspond-
ing transition probability matrices. If this Markov chain is positive recurrent as well,
call the corresponding CS a stable SRS (write SSRS) or a stable SS (write SSS), as
the case may be.

Let k" S - [0, eo) be given. The objective is to find a CS that a.s. minimizes the cost

lim sup 1__ k (X,,).
neO t m=l

If such a CS exists, call it an optimal CS. Our primary aim is to show the existence
of an optimal SSS. We make the following assumptions:

A1. For any M e [0, m), there is a finite integer N such that k(i)>=M whenever
i>=N.

A2. For each e S, there exists a subset Ri of S with finite cardinality such that
for all g Ri, we have

p(i,l, .)----0.

A3. For any finite subset F of S and any integer M, there is a finite integer
N such that whenever >-N, the minimum path length from to any state in F
exceeds M.

A4. For each u [u l, u2," "], S forms a single communicating class under
AS. There exists at least one SS which gives a.s. bounded asymptotic cost.
An example of a Markov chain satisfying A1-A3 is a chain on the integer lattice

in n with no transition possible between two states unless they form the corners of
a unit cube in " and the cost being simply the "-norm of the state.

Remarks. (1) Clearly, A1 ensures that the SS in A5 must be an SSS. Since each
SS(SSS) is also an SRS(SSRS), the statement of A5 continues to hold with SRS(SSRS)
replacing SS.

(2) A4, needed here for technical reasons, seems partly dispensable. A3, though
convenient, is unnecessary. More on this later.

(3) A2 has the following important consequence: Starting from any state in S,
at most finitely many other states can be reached in a finite length of time. Thus for
any function f:S(-oo, oo), the conditional expectations E(f(X,+)/X,) for n,m
finite can be written as finite sums and hence make perfect sense even when Ef(X,/)
is either undefined or unbounded. This fact will be of crucial use in 4.
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Let 0n (l/n) En=l k(X,,). A4 ensures that for an SSRS y[] or an SSS y{0},
the Markov chain has unique invariant probability distribution. Call it r[], r{:o}
respectively. Then limn-.oo 0n exists a.s. in [0, oo] and is a.s. equal to the expectation
of k(. under r[] or r{0} as the case may be. Call this limit C[], C{5o} resp.
(Note that we have allowed +oo as a possible value for these limits.) By A5, we can
pick H [0, oo) such that the set of SSRS (SSS) for which C[] (C{:0}) does not
exceed H is nonempty. Let /3(c) denote the infimum over all SSRS(SSS) of C[]
(C{o}). Then/3 =<a =<H. Let 1 {Tr[]]C[] =<H}, te2-’-(TTo}ICo}-<H}. The task
of proving the existence of an optimal SSS will be achieved in two steps:

(i) There exists an SSS /{:o} such that C{o} .
(ii) For any CS, lim inf,_, 0n ->/3 -> c a.s.

Note that the usual conditions under which such existence results are established
imply uniform bounds on the mean hitting times of state 0 from any other state [4].
These fail precisely because of A3.

2. Preliminary results. For any event A, let IA denote its indicator function. For
S, B a Borel set in D(i), {:n} a CS, define, for n 1, 2,...,

/(3 )u. (i) _1 I{x,.=,}, tZni(B) I{,,(i)B.x,.=i} I{x,.=i}
m=l m=l

whenever the denominator is nonzero and i(B) otherwise, where (. is an arbitrary
probability measure on D(i).

Clearly, for each sample path and each n, u, (.), ,g(. are probability measures
on S and D(i) respectively.

The following result is well known [6, p. 53]:
LEMMA 2.1. Let M,, n 1, 2,... be a zero-mean martingale with respect m some

increasing family ofg-fields, such thatE(lM+-M[) is bounded uniformly in n. Then
lim, (M/n)= 0 a.s.

COROLLARY 2.1. For any CS {,}, the following holds outside a set of probability
zero: For all S,

lim Xm=i} ’. IX.._I=i}P(f, i, m--l(f O.
noO gt m=2 jS

Proof. Note that the summand in square brackets is a martingale difference
sequence with respect to the progressive r-fields generated by (X,, n), n 1, 2,. ,
and apply the preceding lemma. F1

LEMMA 2.2. if1, ’2 are sequentially compact in the topology of weak convergence
ofprobability measures on S.

Proof. A1 and the definition of 1 clearly imply that ffl is tight. Hence we only
need to show that it is weakly closed. Let rn & r[n], n 1, 2, , be a sequence in
ffl weakly converging to some probability measure ro on S. Then it also converges
pointwise (i.e., rn(i) roo(i) for each iS) and by Scheffe’s theorem (see, e.g., [1]),
in total variation. Since n, n 1, 2,..., is a sequence of probability measures on
the compact Polish space L, there exists a probability measure o on L such that
o weakly along a subsequence (also called {n} by abuse of notation). We have

r, rP[n], n 1, 2,..., where rn is written as an infinite row vector. We only
need to show that roo roP[] under the same notation. But

ro-roP[o] (ro- rn) + (r, -roo)P[n]+r(P[,]-P[oo]).
Since r ro pointwise and in total variation, the first two terms on the right go to
zero termwise as n oo. Since n o weakly and P(i, j,.) are continuous for all
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(i, j); Plan] P[] termwise. Hence the last term on the right goes to zero termwise
by the dominated convergence theorem. Sequential compactness of (71 follows. That
of (72 follows similarly on noting that the weak limit of probability measures each
concentrated at a point in L must also be a probability measure concentrated, at a
point in L. q

LEMMA 2.3. There exist an SSRS y[] and an SSS y{sC0} such that

c[] , C{o} .
Proof. Let 7r[n], n 1, 2,. be a sequence in 1 such that C[] converges to

/3. By Lemma 2.2, we may assume that r[,] 7r[] weakly, and hence pointwise,
for some probability measure on L. Let kl(.)=k(.)^M for M[0, c). Write
7r[] [r,(1), 7r(2), .]forn 1, 2,. ., . Consider kt (.)Try(’) as aboundedmap
from S to [0, ). Fatou’s lemma yields

kt(i)Tr(i) <-liminf E kM(i)Tr(i) <--liminf , k(i)Trn(i)=[3.
S S S

Letting M c in the leftmost term, we get

c[]<_-.

But C[] _-> B. Hence the claim follows. The second claim follows similarly, iq

LEMMA 2.4. For any CS, lim inf_. $n >- B a.s.
Proof. Let N be the null set where the statement of Corollary 2.1 fails. Fix a

sample path outside N. Let {n,} be a subsequence of {n } along which

$-m lim inf $.

The limit on the right-hand side can be assumed to be finite, otherwise there is nothing
to prove. Note that for each n, 0n is the expectation of k(.) under the probability
measure un(’). Suppose {un,} is not a tight family. Then there exists an e >0 such

Mthat for any finite integer M, there exists an m such that i-- un (i) <- 1 e. From this
and A1, it is easy to deduce that +m along a further subsequence, leading to a
contradiction. Hence {un} is a tight family and has a weak sequential limit u which
is a probability measure on S. For each s S, {ni} is a sequence of probability measures
on a compact Polish space and hence is tight and therefore weakly sequentially
compact. By a diagonal argument, we can pick a subsequence of {n,} such that along
this subsequence,

(2.1)

(2.2) /nmi /X, S,

weakly, where/xi is some probability measure on D(i) for each i. Let 0 denote the
expectation of k(. under u. An application of Fatou’s lemma as in the proof of
Lemma 2.3 yields

Restrict attention to the subsequence of {nm} along which (2.1), (2.2) hold and call it
{n,}, again by abuse of notation. For n 1,2,..., oe, let denote the product
probability measure on L whose restriction tothe ith projection is txni. From (2.2),
n- weakly. Hence for each i, f S,

E.,.,(p(i, i, (i))) E,t,(p(i, j, (i))),
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where E.. (.) denotes the expectation with respect to n, being a dummy variable
of integration. Thus P[qn]P[], termwise. Write un, n 1, 2,..., o, as infinite
row vectors. After some rearrangement, Corollary 2.1 can be restated as

(2.3) lim (/n+l 1]nP[(I)n]) 0

termwise. But

By arguments identical to those in Lemma 2.2, both terms on the right go to zero
termwise along {n,,}. From this, the fact that v,..- v termwise (clearly,
termwise as well) and (2.3), it then follows that

Hence

v 7r[] and 0 C[]_->/3. F1

It is clear that for the desired existence result, we only need to show/3 a, or,
equivalently,/ _>-a.

3. Main results. At the outset, we would like to remind the reader of Remark
(3) of 1, which will be implicitly, but critically used often in thissection.

Fix an SSRS y[] in (71 and consider the corresponding positive recurrent Markov
chain. For each S such that 0, let a(i), b(i) denote, respectively, the mean
hitting time for state 0 starting from and the mean hitting time for state starting
from 0. Let a (0), b(0) each equal the mean return (recurrence) time of state 0. Let
g(i) E[}.’=I k(X,,)[X1 =/]for S, where - is the first m > 1 such that X,, =0. Then
g(i) is the mean cost incurred before hitting 0 if 0 and the mean cost incurred
between consecutive returns to 0 if 0. From [5, Prop. 79, pp. 28-29], it follows
that a (i), b (i) are finite for e S.

LEMMA 3.1. For each S, g(i) is finite.
Proof. Fix S. Let ’1 be the first m such that X, i. For n 1, 2, , let -.n

be the first m strictly exceeding ’2-1 for which X,, 0 and ’2,+1 the first m strictly
exceeding r2n for which Xm i. Then

q’2(l/n) Ej=l(E "=’ k(X,,)) E,l k(X,)’r2./_

(1/n)(r2,)

Since 7"2n -’ (X3 a.s., taking limits as n o on both sides of the above inequality, we get

Hence

0_<
g(i) -< c[,].

a(i)+b(i)-

g(i) <-_ C[](a (i) + b (i)). []

The proof of the next corollary is similar.
COROLLARY 3.1. C[@] g(0)/a (0).
LEMMA 3.2. Let v(i)=g(i)-C[]a(i), eS, and V =[v(0), v(i),. .]r. Then V

satisfies
(3.1) C[q]l (P[q]- U)V + O,
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where lc is the infinite column vector of all l’s, U is the infinite dimensional identity
matrix and 0 is the column vector whose ith element is k(i) for e S. Moreover, any
solution to (3.1) differs from V only by a scalar multiple of lc.

Remark. It is clear that the addition to V of a scalar multiple of lc leaves (4.1)
unaltered. Also, note that V depends on the SSRS being used and that, by Corollary
4.1, v(0)-- 0.

Proof. Let - be the first m > 1 such that X, 0. Then

v(i)=E( (k(X,)-C[*])/XI i)
m=l

m=2

k(i)-C[]+(P[])V,

where (PIll)/ denotes the th row of PIll. The first claim follows. Suppose W
[w (0), w (1),. .It also satisfies (4.1). en for m 1, 2,. ,

C[O] E(w (Xm+l)/Xm) w (Xm) + k (Xm).

Summing over m 1, 2, , r, and taking expectation conditioned on X, i,

m=l m=l

E(w(Xe)/X O)- w(i)+ g(i).

Hence w(i)=v(i)+E(w(X)/X =0), the last term being a constant independent of
i. The second claim now follows.

LZMMA 3.3. There exists a nite integerM such that v(i) > 0 [or NM.
Proof. Let e > 0 andB {0} U {i S[k (i) C[O] + e }. By A1, B has finite cardinal-

ity. Let X1 for some B. Let r be the first m > 1 such thatX 0. Then

Let

v(i) E (k(X,,l-C[O]l/Xl

e min v(i).
iB

The strong Markov property implies

v(i) =E(ll (k(X,)-C[O])) + v(f)P(X,= f),
IB

where ’i is the first m such that X, B. Hence,

v(i)>=eE(ri 1)+el.

By A3,

E"i oo as oo.

The claim follows.
THEOREM 3.1. An optimal SSS exists.

Proof. Choose ,/[] in the above such that C[.O] =/g. Let u(i) for each e S be
an element of D(i) that minimizes Yisp(i, j, .)v(j). (Note that this is a finite sum
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and the existence of at least one such u(i) is guaranteed by the usual compactness-
continuity arguments.) Let l(i) be the ith element of (P[]-U)V. For each n
1, 2,. ., and any CS,

(3.2) =l(X,)+k(X,,)>= Y’. P(X,,j,u(X,))v(j)-v(X,,)+k(X,).
jS

Let :o [u (0), u(1),...] and consider the chain governed by the S$ /(:o}. From (3.2),

fl 1E(v(Xn+)/X,) if (v(Xm)E(v(Xm)/Xm-1))
1: V (X1) -+- ..

/"t /’l m=2

Hence,

1
fl -E(v(X, )/X) 1E (E(v(Xm)/Xl) E(v(Xm)/Xl))

1
>- + v(x)+E(Odx)

F/ F/ m=2

1--E (v (X. /1)/Xl) --11.) (Xl) -[- E (On/X1)

1
>- -(E( (X./)Ix./,<=/X) v (X1)) +E(./X),

where M is as in the preceding lemma. Since v(X.+l)I[x./,<= is bounded, taking
limits as n oo gives , _->.m  n/Xl),
the last inequality being easily deducible from Fatou’s lemma.

Suppose )’{o} is not stable. Then {X,} is not positive recurrent and the following
holds: For any e > 0 and any finite integer N, i=<N ’-(i) < e for sufficiently large n,
a.s. From A1, this implies that liminf,_ 0, =oo a.s. This is clearly not possible.
Hence "/{o} is an SSS. Therefore for each N e {1, 2,. .},
liminf,_.oo (l/n) =1 k(X,,) AN=E(k(.) AN) a.s., where the expectation is with
respect to ’{o}. By the dominated convergence theorem,

fl>-E(lirnfO,.,/Xl)>-E(liminf 1- f k(Xm)^N/Xl)=E(k(.)^N).n-*oo /’t m=l

Letting N oo on the right-hand side,

fl =<E(liminf._.oo O,,/Xl) >--E(k(" )) C{o}>-a.

In view of the comment at the end of the preceding section, the result follows.
THFORFM 3.2. Let "/{0} be an optimal SSS. Let V be as in Lemma 3.3 with
the probability measure concentrated at o. Then the following "dynamic program-

ming" conditions hold"

alc min (Pu U) V + O (P{5o}- U) V + O,

where the minimum is termwise.

Proof. Suppose that the first equality is false. Then there exists F [F, F2, .IT
L, distinct from :0, such that

c 1 (Pr- U) V + O + A,

where A [A(0), A(1), .IT is a vector of nonnegative elements at least one of which
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is strictly positive. Proceeding as in the proof of Theorem 4.1, one can show that y{F}
is an SSS and a >-C{F} + 8, where 8 is the expectation of A(. under 7r{F}. It is easily
seen that 8 > 0. Hence we have a contradiction. So the first equality holds. The second
is immediate.

Remarks. In the arguments so far, A4 was needed mainly for technical reasons.
In the previous section, it was needed to ensure the uniqueness of 7r[] (Tr{0})
corresponding to a given ,/[] (/{:0}). Without A4, the proofs still go through modulo
this uniqueness. Thus we can show that there exists an SRS 3/[] (an SS 3’{0}) and
some probability measure 7r[] (r{0}) that is invariant under it so that the expectation
of k with respect to this probability measure is/3 (c),/3 (a) being the infimum of such
expectations over all SRS (SS). The invariant probabilities must be concentrated on
a union of disjoint communicating classes, each of which is positive recurrent. Also,
the invariant probability measure is a weighted average of the unique invariant
probability measure for each of these classes, these weights satisfying the obvious
requirements that they are positive and add up to 1. The cost itself will be a weighted
average (with the same weights) of the costs incurred if the chain started in any one
of these classes. These costs must be identical, because otherwise the invariant
probability measure concentrated on one of these classes would give a lower cost than
what 7rill (r{0}) does. The arguments of this section, which lead to Theorem 3.1,
3.2 can be worked out for each individual class, yielding an optimal SSS if the chain
started with probability 1 in one of these classes. Consider the following alternative
to A4:

A4’. For at least one SRS, the chain is positive recurrent with only one com-
municating class.

The SRS guaranteed by A4’ can be used until the chain enters one of the desired
classes under the optimal SSS. This is a stopping time with bounded expectation.
After this instant, the strategy can be switched to the optimal SSS. The cost still equals
the optimal cost under this scheme, as can be easily verified.

A3 holds in most cases arising in practice, but is quite unnecessary. Note that
v(i), S, in Theorem 3.1, is bounded from below. Let B’ ={i S, v(/) <= 0}. Then v(i)
is bounded in B’. Replace the indicator Ix,+l<=, by I{X,+leB’} whenever the former
occurs in the proof of Theorem 3.1. The same arguments continue to hold.

4. An extension to continuous time. Consider a continuous-time Markov chain
Xt, [0, c), on S, described as follows: Associated with this chain is a transition
probability matrix P, as in 1 and a function r: $ - [dl, d2], 0 < dl -<_ d2 <. Transitions
occur at random times ’1 < ’2 < ’3" These are easily seen to be stopping times
with respect to the progressive r-fields generated by Xt, [0, c). Let ’o 0. The
random intervals [’n, ’+), n =0, 1, 2,... are called transition epochs. A control
process so(t), [0, ), is a process satisfying:

(i) for each t, so(t) L;
(ii) so(t) is constant on each transition epoch;
(iii) P(X,./I=j/Xt,(t); t<-+)=p(X.,j,(’n)(X,.)), where (t)(i) is the ith

component of so(t) for S.
Conditioned on X,n, the random variable -+-- is assumed to be:

(i) independent of {Xt, t<’ and t_->-+; set, [0, )};
(ii) exponentially distributed with mean 1/r(Xn).

Let k(.) be a function as in 1 satisfying A1. The objective is to choose a control
process so as to a.s. minimize

(4.1) lim sup - k (Xs) ds.



660 VIVEK S. BORKAR

Let ’n X,., :n :(r), n 1, 2,... and A(. l/r(. ).
LEMMA 4.1. Outside a set of probability zero,

1 [’; (l/n) Z k(2m)A(2m)
lim sup 7 J0 k (X) ds lim sup

Proof. For M e[O, ), let kM(’)= k(.)nM. Define n(t)= n when e It,, Tn+l).
Then

(4.2)

1 Tn(t)

| kt(Xs) ds
Tn(t)+l aO

1 n(t)--I

E kM(2.)(r.,+--r)
"Fn (t)+ m=0

fo f n’

kM(X ds- kM(Xs) ds <=

1 n(t)

Y. km(2m)(’rm+l--Tm).
Tn(t) m=0

But

lim sup
1 n(t)-i 1 .-1

Y kM(2m)(r.+l--rm)= lim sup Y k.(2)(rm+l-r)
Tn(t)+l m=O n-+oo Tn+l m=O

(l/n) Y=o kM(Y.)(r.+l--rm)
lim sup
oo (1/n)=o(rm+l-r.)

By Lemma 2.1,

lim
1 1 [kM(2.,)(rm+ rm) kM(2m)A(2)] o

neo /,/ m=O

1 n--1

lim E [(Tm+l--Tin)- A(2m)] 0 a.So

Since A(.) and hence (l/n) Y’.=I A(Y,) is bounded away from zero from below and
bounded from above, we have

n--1(l/n) Em=O kM(2m)(’rm+l--gm)
lim sup

(r+ r)
lira sup

.- (l/n) Y. =0 noo
(4.3)

n--1
(1/n) Y.m=o kM(f(.)A(f(.)

(l/n) Y’.=o A(Y,)
(1/n E2=o kM(2m)A(2.)

lim sup
(l/n) E,=o A(J,)

a.s.

Similarly the right-hand side of (4.2) can be shown to equal (4.3). Hence, outside a
set of zero probability,

lim sup - kM (Xs) ds lim sup
(l/n) Y=ok(’)A()

(l/n) Y=o A(Y)
implying

lim sup 7 k (Xs) ds >-_ lim sup
(1/n Y=o kt(Y.)A(fi[.)

(1/n E=o A(Ym)

lim sup -f kM (X) ds <= lim sup (1/n) E=o k(Y.,)A(Y.,)
(l/n) Y-=o A()



CONTROLLED MARKOV CHAINS AND STOCHASTIC NETWORKS 661

LettingM - oo along a countable subset of [0, oo) in the above, it is easily deduced that

1 Iotlim sup)- k(X) ds lim sup
(l/n) =o k(J,n)A(J.-)

outside a set of zero probability. I-1
The concepts SS, SRS, SSRS, SSS introduced in 2 have obvious analogues for

the continuous-time problem above. In view of Lemma 4.1, this problem is equivalent
to choosing a CS {&} for a discrete time Markov chain J, n 0, 1, 2,. on S so as
to a.s. minimize

(4.4) lim sup- (l/n) Y.m=o A(2.)
The following claims can be easily verified from the above lemma and the fact that
A(. is bounded away from zero from below and bounded from above:

(i) A2-A5 hold for the chain {J.} if and only if they hold for the original chain.
(ii) An SS (resp. SRS, SSS, SSRS) for the chain {J} corresponds to an SS (resp.

SRS, SSS, SSRS) for the original chain and vice versa.
(iii) A1 holds for k(. )A(. in place of k(. ).
(iv) (4.4) is finite if and only if lim supn-.oo (l/n) Y_-o k (J,) is.
Assume that A2-A5 hold for the discrete time problem introduced above, and

hence for the original continuous-time problem. Consider the discrete-time problem
for the time being. Let 4 (i/n)Y7,_-o k (Jm)A(J,), 6 (l/n)Y’.=o A(,). Under
either an SSRS 3,[] or an SSS 3’{0}, bn and 6 are seen to a.s. converge to the
expectations of k(.)A(.), A(.) under 7r[], 7r{Co} respectively. (We allow +co as a
possible value of the former.) The asymptotic cost, denoted as before by C[], C{Co},
respectively, will a.s. equal to the ratio of these two expectations. The statement and
proof of Lemma 2.2 carry over to the present problem in view of (iii), (iv) above. The
following analogue of Lemma 2.3 holds:

LEMMA 4.2. There exist an SSRS /[{I}] and an SSS y{o} such that C[{I}] =/3,
C{0} c.

Proof. Let zr[{I}, ], n 1, 2, be a sequence in iF1 such that C[{I}n monotonically
decreases to/3. As in the proof of Lemma 2.3, we let zr[{I}, 7r[{I}] weakly for some
probability measure {I} on L. Let E(.), n 1, 2,..., 00, denote the expectation
under zr[{I}]. Then E,(A)E(A). By arguments similar to those used in the proof
of Lemma 2.3, we can show that E(kA) <- lim inf,_.o E, (k A). Since C[{I},]=
E(kA)/E(A), we have

/3 <- C[{I)] =< lim inf C[{I), =/3.

The first claim follows. The second follows similarly.
A similar modification of the proof of Lemma 3.4 yields the following result.
LEMMA 4.3. For any CS, lim infn_. (&n/6n) >--J a.s.
Coming back to the continuous-time chain X,, [0, co), we can define for any

SSRS y[b], the quantities a(.), g(.), v(.) as follows: Let - be the first >0 such that
x 0 if 0; and the first > 0 such that X 0 for some > s > 0 and Xt 0, if 0.
For S, let a(i)=E(’/Xo= i), g(i)=E([o k(X) ds/Xo i). Clearly, for each sample
path, - coincides with some -,, m 1, 2,. . Let r be the m > 0 such that -, -.
Then r/ is a random variable taking values in {1,2,3,...} such that g(i)=
E(Y’./__ 0 k(i)(-i+l-ri)/Xo=i). Let v(i)=g(i)-C[d]a(i) and V=[v(0), v(1),...].
Because of the observations following Lemma 4.1, the claims of Lemma 4.2 hold for
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the original continuous-time chain as well. Let W denote the infinite column vector
whose ith element is k(i)A(i) and Y the infinite column vector whose ith element is
A(i) for S. We then have the following analogues of Lemma 3.2 and Theorems
3.1-3.2.

LEMMA 4.4. Let Y[] be an SSRS and V Iv(0), v(1),...]" the vector defined
as above. Then V satisfies

(4.5) C[]Y (PIll- U)V + W

where PIll, U are as in 3. Moreover, V is the unique solution to (4.5) modulo the
addition of a constant multiple of lc.

Proof. The arguments here are a simple modification of those used to prove
Lemma 3.2. We have, for as above

/)v(i) E (k (’m)- C[])0",+1--Zm)/Xo
m=O

k(i)A(i)-C[*]A(i)+E(= (k(m)-C[t])(Tm+l-’t’m)/Xo--0
k (i)A(i) C[]A(i) + (P[])i V,

with (P[])i denoting the ith row of P[]. The first claim follows. A similar modification
of the second half of the proof of Lemma 3.2 establishes the second claim. 7]

THEOREM 4.1. An optimal SSS exists. Suppose y{o}.is an optimal SSS and V is
as above with c the probability measure concentrated at o. Then

aY min (P U)V + W (P{o}- U)V + W,

where the minimum is termwise.

Proofi Again, the arguments are quite similar to those used to prove Theorems
4.1-4.2. Only the key steps are indicated. The claims of Lemma 3.3 can be easily
shown to hold for the present problem. Let u(i) for each 6 S be an element of D(i)
that minimizes ,isp(i, J, ")v(]). Consider the SS that uses u(X,.) over the transition
epoch [-n, ’n+l), n 1, 2,.... Along the lines of Theorem 3.1, one can show

E(S./(o) 1E(v(,,/l)/o) 1= --V (o) +E(g,/Xo),

and therefore,

/3E (lim:up /Jo) --> E(li_inf ,/Jo)
Using the fact that {6} is a bounded sequence and arguments analogous to those in
Theorem 3.1, we can show that the SS :o=[U(0), u(1),...], for the chain {,}, is
actually an SSS with cost E(kA)/E(A), E(.) being the expectation with respect to
zr{:o}. Also, O E(k A) a.s. and 8 E(A) a.s. Then it is easy to deduce that

3 >=E(kA)/E(A).
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The first claim follows. The second claim follows on a similar modification of the
proof of Theorem 3.2.

Remarks. For many problems, the possibility of continuously updating the control
process u(t) exists, but u(t) affects the probabilistic behaviour of the Markov chain
only through its values at the transition times, e.g., the problem discussed in the next
section. Then nothing is lost by considering the control to be constant over the
transition epochs. See also [7] for a discussion of this issue.

5. Stochastic networks. A stochastic network consists of a collection of nodes
J1, J2," , JN+I. Nodes J1, J2," , Jt for some M <_-N are identified as being input
nodes. The node Jr/l is identified as "environment". Each input node J, has a stream
of customers entering it according to a Poisson process with rate h, > 0. These Poisson
processes are independent of each other. Each entering customer undergoes random
transitions from node to node, spending a random amount of time in each node he
visits, till he gets eventually absorbed in Jn/l, all according to the mechanism described
below.

LetF {[a, a2," aN]lai is aninteger >_-0for 1 <-- <-_N}.Afunctionfi’F
satisfying fi(al, a2,’’’, aN) 0 if a =0 is assigned to every node J. Let fN+l(’)-----0.
TO each node J assign a subset Ri of {J1, J2," ", JN+} such that Rg does not contain
J. (No confusion need arise between these and the R’s in the statement of A2, since
the latter will not be explicitly referred to in the remainder.) RN+a is assumed to be
the empty set. For each pair (i,/’) such that J. Rg, assign a function pi"F [0, 1] and
a process ui(t), e[0, oo), taking values in the set {0, 1}. We assume that
Y"Jin, pij(S)Ui(t)----< 1 for all {ui(t)} satisfying the constraints to be specified later and all
sF.

Let xi(t) denote the number of customers at node J at time t. Let X
{x(t), x(t),..., xn(t)}. Let A(t) denote the event that a customer leaves the node J
in the interval [t, +dt]. ai(t), 1, 2,... ,N + 1 are assumed to be conditionally
independent of each other and of the arrival processes given {X, s N t}, the conditional
probability of A(t) conditioned on {X, s -< t} being fi(Xt) dt + o(dt). Heuristically, this
ensures that conditioned on the past up to t, the processes IA,(O and the arrival
processes act like independent Poisson processes on the infinitesimal interval [t, + dr].
The probability of occurrence of Ar/(t) is o(dt) and hence Ar+(t) can be ignored.
The probability of more than one of Ag(t), 1, 2,..., N, taking place at any is
also o(dt). Thus X_, defined as the value of X just prior to t, makes sense. The
customer leaving node Jg goes to J. R with probability pq(Xt_)uq(t) or returns to Jg
with probability 1-Yn, pi(X_)u(t). Let u(t) denote the enumeration of {ugh(t)}
(according to a fixed ordering of (i,/’), =<N, J. Rg) written as a vector. Then for each
t, u(t)is a vector of finite dimension equal to Yg--11RI where IRI is the cardlnahty of
Rg. Also, each element of this vector is rather 0 or 1. Let IIXII Eg--1 xg(t). Our objective
is to choose a nonanticipative control process u(t) so as to a.s. minimize

(5.1) lim sup -f 1IIds.

Let ei denote an N-dimensional vector whose ith coordinate is -1, ]th coordinate is
1 and the rest are 0. Let q, c denote the N-dimensional vectors whose ith coordinate
is 1, -1 respectively, the rest being 0. Fi will denote the subset of F such that
[a, a2,"’ ", aN]F if and only if a->1. It is easily verified that Xt, [0, oo) is a
continuous-time controlled Markov chain on state space F (which, on suitable relabel-
ling, corresponds to S) and with the control process u(t). The following correspon-
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dences with 4 hold:

N M

(5.2) r(.) E f(’) + E X,,
i=1 i=1

(5.3) k(’)-- I1" II,

and, for a Fi, b, a’ F,

1
ra) fi (a)pi(a)ui(t)

p (a, b, u (t))

fi (a)Pi(N+(a)Ui(N+1)(t)
rta)

1
r(a’) Ai

p(a’, b, u(t))= 0

1- Y p(a’, b’, u(t))
b’#a’
b’F

A(.)=
r(.)’

if b a +
JRi, f #N+I,

if b a + Ci,

JN+I Ri,

if b a’ + qi,

if not covered by any of the cases
above and b a’

if b =a’.

Remarks. Part of the above observation is based on the following simple fact" If
El, E2," ", En are independent events, the probability that Ei occurred conditioned
on the fact that at least one of El, E2,’’’, En occurred is simply P(Ei)/(i=I P(Ei)).

In physical situations like traffic signals, the controls may be required to satisfy
some constraints of one or more of the following types. (Here the subscripts of u
refer to a "typical" subscript in the appropriate sense according to the context and
not to any particular value.)

(i) uq(t) Ulm (t) for all [0, oo).
(ii) At most one of ui..... (t), m 1, 2, , n can be 1 at any t.
(iii) uii(t)= 1 (or 0, for that matter) for all t.
Consider the combinations of O’s and l’s that can be assigned to {uii(t)} without

violating the above constraints. The family of such combinations is independent of t.
We assume that this family is nonempty and enumerate these combinations as
C1, C2, CK. To each combination Ci, assign a {0, 1}-valued process zi(t), [0, ),
with the convention that zi(t)= 1 if and only if the {u0.(t)} used correspond to the
combination Ci. Let E0 be the subset of {1, 2,.. , K} such that if C, is the combination
used at time t, then uii(t)= 1 if and only if n E,. Note that this definition does not
depend upon t. A little thought shows that exactly one of z(t), Zz(t),""", ZK(t) will
be 1 at any [0, 00) and that u,(t)=m,Zm (t).

We treat Z(t)= [Zl(t), Zz(t),""’, ZK(t)] as the new control process taking values
in the finite set G the set of all K-dimensional vectors with only one element equal
to 1 and the rest all 0. The advantage of this new formulation, which is completely
equivalent to the original one, is that the problem now does not have any additional
constraints on the controls. Write (a, b, Z) =p(a, b, u) when a, b6F and ui=
mz,jZ, for u-{uij}, Z -[z1, z2,""" ,ZK]. PZ will denote the infinite dimensional
transition probability matrix whose (i, f)th element is ,6(b, b., Z), where [bl, b2," ’]
is some fixed enumeration of F.
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In view of the remarks at the end of the previous section, we assume that the
control process is constant over transition epochs. We then have the complete set-up
of 4. A1-A3 are easily verified. A4, A5 will be assumed to hold. For each e 1-Iis Gi,
where Gi’s are replicas of G, let/{} denote the transition probability matrix/z when
the (new) control process is the SS y{}. We then have the following result, which is
merely a restatement of Theorem 4.1 in the present context.

THEOREM 5.1. The conclusions of Theorem 4.1 hold for this problem with the
correspondences given by (5.2), (5.3) and with Z, /Sz, /{0} replacing u, P, P{:o}
respectively.

Note that the termwise minimization in the dynamic programming equations is
particularly simple in this case. In each term, the expression to be minimized with
respect to Z is linear in the components of Z. Thus the minimizing choice of Z, not
necessarily unique, is simply that element of G which has a 1 for the component
which has the smallest coefficient in the expression to be minimized.

Remarks. (1) We have allowed transitions from a node to itself. These are dummy
transitions, since the state does not change. However, an optimal SSS for a problem
without dummy transitions can be constructed from the optimal SSS for a problem
with dummy transitions in the following manner, as is easily verified" Let the strategies
coincide over the transition epochs that are not initiated by dummy transitions and
for those that are, simply retain the control from the previous epoch. The advantage
of using dummy transitions is to remove the explicit dependence of r(. on the control.

(2) Our formulation implies that a customer leaving a node Ji returns to that
node if he finds the desired transition blocked. This may be unrealistic in practice,
since he may simply wait till the desired transition gets unblocked and then leave
immediately. This can be partially remedied by modifying the above formulation as
follows: To each node Ji, 1 -<_ _-<N, assign a companion node Jio with Ri Rio, Pii("
Pioi(" ), uij(" Uio(" for each J. Ri. (Note that the constraint uii(" Uioj(" fits into
the constraint structure introduced earlier.) Change the mechanism of motion to the
following: A customer leaving Ji at either goes to J. in Ri with probability pii(Xt_)uii(t)
or goes to J/o with probability 1 YqjR, pii(Xt-)uij(t). A customer leaving Jio goes either
to some Ji in -Rio with probability pioj(Xt_)Uioi(t) or returns to Jo with probability
1 YqjR,o pioi(Xt_)Uioi(t). The rate function rio(" assigned to Jio can be chosen to have
very high values for all values of its arguments whose ioth component is nonzero, thus
making transitions away from Jo very rapid. Note, however, that we have now doubled
the dimension of the state vector, i.e., at each node, we observe both the total number
of customers and the number of customers ready to leave, but waiting due to blocked
transitions.

Examples. (1) Let each node Ji, 1, 2,..., N, represent a finite collection of
service stations Hix, Hi2,"’,HiN,, with exponential service rates hi, hiz,’", hiN,,
respectively. A customer entering Ji goes to the Hi with the smallest/" which is free.
If all Hi’s are occupied, he waits till one is free. The customers are served on a first
come--first served basis. It is easily verified that this corresponds to the case

Xi(t)AN
fi(Xt) Z hi,.

m=l

Suppose with each Ji, 1 <_-i =N, is associated a number M [1, 2,... ], such that
Mi c if <_-M (i.e., J is the input node) and no customer can enter J at time if
xi(t) =Mi. For each i{1, 2,..., N}, J,. R, let {aq} be fixed positive numbers such
that R, aii--<--1. Suppose that each customer leaving node Ji goes to J.R with
probability aijuii(t) unless xi(t)= M/and returns to Ji otherwise. This situation can be
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modelled by letting

pij (Xt-) aijIxit-<ti,

with xi(t-) having the obvious meaning. Now the state space is a subset of F. However,
the basic set-up remains unchanged. Thus we can accommodate queueing networks
with finite buffers between two nodes within this framework.

(2) Suppose Yl is the only input node and fi(Xt) UiI{x,(t)>=l} for some ui >0,
1, 2, , N. Also suppose that plj(.) 1 for j 2, 3, , N, Pi(S+l)(" 1 for

=2,’’’ ,N and p.(.)0 otherwise. The control U(U+a)(t)=--I for all and
2,3,...,N. At most one of the controls ux.(t), =2,3,... ,N, can be 1 at any

[0, oo). This is recognized as the "routing" problem [3]. Clearly, any optimal SSS
will not choose ui(t)=0,/" 2, 3,..., N, for any t. Thus the possibility of return to
Jx on leaving J1 is a mere technicality. The node J1 is itself a dummy node, in the
sense that we may simply consider a Poisson stream of customers arriving and being
routed to J2, J3, ’, JN.

6. Conclusions. We have established the existence of stable stationary optimal
strategies for a class of Markov chains and have given the corresponding dynamic
programming equations. As pointed out in the introduction, these problems cannot
be easily tackled by conventional approaches.

Many possible extensions of the resultspresented here suggest themselves. Some
of them are obvious, e.g., some simple explicit dependence of k(.) and r(.) on the
controls can be allowed. Among the more interesting possibilities are the problem of
characterizing the networks that satisfy A5 and the control problem with partial
observations.
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FEEDBACK STABILIZATION OF LINEAR DIFFUSION SYSTEMS*

YOSHIYUKI SAKAWAS-

Abstract. This paper treats the feedback stabilization of linear diffusion systems by using a finite
dimensional feedback dynamic controller. We construct a finite dimensional observer using the output
functions from sensors, and the control inputs to the system are given by the feedback of the observer
output. Assuming, for some fixed finite number L, that the first L modes are controllable and observable,
we prove that it is possible to construct a finite dimensional feedback dynamic controller such that the
diffusion system has an arbitrarily large damping constant.

Key words, feedback stabilization, diffusion system, finite dimensional dynamic compensator

1. Introduction. In our previous paper [15], we discussed feedback stabilization
of linear diffusion systems by designing actuator influence functions or sensor influence
functions properly. In this paper, given arbitrary actuator and sensor influence func-
tions, we construct a finite dimensional feedback dynamic controller using an observer.
By using the pole assignment theory for finite dimensional linear systems [16], it is
possible to stabilize the distributed systems so that it has an arbitrarily large damping
constant.

Balas [3] discussed the same problem under the assumption that no observation
"spillover" [2] is present. He also discussed the feedback stabilization problem for
dissipative hyperbolic systems [4]. We do not neglect the observation spillover in this
paper, and we obtain a sharper estimate for the influence of the control and observation
spillovers on the stability of the system. It will be proved that the influence of the
spillover on the stability of the system can be made arbitrarily small, if we increase
the number of state variables of the dynamic controller.

2. Diffusion systems. Let fl be a bounded domain in a finite-dimensional
Euclidean space, and let L2(lq) denote the Hilbert space of all square integrable
real-valued functions with the inner product

(Ul, /’/2)"-" If Ul(X)U2(X) dx.

We consider diffusion processes in lq described by the linear differential equation

(1) du(t---) +Au(t)=Bf(t)= bff(t), t>0,
dt =

where u(t) L2(fD, b k L2(D,), fk (t) are scalar functions HSlder-continuous on [0, c),
and

If(t)1B (b b r) f(t)
flit)_]

We assume that A is a selfadfoint operator with the domain D(A) which is dense in
L2(lq), that the resolvent (A-A)-I of A exists and is compact for some A, and that
A is bounded from below.

* Received by.the editors January 25, 1982, and in final revised form June 14, 1982.
t Department of Control Engineering, Faculty of Engineering Science, Osaka University, Toyonaka,

Osaka 560, Japan.
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From the assumption we see that A is closed [9, p. 16], that there is a constant
y such that [8, p. 278]

(2) (Au, u)>= y(u, u), u eD(A),

and that the resolvent (A-A)-a exists and is compact for any real satisfying < 3’
[8, p. 187].

From the Hilbert-Schmidt theory [11, p. 159] for the compact selfadjoint
operators, it is well known that there exist eigenvalues i and corresponding eigenfunc-
tions Cq(x) of the operator A satisfying the following conditions [6], [11, p. 167]:

(i) y Aa <A2<. <Ai <.. limAi ct).

(ii) Abii =A4q, /" 1,.", m, 1, 2,..., where m <o for each i.
(iii) The set {40(" )} of the eigenfunctions forms a complete orthonormal system

in L2(D.).
Since u L2() has a unique expression

u(.)= Y E (u, )(.),
i=1i=1

D(A) consists of all elements u L2(f) such that

(3) Y. Z (u, ,)<.
The semigroup e -ta generated by -A is analytic in >0, and is expressed as [11,
p. 309]

(4) e-’au , Y e -x’’ (u, cbii)4ii, >- O,

where u
From (4) we see that

(5)

If I < 0, the diffusion system

t>=O.

(6) du(,t______,
__
Au (t) 0

dt

is clearly unstable. We consider this case, and we synthesize the input functions fk (t)
by using a feedback dynamic controller so that (1) is stabilized.

We assume that there are p sensors, whose outputs are given by

(7) yk(t) (C k, u(t)), k 1," p,

where c (x) are sensor influence functions in L2(’). Let us define the output vector
function

y(t)
y ’(t)_]

Let r > 0 be a given damping constant. We take an integer such that

(8) //+1>0",
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We take another integer n such that n >-l, and we define the orthogonal projection
operators Pn and Qn by

P.u Y. (u, ,),,
i=li=l

O,u (I-Pn)u E , (u, ii)ii.
i=n+l j=l

Let u(t) be the solution of (1) satisfying the initial condition

lim u(t)= u0L2().
t+O

Since u(t)eD(A) for >0, from (1) we obtain

(9)

(10) Q,fi (t) +aQ,u (t) QnBf(t).

The solution of (9) with the initial condition P,u(O)= P,uo can be expressed as

(11) Pnu (t) . E ugj(t)ii(" ),
i=1i=1

where ugi(t) is the unique solution of

(12) figj(t) + Aguii(t) bgif(t), j 1,..., m,

satisfying the initial condition

(13) uii(O) (Uo, Oii).

In (12), bi is a row vector defined by

bit (b , b i ),
k kwhere b ii (b bii).

Now let us define the following vector and matrix:

Uil.(t)
(14) Ug(t)

Lui.(t)J
Then (12) can be written as

i=l,...,n,

(15) lJi(t) -[- hibli(t) Jif(t), 1,..., n.

Furthermore, let

L =ml+.. "+mr, N=ml+’’ .+m,.

Since <- n, L <_- N. Let us define an L-dimensional vector x l(t), L r matrix/31, and

L L diagonal matrix A by

Iu l!t)]x’(t)=
Luit)_j

.(16)
A diag (-h aims, --hllm,),

Lb2,J Lbii.,, b:m,J



670 Y. SAKAWA

where Im denotes an m x m unit matrix. Then from (15) we obtain

(17) 2 l(t) A ix l(t)+ Bl[(t).

Similarly, let us define an (N- L)-dimensional vector x2(t), (N-L) x r matrix B2, and
(N L) x (N L) diagonal matrix A by

Xa(t)

k un’(t)J
(18)

Then we obtain

B2--

A2 diag (-h+lI,,+x,.. ,

(19) 22(t) A2x2(t) + B2f(t).

We see that (17) is controllable if and only if [7], [13]

(20) rank Be-- mi, 1,..., I.

In order for the relation (20) to hold, the number r of the control inputs should satisfy

(21) r =>max {ml, ,m}.

Since

u(t)=P,u(t)+O,u(t),

the output functions (7) are expressed as

(22) Y
k (t)

/Tti / k,Y c iiuii(t) + (Q,c O,u (t)),
i=1/=1

where c (c g,o o). By defining the matrices

C 1 C imi

PLcfl Cim,J
(23)

C1 [CI," ", G],

we can express the output vector function as

k=l,.. .,p,

C2 [l+l, n],

(24) y(t) ClX l(t) + C2x2(t) + SnQnu (t),

where S,Qnu(t) is called the observation spillover [2], and the operator Sn mapping
QnL2(f) into R p is defined by

(25) S,u u e O,L(f).
L(O.c", u)

The system (A 1, C1) is observable if and only if [7], [14]

(26) rank (i mi, 1,..., 1.

In order for the rank condition (26) to hold, the number p of sensors should be such
that

(27) p _-> max {m 1,’’’, m}.
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3. Feedback control using observers. First, we construct two kinds of finite
dimensional observer defined by

(28) z2 l(t) (A1 GIC1)z l(t) + GI[y (t) C2ze(t)] + Blf(t),

(29) z’2 Aeze + Bf(t),
where za(t) is an L-dimensional vector and ze(t) is an (N-L)-dimensional vector
which estimate xa(t) and x(t), respectively, and G1 is an L p matrix to be determined.

It is clear from (19) and (29) that

(30) X2(t) zz(t) e a(xzo- Z2o),

where X2o x2(0), and Z2o z(0). Let us define a 2L-dimensional vector ql(t) by

(31) ql(t)=[xl(t)]zl(t)

Let the control input vector function f(t) be given by

(32) f(t)=Faza(t),

where F1 is an rL matrix to be determined. Substituting (32) into (10), (17), and
(28), and using (24) and (30) gives

(33) d- Onu(t) 21 A22 tO.u(t)J + o
where

(34)

(35)

(36)

We see that

0 AI
-It. lt.][GaC1

-1

A G Ca +B1F1 -Ic I

[A +BaF1 BaF1].0 A1-GC1
Suppose the rank conditions (20) and (26) hold. Then the linear system (A 1, B1, C1)
is controllable and observable. Consequently, there exist matrices F1 and G1 such
that all the eigenvalues of the matrices A +B1F1 and A GIC1 take any preassigned
values {-va,-re, ’,-ve} [10], [16]. Here, the real numbers v > 0 are such that

O" </.I+1 < /1 < U2 < < I2L,
(37)

v < hn+.

Let us construct the matrices Fa and G1 as stated above. In view of (34) and
(36), we see that the matrix A 11 is similar to the diagonal matrix

diag (-v,-v2,..., --/2L),
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and the matrix e A’’t is also similar to the diagonal matrix

diag (e -vlt -v2t,e ,...,e -2L,).

In other words, there is a nonsingular matrix T1 such that [1], [5]

(38) T1 eA"tT- diag (e -"’t e -’2’‘t)

From (38) we obtain

(39) [[eal’tl[<--ml e -’’t t>0

where M1 is the so-called condition number of a nonsingular matrix T1 defined by

M1 IITII[ [IT-1 >-- 1.(40)

Since

(41)

it is clear that

eAzz’QnUo e -x’’ (O,,uo, cii)qbii,
i=n+l /’=

(42) Ilea’ll<-e -’+,’, =>0.

Let us define the operators

(43) /=[A011 0 ] /=[ 0

A22 A21

where is unbounded, whereas/ is bounded. Then

(44) [11 a12] =+.
21 A22

Let us introduce infinite dimensional vectors

(45) w(t)=lO,,u(t)j,

with the norm

Then (33) can be written as

(46)

It is clear that

and that

(47)

tO(t) (X +)w(t)+g(t).

0 e A22t

max (llea’"ll, IleA22’ll).
Since 0 < pl < An+l, and M1 _-> 1, it follows from (39) and (42) that

(48) lie a’[I <- M1 e -"", > 0.

From (43) we see that

(49) IIill =< max (IIA 1211, IIA z,ll) --< max (IIQ.Bll Ilflll, IIa 11111&ll),
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where

(50)
IIQB ([IQnb 11 /... / IIOb 11a)
IIs II--< (llOc 11= +... + IIQc 11=) /=.

The second relation of (50) is derived from (25).
Now, applying the perturbation theory of semigroups [8, p. 495], [12, p. 80], we

obtain

Ile a+)’ll <-_M1 e -(vl-Mlllll)t >0(51)

Let

Since b L2() (i 1,..., r), c L2(’) (i 1,..., p), and Mx is independent of n,
in view of (49) and (50), for any small number e > 0 there is an integer n (=>l) such that

(52) MIlI/II_<_ e.

Since A+I < Vl from (37), proper choice of n gives the relation

(53)

The solution of (46) is clearly given as

(54) w(t) eA+)’wo+ e -sg(s) ds.

By using (51), I[w(t)l can be estimated as

(55) IIw()llMe- IlWoll+ ell;(s)llds

From (18) we see that

(56) tO.

Using (35) and (56), we obtain

(57) II;t)ll IIGII IIC211 e-’+"llX2o 22o11,
Substituting (57) into (55) yields

(58) IIwt)llM e -l+’‘, _0,

where

(59)

(60)

Me Ml[llwoll + IIGIII IIc:ll(,- A,+l)-lllx2o , :o11-1.
Define a 2(N-L)-dimensional vector q2(t) by

q2(t)=[x2(t)]z2(t)J"
From (19) and (29) we obtain

(61)

where

(62)

c2(t) Aq2(t) +/z (t),

A2 LB2FIJ"
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Integrating (61) gives

(63) q2(t) eAtq20 + Io eA(t-S)Z l(S) ds,

where q2o--q2(0). Using the estimates

Ile’’ll _-< lie a’ll e-x,+i, _< e-’,
(64) I[ll--<,/llFll IIB211,

IIz(t)ll-<-IIw (t)[[_-< M2 e-X’+lt,
we obtain the following relation:

(65)

(66)

(67)

Ilq2(t)l[ e-=’[llq2ol] + ,,/ M2IIFaII IIB2II(A,+I o’)-].
Putting (58) and (65) together, we finally obtain

Ilw (t)ll- MEllWoll / 4IIGll Ilc211(/l l+)-11q20113 e -,t,

Ilq2(t)ll <- Mlb/ll&ll 112[I(A/+1 -,r)-llwoll
+ {1 + 2111111GI[I liB=l[ Ilcdl(a,+l- O’)-1(1- A/+l)-}llq2oll] e -’,

for => 0. Define an infinite dimensional vector if(t) by

F ql(t) 1if(t) [ q2(t) R TM OnL2().
LO.u(t)

It is obvious that uV(t) represents the state of the diffusion system as well as the state
of the dynamic controller. From (66) and (67) we see that

(68) IIW (t)[[ g e-’ll (0)11, => 0,

where K is a constant dependent on l, n, etc.
Thus we can summarize what we have discussed so far as follows"
THEOREM. Given an arbitrary damping constant r >0, suppose that the rank

conditions (20) and (26) hoM, where is an integer satisfying (8). Then a finite
dimensional feedback dynamic controller, described by (28), (29), and (32), can be
constructed such that the state v(t) of the overall system satisfies (68), where K is a
constant dependen{on 1, n, and so on.

Remark 1. The bounded operator B defined by (43) results from the control
and observation spillovers [2]. If

bt’(’)P,,L2(O.), k 1,. ,r,
kc (.)6p,L2(f/), k 1,...,p,

for some integer n, then/ 0.
Remark 2. If n, (52) does not hold, because in this case the constant M1

depends on n and M1 - oo (l -+ oo), in general. Thus, boundedness of MII[/[I with
respect to n is not clear. The key point of this paper lies in the introduction of two
different integers and n.

Remark 3. In this paper, an identity observer has been used for estimating the
state of the first L modes of the diffusion system. It is also possible to construct a
feedback dynamic controller by use of a reduced order observer [10].
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Remark 4. Curtain [17] discusses, under some conditions, the case where operator
B in (1) and the observation operator C defined by y(t)= Cu(t) are not bounded.

Remark 5. Mitkowski [18] considered the stabilization of linear distributed
systems by using an infinite-dimensional observer. The idea in this paper is partially
due to Mitkowski.

4. An example of a partial differential equation. In this section, we show an
example of a partial differential equation as well as a boundary condition which can
be described in abstract form as in (1).

Let us consider the partial differential equation

(69)
Ou (t, x____)_ (Zk c (x))u (t, x) b k (x)f (t),

Ot

where x e fl, A denotes the Laplacian, and c(x) is a bounded measurable function.
The boundary condition is assumed to be either of the Dirichlet type

(70) u (t, x) 0, > 0, x F,

or of the third kind

(71) du(t’x----’+r(x)u(t,x)=0, t>0, x F,
dn

where F is a sufficiently smooth boundary of f, d/dn is the derivative in the direction
of the inner normal, and r(x) is a sufficiently smooth function on F. In view of (69),
let us define the operator A by

(72) au (-A + c (x ))u (.).

It is proved in [11] that the operator A defined on the domain

(73) D(A)= u H2(fl): -n+ru =0(oru =0) onF

is selfadjoint, where H2() is the Sobolev space of order 2, that D(A) is dense in
L2(fl), that the resolvent (A-I)-1 exists and is compact for any real I satisfying
< infxa c(x), and that A is bounded from below. Therefore, the diffusion system

(69) with the boundary condition (70) or (71) can be expressed as in (1).

Acknowledgments. The author wishes to thank Dr. N. Fujii and Dr. T. Nambu
for their valuable discussions.
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STRUCTURAL PROPERTIES OF THE LINEAR-QUADRATIC
STOCHASTIC CONTROL PROBLEM*

KENKO UCHIDAt

Abstract. This paper treats the problem of optimally controlling a class of linear stochastic systems
with noisy observations and bounded controls modeled via the Girsanov transformation. The cost functional
is quadratic, and the initial state is non-Gaussian and bounded. It is shown that, under a certain inequality
condition for the system matrices and the weighting matrices of the cost functional, there exists a unique
optimal control which is linear in the state estimate but which is nonlinear and in particular non-Lipschitzian
in the observation. It is also shown that the certainty equivalence property holds.

Key words, stochastic control, linear-quadratic problem, non-Gaussian initial state, certainty
equivalence

1. Introduction. The linear-quadratic-Gaussian control problem, which takes a
particular position of practical importance in stochastic control theory, has been almost
exhaustively studied in various aspects (see, e.g., [1], [8], [12]). One of the features
of this problem is the certainty equivalence property: the optimal control is given by
the tandem connection of the optimal regulator and the optimal state estimator.
Attempts to establish this property were reported in [10] for non-Gaussian initial
state and noise distributions as well as for nonlinear measurements. In such extensions,
however, the problem is reduced to whether for the certainty equivalence control the
system equation has a strong solution. A sufficient condition for the existence of the
strong solution is that the state estimate is Lipschitzian in the observations but this
seems to be a severe restriction except in the Gaussian case. Another sufficient
condition is to assume the existence of nonzero time delays in the observations and/or
controls [9], [11].

Our concern in the present paper also lies in establishing the certainty equivalence
property in a non-Gaussian case. However, in order to get rid of the technical
restrictions stated above, we formulate the problem by making use of the notion of
weak solution for stochastic differential equations as generated by the Girsanov
transformation as in [2]. In the weak sense formulation it has been shown that the
linear-Gaussian control problem has the properties similar to ones obtained for the
strong sense formulation: the state estimator is generated by a filter of the Kalman-
Bucy type [3] and the separation principle can be established under certain conditions
[4]. A feature of our control problem compared with these previous ones is the
non-Gaussian character of the initial state, which guarantees generally a nonlinear
structure for the state estimator and will thus make our problem difficult to solve. It
should be noted here that by the weak sense formulation we can eliminate the control
dependence of the observation but we are led to the control dependence of the basic
probability measure.

In this paper, we consider a linear stochastic control system with noise free state
dynamics and linear observations in additive Gaussian white noise. More precisely,
on some interval [0, T],

(1) dx(t)=A(t)x(t)dt+B(t)u(t)dt, x(0) z,
(2) dy(t)=F(t)x(t)dt+dw(t), y(0) 0, w(0) 0,

* Received by the editors March 3, 1981, and in revised form September 10, 1982.
t Department of Electrical Engineering, Waseda University, Tokyo 160, Japan. Now at Lehrstuhl und

Laboratorium fiir Steuerungs- und Regelungstechnik, Technische Universitit Miinchen, Miinchen, West
Germany.
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where {w (t), 0 =< -< T} is an m-dimensional Wiener process independent of the initial
state z which takes value in a bounded set Z {z R Ilzll--< N}, Here N is a positive
constant and I]" is the Euclidean norm. The control process {u (t), 0 =< -< T} is allowed
to depend on the past observation {y(s), 0-<s =< t} and takes value in a bounded set
u {u R: Ilu =< M}, where M is a positive constant. The problem is one of selecting
an admissible control which minimizes a quadratic cost functional of the form

T

(3) J(u)=E{x’(T)STx(T)+ i (x’(t)O(t)x(t)+u’(t)R(t)u(t))dt}.
It is shown that, if a certain inequality condition for A(t),B(t), St, Q(t) and R(t) is
satisfied, there exists a unique optimal control which is linear in the state estimate
but which is nonlinear and in particular non-Lipschitzian in the observations. It is
also shown that the optimal control has the certainty equivalence property.

2. Formulation of the problem. The stochastic differential equations (1) and (2)
are solved in the weak sense by making use of the Girsanov transformation" Let C
be the space of all continuous functions from [0, T] to R and denote by 5(C) the
r-field of C generated by the cylinder sets {f C: f(s) B}, where 0 =< s -< and B is
a Borel subset of R and (C)= /0_<=r3(C). Let (Z) denote the (r-field of the
Borel subsets of Z. Introduce the basic underlying probability space (fl, , P*) as
being the product space (Z C, (Z) (R) (C), Pz (R) Pw), where Pz is the distribution
on Z and Pw is the Wiener measure on C. It should be recalled that once the measure
P* is defined as Pz (R) Pw, the canonical or evaluation process {Tr, 0 <= <= T}, defined
by zrt(z, y)= y(t) for all pairs (z, y) in fl, is a standard Wiener process independent
of the random variable z under measure P*. An admissible control law u is any jointly
measurable function u [0, T] C - U such that u (t,.) is gJt(C)-measurable for each

[0, T]. For each admissible control law u and each (z, y) (Z C), define the
processes {x (t), 0 -<_ <- T} and {w (t), 0 -< <= T} by setting

(4) xu(t)=(t, O)z + dO(t, s)B(s)u(s, y)ds,

(5) wu(t) =y(t)- F(s)x(s) ds,

where (t, s) is the fundamental solution matrix associated with A (t). The components
of the matrices A(t), B(t) and F(t) are real-valued continuous functions. Define the
measure pu on (Z x C, Yd(Z)(R)N(C)), absolutely continuous with respect to the
product measure P* Pz (R) Pw, by its Radon-Nikodym derivative

(6) dp.=exp (F(t)x(t))’ dy(t)- Ilf(t)x(t)lf dt

for each admissible control law u. (’) denotes the transpose of vectors and matrices.
Then, by noting that x,(t)is bounded since [[zll<-N and Ilu(t, y)II<--M, we can show
that E*{dP/dP*} 1, where E* denotes the expectation with respect to P*, that is,
the measure PU is thus a probability measure on (Z x C, YJ (Z) (R) (C)) and Girsanov’s
theorem applies [5]:

(i) Under P, the process {w,(t), 0 <= t-<_ T} is a Wiener process independent of
the random variable z.

(ii) The random variable z has the same distribution Pz under both measures
P* and P.
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In view of the above facts and of the relations (4) and (5), the processes {x, (t), 0 <-
_<- T} and {y (t), 0 -< =< T} solve the system of stochastic differential equations

(7) dxu (t) A (t)xu (t) dt +B (t)u (t, y) dt, x (0) z,

(8) dy(t)=F(t)x,(t) dt +dw(t), y(0)=0, w(0)=0,

and the probability measure P" is thus the unique weak solution of (1) and (2) for
any admissible control law u. The corresponding cost functional is then taken to be

T

(9) J(u)=EU{x(T)STxu(T)+Io (x’(t)Q(t)Xu(t)+u’(t)R(t)u(t))dt},
where u (t)= u (t, y) and E" denotes expectation with respect to P". The matrix ST is
positive semidefinite symmetric. Q(t) and R(t) are positive semidefinite symmetric
and positive definite symmetric matrices, respectively, whose components are real-
valued continuous functions. Note again that in our control problem the set of the
initial state Z and the control set U are both bounded as Z {z R"" [Izll-N} and
u -{u R: Ilull -<M}.

Denote by the o--field of the probability space Z x C generated by the observa-
tion process {y(s),ONs<-t} up to time t: obviously ={4,Z}(R)(C) and the
,(C)-adaptability of the admissible control laws can be seen to be equivalent to the
-adaptability of the corresponding control processes. It is remarkable that in our
formulation the o--fields {,, 0_-<t_-< T} generated by the observation are defined
independently of the choice of admissible control laws but, as we see from (6), the
basic probability measure pu depends on the choice of admissible control laws.

3. Structures of the optimal control. In order to solve the stochastic optimal
control problem formulated in the previous section, introduce a quadratic functional

V(t, x,(t)) x (t)S(t)Xu(t)

where {x(t), 0-<t-< T} is the state process generated through (7) by an admissible
control u(t) and S(t) is the unique solution of the matrix Riccati differential
equation 13

(10)

dS(t)
dt
+A’(t)S(t) + S(t)A (t) + O(t)- S(t)B (t)R-l(t)B’(t)S(t) O,

S(T)=Sr.

Differentiating both sides of V(t, x.(t))= x’(t)S(t)x.(t) with respect to yields

(11)
V(T, x.(T))- V(O, x.(O))

Io (dxs dS(t, dt))S(t)x.(t)+x.(t)
dt

x.(t)+x.(t)$(t) dt.

Substituting (7) and (10) into (11), rearranging terms and taking the expectation, we
obtain

T

J(u):EU{x’.(T)STxu(T)+Io (x’.(t)O(t)x.(t)+u’(t)R(t)u(t))dt}
=E{z’S(O)z}

T

+ Io tr[K’(t)R(t)K(t)E"{(t)’(t)}]dt
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T

+Eu{I (u(t)+K(t)u(t))’R(t)(u(t)+K(t)u(t))dt},
whereK (t) R-l(t)B’(t)$(t), ,(t) xu (t)-u(t) andu (t) E"{x, ()]t}, and we used
the t-measurability of u(t) for each t. It is noted here that the third term of the
above expression is nonnegative since R (t) is positive definite. Therefore, the cost
achieves its minimum if and only if

(12) u(t) -K(t)(t),

under the assumptions that

(13) IlK (t), (t)[[ _-<M

and that the first and second terms are independent of the choice of admissible control
laws.

The independence of the first term is shown immediately from the property (ii)
of P as

E"{z’S(O)z}= Iz ’S(O)ePz(de).
We can also establish the independence of the second term.

LEMMA. For all in [0, T], the covariance matrix E"{,(t)’,(t)} is independent
of the admissible control law u used to generate it.

Proof. Using the linearity of the state equation (7) and the t-measurability of
u(t), we have

(t) xu(t)-u(t) d(t, O)(z -E{z [,}).
By a Bayes formula [6], E"{zl,} is expressed as

ze exp{h(t,x(.,e, y), y)}Pz(d),(14) E{z[t} z exp {h (t, x (, i i}zi-
where

(15) h(t, x,(., z, y), y)= (F(s)x,(s, z, y))’ dy(s)- IlF(s)x.(s, z, y)ll2 ds

and x,(t, z, y) is the state at time given by (4) and evaluated at the sample point
(z, y). Let {x0(t, z), 0-<t-_< T} be the state process generated through (7) by the
identically zero control u (t) 0, i.e., Xo(t, z) dp(t, O)z and, for any admissible control
law u, set

(16) tz, (t, y)= d(t, s)B(s)u(s, y)ds.

Then it is clear that

(17) xu(t,z, y)=xo(t,z)+tx,(t, y).

Introduce the process {y, (t), 0 _-< _-< T} by setting

dy,(t) =dy(t)-F(t)lx,(t, y) dt

and observe that y,(t) is t-measurable and has the expression

dyu (t) F(t)Xo(t, z) dt + dwu(t).
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Now, substituting (17) into (14), rearranging terms by using the definition of yu (t) and
canceling the common factor in the numerator and denominator of (14), we obtain

Jz 5 exp {h (t, Xo( ), yu)}Pz(dE)
(18) {z j,} - e-p -{-i -x i y-i-z i-z
The right-hand side of (18) is a function of {y,(s), 0_-<s _-<t} and y,(t) is, as observed
above, a function of z and w(t). So we denote the right-hand side of (18) by G(t, z,
where the function G(., .,.) does not depend on u. Remember here that w(t) and
z are independent under P" and the restriction of P to 3 (Z) (R) {, C} coincides with
Pz. Furthermore, since w(t) is the Wiener process under P, the restriction of
P" o(")- to {, Z} @ (C), where (z, y)= (z, y(t)-0F(s)x,(s, z, y) ds) for
(z, y)e Z C, coincides with the Wiener measure Pw which does not depend on u.
Thus we find

E"{(t, O)(z -G(t, z, w.))(z -G(t, z, 0)}

z c (t, O)(5-G(t, , ))(5-G(t, , ))’’(t, O)ew (d)ez(dh),

which implies that E"{(t)(t)} is independent of the choice of admissible control
laws for each t.

Remark 1. This lemma is essentially based on the facts (i) and (ii) stated in the
previous section and will thus hold in the more general context whenever the Girsanov
transformation is valid, i.e., E*{dP/dP*} 1. The boundedness assumption of initial
state and control is only a sufficient condition for its validity [5].

Remark 2. Assume that the system (1)-(2) has a strong solution for a given
control law. In this case, if {y(t), 0 T} denotes the observations process for the
identically zero control, then the reduction from (14) to (18) impliesE{z [t} E{z1},
where t and 7 are the g-fields generated by {y (s), 0 s t} and {y(s), 0s t},
respectively, on a given probability space (, , P). In the strong formulation of the
problem, the above lemma follows immediately from the equality E{z [t} E{z [}.
A reduction procedure similar to the ones validating the passage from (14) to (18)
was used in [7] for establishing the innovations-observations equivalence for a linear
stochastic control system with a strong solution.

On the basis of the above observations, the following result can be shown.
THEOREM. For the stated stochastic control problem, there exists a unique optimal

control taking the form(12) provided the condition

max [[R-l(t)B’(t)S(t)[[
OtT

NM N max I*(t, o)11 +M max (s)ll ds
ONtNT ONtNT

is satisfied, where II, denotes the matrix norm induced by the Euclidean norm.

Proof. It is sufficient to show that, if (19) holds, there exists a unique admissible
control which satisfies (12) and (13).

Let q/ denote the set of admissible controls, i.e., if u ql, u(t) is ,-measurable
and Ilu(t)ll<-_M. It is obvious that 0// is a closed set under the topology generated by
the following notion of convergence" a sequence un, n 0, 1, 2, .., of mappings from
[0, T] C into R converges if and only if, for every y in C, the sequence of mappings
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u, (., y), n 0, 1, 2,.. ", from [0, T] into R’ converges uniformly in t. Now, for every
u in q/, define a measurable mapping $(u) from [0, T] x C into R by setting

(20) [tO(u)](t, y)=-K(t)[dp(t, O)EU{zlt}+ ,(t, y)],

where E"{zlt} is given by (14) and tz,(t, y) is defined by (16). Then, by using the
assumption (19) and Ilzll_-<N, it is shown that O,(u) is eg,-measurable and
for each u s q/, that is, is a transformation from q/into IL Furthermore, it is shown
in the appendix that there exists a positive bounded measurable function K (t, y) such
that K (t,.) is ,-measurable and yields the relation

(21) I[,(u)-t()lle<=g(t, y) Ilu(s)- (s)ll ds

for all u and r in U. It is noted here that, since

(22)
,(t)

=(t, 0)E"{zlt}+ ;o (t,s)B(s)u(s) ds,

,(u) =-K(t).,(t) and the admissible control satisfying (12) is a fixed point of t#.
Now, define the sequence u, , n 0, 1, 2, , such that Uo(t) 0 and

Un+l(t) Ot(Un), n O, 1, 2," ",

then we have from (21)

<=[iK(s, y) ds]n-1
Ilu.+l(t)-u.(t)l[

(n-l)!
K(t, y)Mt, n 1, 2, 3,. .

This implies that there is a limit u*e q/such that u, converges to u* uniformly in t,
since q/ is a closed set. Furthermore, it follows from (21) that O,(u,) converges to
4t(u*) uniformly in t, and go u* is a fixed point of , i.e.,

(23) u*(t) ,(u*).

By the use of (21) we can also prove the uniqueness of the fixed point of . Thus,
noting that (23) is equivalent to

u*(t) -K(t).(t),

and that Ilu*(t)ll<=M, we know that u* is the unique admissible control which satisfies
(12) and (13). 71

Remark 3. A priori the condition (19) could very well turn out to be vacuous,
since the matrix $(t) in the left-hand side depends on the matrix functions B(t) and
R (t) via the Riccati equation (10). As shown in the following, however, there always
exists at least one symmetric positive definite matrix function R (t) satisfying (19). Let
S(t) be the unique solution of the linear matrix equation

dS
+A’S +SA + Q O, S(T) ST,
dt

and set D(t)=S(t)-S(t) for O<-_t<-T, where S(t) is the solution of the Riccati
equation (10) corresponding to a given symmetric positive definite matrix function
R (t). It is easy to conclude that

dD
’D+A +DA -SBR-B’S, D(T) =0.

dt
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Left-multiply this latter equation by ’(t, 0) and right-multiply the resulting relation
by (t, 0); it follows that

d _,- (t, OlD(tl(t, O)= (t, OIS(tlB(t)R- (tlB’(tlS(tl(t, O)

and after integration
T

D(t) I dp’(s, t)S(s)B(s)R-l(s)B’(s)S(s)(s, t) ds.

The relation IIs(t)lllls(t)ll for all in [0, T] is now immediate from the expression
obtained for D(t) and from the positive definiteness of R-(t). It follows from this
inequality that, for all in [0, T], IlR-(t)B’(t)S(t)ll <-IIR-(t)lllln(t)llllS(t)ll. Here note
that S(t) is given independently of R(t). Thus, if R(t) is taken as IIR-(t)ll_-<
c(max0__<s__<r IIB(s)ll IIS(s)ll)-x, where c denotes the right-hand side of (19), we have

IlR-X(t)B’(t)S(t)ll<-llU-(t)ll max IlB(s)[I IIS(s)ll-,
O<=s<=T

and so we have (19). (If II (t)lllls(t)ll--o eor all in [0, T], (19)is automatically
satisfied for any weighting matrix R (t).) A simple way of choosing such an weighting
matrix R(t) is as follows: first find a positive number / such that /_-<
c(max0_<_s__<T IIB(s)ll IIS(s)ll) and then set R(t)=fl-I, where I is the r-dimensional
identity matrix.

Remark 4. Consider the corresponding deterministic problem with nonrandom
initial conditions and no observations. Then, under the assumption (19), the optimal
control is given by u(t)=-K(t)x(t). Comparing this with (12), we conclude that our
stochastic control problem has the certainty equivalence property.

Remark 5. To implement the optimal control, we need the state estimate
{,(t), 0=<t=< T}, which is given by (22) with the Bayes formula (14). It follows from
the non-Gaussian and bounded character of the initial state that u(t) is generally
nonlinear and in particular non-Lipschitzian in the observation {y(s), 0<-s-<t}: Note
that the boundness of the process {xu (t), 0 =< -< T}, which comes from the boundnesses
of the initial state and of the control, implies the same property for the state estimate.
This automatically precludes the existence of a linear or even Lipschitz-like functional
dependence of u(t) on the observation {y(s), O<-s<=t}, since the latter process is a
Wiener process under P* and any linear or Lipschitz transformation on its path will
not produce in general a bounded process.

Appendix. We shall prove the inequality (21). For short, write h’(z)=
h(t,x(.,z, y), y) and x(z)=xu(t,z, y). Using Ilzll<=N, we have from (20)

<- 2IIK(t)IIN .Iz [lexp (h’(z))- exp (ha (z))llPz (dz)

z exp (h 7 (z))Pz (dz)

+kl(t) Jo Ilu(s)--a(s)ll ds,

where k(t)=maxo<=<=T IIK(t)(t, s)B(s)ll. Further, using the following inequality in
the first term of the right-hand side,

exp s -exp sr =.(exp s + exp )11-
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for , " R, we have

(24) <-IlK (t)llN ,[z (exp (h ’ (z)) + exp (h ’ (z)))llh (z) h (z)llPz (dz)
z exp (h (z))Pz (dz)

+ix(t) Io Ilu(s)-(s)llds.

Here note that

tO(x2-xa)’
F’(r) dy(r) dsa), F’(s) dy(s)-

Os
(25) =(x -x

(F(s(x +xal’(F(sl(x -xls,

where

(26) x(z)-x(z) (t, s)B(s)(u(s)-t(s)) ds,

and also note that x(z) and x,(z) are bounded, since I[z[[_-<N, []u(t)[l<-M and
[[ff(t)l]-<_M. Substituting (26) into (25) and using the Sehwarz inequality, we find
bounded Yt-adpated functions kz(t, y) and kz(t, y) such that

(27) IIh(z)-ha (z)ll<-_ke(t, y) Ilu(s)-a(s)ll ds /k(, y) Ilu(s)-a(s)ll ds

From (24) and (27) we obtain

(28) <-]]K(t)IIN{1 +z exp (ha, (z))Pz(dz)] right-hand}zexp (h(z))Pz(dzil [side of (27)

+kl(t) f0 Ilu(s)-a(s)llds.

To bound the first factor on the right-hand side of (28), note that by the same procedure
as in deriving (27) we can find a bounded t-adapted function k4(t, y) such that

(F(sl(x(zl-x(zll’ y(sl (t,

Since x(z) and x(z) have the same upper bound, denote I(t)x(z)ll and
I()xP(z3lc. Then, we nd

Iz exp (h (z))Pz (dz)
Iz exp (h (z))Pz (&)

(29) < .[z exp ; (F(s)x 2 (z ))’ dy (s) + k4(t, y) + tL}Pz (dz
zexp o (F(s)x(z))’ dy(s) -tL}Pz(dz)

=exp (k4(t, y) + tL).
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Now it follows from (28) and (29) that

(30) Ile,,(u)-e,,(a)ll<-g(t, y) Ilu(s)-a(s)llds /g=(t, y) Ilu(s)-a(s)ll ds

where

g(t, y) IIg(t)[INka(t, y)(1 +exp (k4(t, y)-t- tt2))q- kl(t),

g(t, y) -IIg(t)llgk(t, y)(1 +exp (k4(t, y)nt" tt2)).
Thus, from (30), we obtain

II,(u)- ,,(a)ll= <-_2(tg (t, y)+g (t, y)) fo Ilu(s)-a(s)ll= ds,

which is the desired inequality (21).

Acknowledgment. The author wishes to thank the referees for their comments
and suggestions. In particular, he is deeply indebted to one of the referees for the
comment on the original version of Remark 3.

REFERENCES

[1] A. V. BALAKRISHNAN, A note on the structure of optimal stochastic controls, Appl. Math. Optim.,
(1974), pp. 87-94.

[2] V. E. BENE, Existence of optimal stochastic control laws, this journal, 9 (1971), pp. 446-472.
[3] M. H. A. DAVIS AND P. P. VARAIYA, Information sets in linear stochastic systems, J. Math. Anal.

Appl., 37 (1972), pp. 384-402.
[4] M. H. A. DAVIS, The separation principle in stochastic control via Girsanov solution, this Journal, 14

(1976), pp. 176-188.
[5] I. V. GIRSANOV, On transforming a certain class of stochastic processes by absolutely continuous

substitution of measures, Theory Prob. Appl., 5 (1960), pp. 285-301.
[6] G. KALLIANPUR AND C. STRIEBEL, Estimation of stochastic processes: arbitrary system process with

additive white noise error, Ann. Math. Star., 39 (1968), pp. 785-801.
[7] G. KALLIANPUR, A linear stochastic system with discontinuous control, Proc. International Symposium

on SDE, Kyoto, 1976, Kinokuniya Book-Store, Co., Ltd., Tokyo, Japan, 1978.
[8] A. LINDQUIST, On feedback control of linear stochastic systems, this Journal, 11 (1973), pp. 323-343.
[9] ., Comments on "A simple proof of the separation theorem for linear stochastic systems with time

delays," IEEE Trans. Automat. Contr., AC-25 (1980), pp. 274-275.
[10] K. UCHIDA AND E. SHIMEMURA, On certainty equivalence in linear-quadratic control problem with

nonlinear measurements, Inform. Control, 41 (1979), pp. 119-135.
[11] K. UCHIDA, On optimal control of the stochastic systems with delayed controls and delayed measure-

ments, J. Math. Anal. Appl., 75 (1980), pp. 454-464.
[12] W. M. WONHAM, On the separation theorem of stochastic control, this Journal, 6 (1968), pp. 312-326.
[13], On a matrix Riccati equation of stochastic control, this Journal, 6 (1968), pp. 681-697.



SIAM J. CONTROL AND OPTIMIZATION
Vol. 21, No. 5, September 1983

1983 Society for Industrial and Applied Mathematics
0363-0129/83/2105-0003 $01.25/0

LIE BRACKETS AND LOCAL CONTROLLABILITY:
A SUFFICIENT CONDITION FOR SCALAR-INPUT SYSTEMS*

HICTOR J. SUSSMANNt

Abstract. We develop a general formalism, based on exponential Lie series, which can be used to
study control variations. We apply the formalism to prove a result, conjectured by H. Hermes, that gives
a sufficient condition for small-time local controllability for single-input systems.

1. Introduction. This paper deals with control systems with a scalar input which
enters linearly in the dynamical equations. We prove that a certain condition involving
Lie brackets is sufficient for local controllability from a point Xo. The condition
considered here was first introduced by H. Hermes, and we will refer to it as the
Hermes local controllability condition (HLCC). Hermes conjectured that this condition
would be sufficient for local controllability, and the primary goal of our paper is to
prove that conjecture. (Hermes himself proved the conjecture for systems in the plane,
and he has recently announced partial results for more general systems, cf. [13] and
[14].)

There are, however, other reasons why the results presented here may be of
interest, and this is why we have chosen to present some of our preliminary results
in a more general form than is actually needed for the specific problem considered
here. It has been clear for a long time (at least since R. Hermann’s work [1]) that
many properties of control systems should be characterizable in terms of Lie bracket
configurations. A precise explanation of why this should be so is provided by Nagano’s
theorem: if {Xi: I}, {Yi: I} are two transitive families of analytic vector fields on
manifolds M, M’, and if m, m’ are points of M, M’ such that there is a linear iso-
morphism L:T,M T,,M’ between the tangent spaces of M at m and of M’ at m’,
which maps every vector (adXil)’’’ (adXik)(Xik/)(m) to the corresponding vector
(ad Yi) (ad Yik)(Yi/l)(rn’), then there is a diffeomorphism A from a neighborhood
of m to a neighborhood of m’, such that A.(Xi)= Yi for L (A family {Xi: I} is
transitive if the evaluation at every point of the Lie algebra generated by the Xi is
the full tangent space at the point.) When this is applied to control systems

(1.1) : =f(x, u), x sM, u U,

(1.2) 3) g(y, u), y M’, u e U’,

with f, g analytic, this gives an important conclusion. Define the Lie configuration of
(1.1) at x0 to be the specification of all relations at x0 between the Lie brackets of
the vector fields f(., u) (equivalently, the kernel of the map Lie (U) TxoM which
sends each IX,l, [X, [... [X,.._, X,.]...]]] to the result of plugging in f(., Ui) for
X,, and then evaluating at x0. Here Lie (U) is the free Lie algebra in a set of
indeterminates {X,: u U}). Then if (1.1) and (1.2) have equivalent configurations at
Xo, yo (the definition of equivalence being the obvious one), it follows that there is a
diffeomorphism that maps trajectories of (1.1) from Xo to trajectories of (1.2) from
yo. This shows, roughly, that all "diffeomorphism invariant" properties of an analytic
system with a given initial state x0 should be describable in terms of the Lie bracket
configuration of the system at Xo. Examples of such properties are: accessibility (i.e.

* Received by the editors September 1, 1981, and in revised form August 30, 1982. This research
was partially supported by the National Science Foundation under grant MCS 78-02442.

t Mathematics Department, Rutgers University, New Brunswick, New Jersey 08903.
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whether it is possible to reach an open set), local controllability (i.e. whether one can
reach a neighborhood of x0), small-time local controllability (i.e. whether it is possible
to reach a full neighborhood of x0 in arbitrarily small time), "bang-bang theorem"
(i.e. whether everything reachable from x0 can actually be reached by a bang-bang
trajectory), various properties of reachable sets (e.g. whether the reacl’iable set from
x0 is a locally finite union of manifolds), of time-optimal trajectories (e.g. whether
every time-optimal trajectory from x0 is bang-bang, or piecewise analytic, or piecewise
smooth), of the optimal cost function (e.g. whether it is "piecewise analytic" in some
sense) and of the time-optimal feedback (e.g. whether it is smooth except on a locally
finite family of manifolds that are "switching loci").

These considerations suggest a general program of research, whose aim is to
characterize properties such as the ones listed above in terms of Lie configurations.
Much has actually been done in this direction, e.g. in the work on "Chow’s theorem"
(Hermann [1], Lobry [5], Krener [3], Sussmann-Jurdjevic [8]), on bang-bang theorems
(Krener [3], Sussmann [9]), on controllability about a reference trajectory (Hermes
[2]), on high order optimality conditions (Krener [4]), and on local controllability
(Sussmann [10]). However, the peculiar fact that control trajectories are not time-
reversible makes it hard to figure out what the Lie algebraic conditions should be
and, until now, there was no satisfactory result where this positivity of time was really
brought into play.

Our work here should be regarded within the context of the program outlined
above. The small-time local controllability (STLC) question is trivial if "time" is made
"reversible" by allowing motion along trajectories in either time direction. (The answer
is provided by "Chow’s theorem".) Our result considers the problem without allowing
motion "backwards in time", so it is a genuine "positive-time" theorem. In our view,
the main interest of the result given here is that it suggests the possibility of further
"positive-time" results for other problems of a similar nature. For this reason, we
start the paper by developing a general "exponential Lie series" formalism for arbitrary
systems with a control entering linearly, even though we only apply it here to the
scalar-input case. The formalism makes it possible to study control variations in a
systematic way and, at least for the problem studied here, it avoids cumbersome
inductive constructions.

Even for the class of problems considered here, the STLC question is not
completely settled. It is not true, for instance, that the HLCC is necessary as well as
sufficient for STLC. In 5, we prove that some particularly simple violations of the
HLCC imply noncontrollability. But, in 6, we show that it is possible for a system
to be STLC even if the HLCC fails. So, it is not clear what the true necessary and
sufficient condition is.

It is also unclear how to generalize the results to the multi-input case. But the
most exciting challenge is to attempt to establish a link between our work and the
problems of controllability about a reference trajectory (CART), and of high-order
optimality conditions. The STLC problem is, after all, a particular case of the CART
problem, the reference trajectory being just a point.

The paper is organized as follows: in 2 we state the main result, and we discuss
how it relates to the linear criterion; in 3 we introduce the general exponential Lie
series formalism; in 4 we show that the exponential Lie series gives an asymptotic
expansion for the trajectories, as 0; in 5 we use the formalism to prove the main
result. Finally, in 6 we show that at least some consequences of the HLCC are
necessary conditions for STLC, but we give an example (due to B. Jakubczyk) which
shows that HLCC is not necessary for STLC.
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2. Statement of the main result. Let fo, fl be smooth vector fields on a manifold
M. Let Lie (fo, fx) denote the Lie algebra of vector fields generated by fo and fx. For
each integer k _>-0, we define a linear subspace 5t’k(fo, fx) of Lie (fo, fx) as follows:
5’k (fo, fx) is the linear span of all Lie monomials in fo and fx which involve fx at most
k times. Thus 5’(fo, fx)= {cfo: cz R}, 5t’X(fo, fx) is the linear span of fo, fx, and the
brackets (ad fo)Jfl for j _-> 1, etc.

Let us consider a control system

(2.1) -[o(X)+U[x(x) [u(t)l<A
dt

where the state x belongs to M, and where the control is subject to the inequality
constraint -A-<u =<A. For any point xoeM, we let Reach (Xo, t) denote the set of
all points that can be reached from Xo by means of a trajectory of the system (2.1) in
no more than units of time. We say that (2.1) is small-time locally controllable (STLC)
from Xo, if for every > 0 the set Reach (Xo, t) contains a neighborhood of Xo.

We say that x0 is an equilibrium point for (2.1) if there is a ti R, [til <_-A, such
that fo(Xo)+tifx(Xo)=0. We say that x0 is a regular equilibrium point if fo(Xo)+
ti[x(Xo)=0 for a ti such that lal<A. Except for the trivial situation when [o(Xo)
fl(xo)=0 (in which case Reach(xo, t)={Xo} for all t), the ti of the preceding
equations, if it exists, must be unique.

We say that (2.1) satisfies the Hermes local controllability condition (HLCC) at
Xo if
(HLCC 1)
(HLCC 2)
(HLCC 3)

x0 is a regular equilibrium point,
dim Lie (fo, fl)(Xo) dimM and
the increasing sequence of subspaces
satisfies

{Y (fo + aft, d): k O, ,...}

,.k (fo "q" till, fl)(Xo) ’09k +l(fo + till, fl)(Xo)

whenever k is odd.
In conditions (HLCC 2), (HLCC 3) we have used V(xo), whenever V is a set of

vector fields, to indicate the set of all values at Xo of the elements of V. Also, in
(HLCC 3), ti is the unique number such that fo(Xo)+tifx(xo)=0, and therefore

Our main result is
THEOREM 2.1. If (2.1) satisfies the HLCC at Xo, then (2.1) is small-time locally

controllable [rom Xo.
The remaining sections will be devoted to the proof of Theorem 2.1. Here we

will describe how the result relates to the well-known sufficient condition in terms of
the linearization of the system. Choose coordinates in a neighborhood of Xo, so that
[o and fx are, simply, vector-valued functions. The linearization of (2.1) about (Xo, ti)
is the system

(2.2) dJ= Aj + vb,
dt

where : x -Xo, v u ti, b is the vector f(xo), and A is the Jacobian matrix at Xo
of the vector-valued function x f0(x)+ tifx(x). Then a simple computation shows
that 91(fo+ tit’l, fx)(Xo) is the linear span of the vectors AJb,/" 0, 1, 2,. .. So, if
the linearization of (2.1) about (Xo, ti) is controllable, 1(fo + tit’l, fx)(Xo) is the whole
space, and then conditions (HLCC 2) and (HLCC 3) are trivially satisfied. So our
Theorem 2.1 implies in particular the linear criterion: if Xo is a regular equilibrium
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point for (2.1), and if the linearization of (2.1) about (Xo, tT) is controllable (a being
the unique u for which fo(Xo) + ufl(Xo) 0), then (2.1) is STLC from x0.

3. The exponential Lie series formalism. In this section, we present a formalism
for the study of the asymptotic behavior of control trajectories as time, or some other
parameter on which a control may depend, approaches zero.

To each control u(.) we will associate a series, denoted by Ser (u). This series
has also been considered--and used for other purposes--by M. Fliess under the name
of "Chen series" (cf. Chen [22] and Fliess [21]).

We let IL, denote the set of all Rm-valued measurable functions u(.) whose
domain is some compact interval of the form [0, T], and which are Lebesgue integrable
on [0, T]. We identify any two elements of 0?/, that are equal almost everywhere. If
u(.):[0, T] Rm is an element of ", then the time T will be referred to as the
terminal time of u(.), and denoted by T(u). If 0 <= <= T(u), then one can consider
the element of 0-//,, obtained by restricting u(. to the interval [0, t]. We use ut( to
denote this element (so that T(ut) t). If u(.) 0?Ln, we will always use Ul,’’’, u,, to
denote its components. We always write u0--- 1.

Now let X (X0,’’ ", X,,) be a finite sequence of objects, that will be called
indeterminates. We use A(X) to denote the free associative algebra in Xo,’’ ", Xm.
If I (il, , ik) is any finite sequence such that the ij are integers and 0 -< ij =< m, then
we define

XI-XilXi:z "Xil.
We let X 1. Then the monomials Xt form a basis for A(X). If we let I.J

denote the concatenation of I and J (i.e. the sequence obtained by writing first the
elements of/, and then those of J), then multiplication in A,, is simply given by

XX: X..

We also want to consider the algebra (X) of formal power series in X0, ,
The elements of A(X) are the formal sums YxatXt, where I ranges over all multi-
indices.

Given an element P of A(X) and a u(.) q/,, we can consider the differential
equation

(3 1) --=dS S(Xo+ Ydt

with initial condition S(0)=P. A solution of (3.1) is a function S’[0, T(u)](X)
such that S(0)= P and that (3.1) holds for each coefficient. So, if P Y. ptXt, and
S(t) Y_tst(t)Xt, then S(. is a solution if and only if, for each L the conditions

(3.2a) St(0)

(3.2b) t(t) Sj(t)ui(t)

are satisfied, where I =J.{i}. This shows that, for any given P, the solution of (3.1)
with initial condition S (0) P exists and is unique (because formulas (3.2a) and (3.2b)
enable us to compute the St recursively).

In the particular case when P 1, Formulas (3.2a) and (3.2b) yield S(t) 1, and

S1.{,(t) I Ui(T)SJ(T) dr.
Jo
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From this one obtains by induction the formulas

(3.3) St(t) ut

where 0 ut denotes the iterated integral

Io foIZokf Iro2Uik(Tk)Uik-l(Tk-1)’’Ui2(T2)Uil(T1)dT"ldT2"dTkZk

(3.4) u
a0

if I (il,"’, ik), and where we let u= 1.
If u(.)q/,, we define Ser (u)mthe formal series of u--to be S(T(u)), where

S(. is the solution of (3.1) with initial condition $(0)= 1.
The set 0//, is a semigroup under the operation of concatenation. We write u # v

for the concatenation of u and v, i.e.

u v:[0, T(u)+T(v)]"(3.5a)

is defined by

(3.5b)
(t)U

(u # v)(t)
v(t-T(u))

for O<=t < T(u),
for T(u)<t<=T(u)+ T(v).

Then we have
LEMMA 3.1. The map Ser" q/,, A (X) is infective, and satisfies

(3.6) Ser (u # v) Ser (u) Ser (v)

for u, v ql,,.

Proof. Let u q/,, u:[0, T] R’. Then the coefficient of X0 in Ser (u) is T, so T
can be recovered from Ser (u). If 1 -<_ -< m, and 0 -< k, the coefficient ofXg in Ser (u)
is

k---, tkui(t) dt.

Hence Ser(u) determines, for each i, all the integrals TotkUg(t)dt, for all k.
Therefore each ui is completely determined by Ser (u), so Ser (.) is one-to-one.

If u, v are in q/,, let T T(v), T’= T(u). Let S(t) be the solution of

(3.7a) $ S(Xo + Y v, Xg)
i=1

for 0 -< =< T, with initial condition S(0)= 1. Then S(T)= Ser (v). Left multiplication
by the constant element Ser (u) implies that Ser (u)S(t) is also a solution of (3.7a),
with initial condition Ser (u). On the other hand, if we let $2(’ be the solution of

(3.7b) S(Xo -[- (u := v)iXi) S(O) 1,

we see that t--> S2(t + T’), 0 <-_ <-_ T, is also a solution of (3.7a) which equals Set (u)
when 0. Therefore

S2(t + T’) Ser (u)S(t)

for 0<=t-<_T. In particular, if we let t=T, we find that Ser(u#v)=
Ser (u) Ser (v). Q.E.D.

In addition to the formal power series Set (u)s A(X), we also want to consider
truncated series. We let Au (X) denote the free nilpotent associative algebra of order
N + 1. A basis for Au (X) consists of all monomials Xt for [II <=N (where Ill denotes
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the length of I), and multiplication is defined as in A(X), except that, whenever
[II + [JI > N, then the product X,Xj is set equal to zero.

If $ A(X), we use Sn to denote the series obtained from S by simply deleting
all the monomials Xt with III > N. Then Sn An (X). If u ,, then we write

Sern (u) [Ser (u)]n.

The AN (X)-valued map SerN (ut), 0=<t _--< T(u), is the unique solution of

(3.8) (Ro + E uR)(S), S(O) 1,

where Ri’An(X)oAn(X) is the linear map defined by right multiplication (in
AN (X)) by Xi (i.e. Ri(S)= SX)).

If S is any formal series in (X), or in An (X), we use to (S) to denote the order
of S, i.e. the degree of the monomial Xg of lowest degree which appears in S with a
nonzero coefficient. (If S 0 we let to(S)= +m.) If fag} is an arbitrary sequence of
numbers, and if to (S)->_ 1, then the sum

akS k

k=0

is well defined. In particular, if we use/0(X), AoN(X) to denote the set of elements
of .z{ (X) (or of AN (X)) whose order is not zero, we find that

(3.9) es= .Sk-0

and

(3.10) log(l+S)= (-1)k+aS
are well defined for S o(X), or S A(X), and that the identities

(3.11) e lgs S,

(3.12) logeS’=s

hold whenever w (S 1) > 0, to (S’) > 0.
The algebras A (X), (X), AN (X) are Lie algebras, with the Lie bracket being

defined, as usual, by

IS, T] ST- TS.

We use L(X), LN (X) to denote, respectively, the Lie subalgebras of A (X) and of
AN (X) generated by Xo, , Xm. The elements of L(X), or of LN (X), will be referred
to as Lie polynomials in Xo,’" ,Xm. We also want to consider the Lie algebra
/(X)_(X) of all formal sums Y.k=IP, where each Pk is a homogeneous Lie

polynomial of degree k. The elements of L(X) are the Lie series in Xo, , X,.
If P and Q are Lie series, then to(P)->_ 1 and to(Q)>= 1, so that e P and e are

well defined, and ePe o 1 o(X). Therefore log (ePe o) is well defined. We will use
the Campbell-Hausdorff formula (cf., e.g. Serre [7]), which says that there is a Lie
series CH (A, B) in two indeterminates A, B, with the property that, whenever P 6

0(X) and Q 6 0(X), then

(3.13) CH (P, Q) log (ePe o).
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(An explicit formula for CH (A, B) is given, e.g., in Serre [7]. The formula up
to order three is

(3.14) CH (A, B A +B + 1/2[A, B + 2[A, [A, B ]] + 2[B, [B, A]] +....)

Formulas (3.13), (3.14) are also valid for P, Q A0(X), and in this case CH (P, Q)
turns out to be in AV(X) again. A particular consequence of the Campbell-Hausdorff
formula is that, if P, Q are Lie series, then

(3.15) ePe=eR

where R is again a Lie series.
Let us define ((X), GN (X) to be the sets

(3.16) t(X) {P (X)" logP (X)}
and

(3.17) GN (X) {P An (X)" log P LN (X)}.

Then t(X) and the GN (X) are clearly groups, because of the Campbell-Hausdorff
formula. The elements of G(X) are called exponential Lie series. For each N, AN(X)
is a finite-dimensional algebra with identity, and so it can be identified with a subalgebra
of the algebra Lin (An(X)) of all linear maps AN(X)-AN(X) (by identifying each
PAN(X) with the map SPS). Then GN(X) becomes identified with a closed
subgroup of the group of invertible elements of Lin (An (X)), so GN (X) is a Lie group
whose Lie algebra is LN (X).

We now consider the differential equation

((3.18) g S Xo + uiX,
i=

as an equation in An (X). Then (3.18) is of the form

(3.19) S =F0(S) + E uiFi(S)
i=1

where Fo, , F,, are the vector fields on AN (X) given by

(3.20) F, (S) SX,.

(Since AN (X) is a vector space, then a vector field on AN (X) can be thought of, simply,
as a map from AN (X) to AN (X).) More generally, if P AN (X), then one can consider
the vector field FP defined by

FP(S) SP.
An easy computation shows that

(3.21) IFP, F FtP’] for P, O AN (X).

Let An (X) be the Lie algebra of vector fields on AN (X) generated by F0, ,
Then (3.21) shows that An(X) is isomorphic to LN(x), the map PFP being the
isomorphism. It follows from general accessibility theory (cf. [8]) that there is a unique
maximal integral manifold I of An (X) through the point 1. (Precisely, ! is characterized
by the fact that (i) it is a connected submanifold of An (X), (ii) its tangent space at
each P s ! is the set of all vectors V(P), as V varies over An (X), (iii) 1 eL and (iv)
there is no larger J that satisfies (i), (ii) and (iii).) Moreover, I is the orbit of An (X)
through the point 1 (cf. Sussmann [11]), i.e. the smallest subset J of AN(X) with the



LIE BRACKETS AND LOCAL CONTROLLABILITY 693

property that 1 s J and that, whenever S J and V As (X), then the integral trajectory
of V through S is entirely contained in J.

If V As (X), and V FP for P LN (X), then the integral trajectory of V through
an S An (X) is the curve - S e tP. Therefore I is the set of all products

(3.22) e qP e P. eP

as k varies over all nonnegative integers, and (P1, , Pk), (tl, ", tk) over all k-tuples
of elements of Ln (X), and of real numbers, respectively. The Campbell-Hausdorff
formula shows .that every product (3.22) is in Gn (X). Conversely, the very definition
of Gn (X) shows that every element of Gn (X) is a product of the form (3.22) (with
just one factor). So I Gn (X).

If P /, then every solution of (3.19) which starts at P must stay in L Since (3.19)
is equivalent to (3.18) we conclude, in particular, that the solutions of (3.18) starting
at 1 stay in Gn(X). Therefore SerN (u) Gn(X) for every u em. Since this is true
for each N, it follows that Ser (u) (X). We summarize these facts in the following
two statements.

PROPOSITION 3.1. For every u ll,,, the series Ser (u is an exponential Lie series.
PROPOSITION 3.2. For every N, equation (3.18), regarded as an evolution equation

on AN(X), is a control system Fo(S)+i= uiFi(S), where the vector fields Fi are
given by (3.20). The Lie algebra An (X) generated by the Fi is isomorphic to Ln (X),
and the maximal integral manifold of AN (X) through 1 is Gn (X). In particular, the
reachable set from the point 1 for the system (3.18) is a subset of Gn (X).

Actually, the general results of accessibility theory imply a stronger conclusion,
which will be important to us. The "positive form" of Chow’s theorem (Krener [3])
says that the reachable set from 1 for the system (3.18) actually has a nonempty
interior in Gn(X). Then the Sard theorem argument of [8] shows that the reachable
set actually contains points which are "normally reachable", i.e. "reachable with full
rank". We now make all this precise and, since the proofs are quite short, we present
them in full.

Let denote the set of all k-tuples of nonnegative real numbers. Fix a finite
sequence

(3.23) F r)

where each 7 is an element of R". The choice of F is arbitrary, subject only to the
requirement that

(3.24) Aft

where "Aft" means "atfine hull". (The affine hull of a set E is the set of all linear
combinations of the elements of E with coefficients that add up to 1.) If rn 1, then

3,
2a natural choice is to let r 2, 3’ a, =-a, a being any nonzero number. In

general, it is clear that r must be at least m / 1.
Given F, we assign a meaning to 3’ for an arbitrary positive integer by letting

--> yi be periodic with period r, i.e. we let yi yJ whenever 1 -</" _-< r, pr +/’.
For any t e IIk+, t (tl, , tk), define a control {F, t} by letting

{F, t}(r) 3’ if 0 _--< "r < tl,

{F, t}(r) ,/2 if tl < r < tl + t2,

{F,t}(’)=yk iftl+’’’+tk_l<r<h+’’’+tk.
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A control which is of the form {F, t} for some k and some t R will be called a
F-control, and we will use q/,(F) to denote the set of all F-controls. Also, for any
given F, we let X (F) denote, for each i, the element X0 + j--1 yX. of A(X) where

N k N
Y -(Yl,’ ’, Y). We let ’,r A (X) denote the map

N (tl, , t) gtlX(r) et:X:(r) tx(r)(3.25) t, ,r e

Then it is clear that
N (t)=SerN({F t}) ift[+,(3.26) ’k,r

and that ’k,r maps into (X).
will be called N-normal if the differential d,r of theA F-control {F, to}, to

N tomap ’k.r has rank at equal to the dimension of GN(X), and all the components of
to are strictly positive.

PROPOSITION 3.3. For every N > O, and every F such that (3.24) holds, there exists
an N-normal F-control {F, to}.

Proof. Let L be the Lie algebra generated by the X (F). Then L
_
LN (X). On the

other hand, every m-tuple (al,..., a,) can be expressed as an affine combination
Y Ai’i, Ai 1, and therefore Xo + a.fl(, equals Aixi(F), which belongs to L. So
Xo L, and X0 +X L for/’ > 0, and therefore L LN (X).

Now, for each k and each te , let p(k, t) denote the rank of the differential
N to" toof ’,Z at Choose a k and a for which p(k, t) has the maximum possible

Nvalue, and let this value be ft. Then ’k,r has rank fi in a neighborhood of to in k,
and so there is (by the implicit function theorem) a neighborhood U of to in which

Nis mapped by ’k.r onto a fi-dimensional submanifold M of GN(X), and is such that
t’k,r has rank fi throughout U.

For each i, let V (F) denote the vector field Fx’(r We claim that the V (F) are
tangent to M. Indeed, if this were not so, there would be an such that, for some
S M, Vi(F) is not tangent to M at S. Since i-, 3, i, iX (F), i Vi(F) are periodic
with period r, we may assume that > k. Also, we have

NS =/,’/,r (t1)
for some tl U. Let 0 denote a sequence of i- k 1 zeros. Then

N
7" t,’/,r (t 1, O, 7")

is the curve - S e x’w, whose tangent vector at z 0 is V (F)(S). On the other hand,
N N(t, 0, 0) is precisely ,r, and so the image of the differential of ,i,r atthe map t ,i.r

N t(t 1, 0, 0) contains that of the differential of ,,r at which is the tangent space to M
Nat S. Since V (F)(S) is not tangent to M at S, it follows that the rank of i,r at (t 1, 0, 0)

is at least fi + 1, contradicting the fact that fi =p (k, t) was maximal.
So all the V (F) are tangent to M, and then every vector field in the Lie algebra

A generated by the V (F) is also tangent to M. The isomorphism P-Fe and the
identityL LN (X) imply that A AN (X). Since GN (X) is an integral manifold of AN (X),
we can conclude that the tangent spaces to .M and to GN (X) at S coincide. So
fi dim GN (X).

Therefore the map deN N
k.r has rank dim GN (X) at some t R. Since u ,r is analytic,

it follows that there is a to with strictly positive coordinates, such that du,,r has rank
equal to dim GN (X) at t. Q.E.D.

4. Asymptotic properties. In this section we state and prove some elementary
lemmas which show how the formal series Ser (u) gives rise to an asymptotic series
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for a control problem. The results given here are explicitly or implicitly contained in
earlier work, especially Krener’s paper [15], the articles by Brockett, Gilbert and
Lesiak-Krener on the convergence of the Volterra series (Brockett [16], Gilbert [17],
Lesiak and Krener [18]), and Fliess’s work (cf. especially Fliess [19], [20] and [21]).
However, since the proofs are quite elementary, we prefer to make our paper
self-contained by giving them in full, using precisely the symbolism that will be needed
later on.

Let f (fo,""’, f) be an (m + 1)-tuple of C vector fields on a manifold M.
Consider the control system

dx
(4.1) d-- fo(x + Y, u,f (x)

i=1

where the state variable x takes values in M. Each vector field f is a first order
differential operator on the space C(M) of C real-valued functions on M and so,
if ! (i,. , ik) is a multi-index, with 0 <-ii <= m for f 1,. ., k, then the product

(4.2)

is a partial differential operator on C(M).
We use Ser (u)ff) to denote the formal series

(4.3)

obtained from Ser (u) by substituting for each indeterminate Xi the operator fi. Then
Ser (u)(f) is a formal series of partial differential operators. If b C(M), then we can
apply the operators fr to b, and so we obtain the series

(4.4) Ser (u )(f)(c (Io
T(u)

which is a formal series of C functions on M.
We also want to consider the truncated series

(4.5)

and

T(u)

Servc(u)(f)= (Io ur)fIII<-_N

(4.6) Ser (u)(f)(b)
,.T(u)

IIIN

These are no longer merely formal objects. The former is a true partial differential
operator, and the latter a smooth function.

We now prove that Ser (u)(f)(b) is an asymptotic series for the "propagation of

b along the trajectories of (4.1)". Precisely, let us use r(f, u, t, Xo) to denote the
trajectory of (4.1) corresponding to the control u e 0-//,, and the initial condition
x(0) Xo. Then, if K _M is a compact set, and A >0, there is a time -(K, A)>0
such that 7r(f, u, t, x0) is defined for all x0 K and all [0, T(u)], provided that u R,.
is such that (i) [[u (t)ll <-A for O<-t<=T(u), and (ii) T(u)<--(K,A). Moreover, if we
let e//,..A denote the set of all u e//,. such that Ilu(t)ll<-_A for O<=t <= T(u), the set

(4.7) K

is compact, provided that T <= -(K, A).
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Let &C(M). Then the t-derivative of t->&(r(f,u,t, Xo)) is t-->[fo&+
Y.= u(t)(l)]Or(f, u, t, Xo)). So

(4.8) O(rr(f,u,t, Xo))=O(Xo)+ i=O u,(s)(f)Or(f,u,s, xo))ds.

Also

(4.9) (’)(’ff, u, s, xo)) (f)(xo) + Y. u(o’)(.fi&)(’ff, u, o’, xo)) do’,
]=0

so that

O(rr(f,u,t, Xo))=(Xo)+ , ui(s) ds (fi()(Xo)
i=

(4.10)

+ 2.. u(slu(l(L.f lOr(, u, , xol s.

Iterating this procedure yields

(4.11) ((, u, t, xo))= Ser (u)ff)()(xo)+R(u, , )(xo)

where the remainder R(u, , ) is given by

(& 12) RN(U,, f, )(Xo) Z R’(u,, f, )(xo)

for allxeKA’T, III=N + I.

Then, if B max (1, A), we have

t+CNBu+(4.14) IR’ (u,, f, )(xo)[ <_-
(N+ 1)!

as long as u all,,,a, T(u)<=T, xoK, O<=t<-T(u).
Therefore, we have proved
PROPOSITION 4.1. Consider a system (4.1), with fo, f smooth vector fields

on a manifold M. LetK
_
Mbe compact, A > O, and ch C(M). Then for each positive

integer N there exists a constant DN, depending on O, A, K, N, but not on u, such that

(4.15) IO(rr(f, u, T(u), xo))-SerN (u)(f)()(Xo)[ <=DT(u)N+I

for all xoK, and all u ,,,A such that T(u)<=’(K, A).
If the vector fields fi are real analytic, and the function O is also analytic, then

Proposition 4.1 can be strengthened. One can actually prove that the series
Ser (u)(f)() converges.

and where, for I (il, , ik), we let

R’ (u,, f, O)(Xo)

(4.13) =It Iok’’" Io3 fro2Ui’(7"k)’’’ui2(’r2)Uil(7"l)(f’))((f’u"rl’x))d’rl’’’d’rk"
If we now choose a compact set K, an A > 0, and a T not greater than z(K, A),

then the points r(f, u, t, x0) belong to the compact set KA’T for all u in 0"//,,,A such
that T(u)<-T, and all e [0, T(u)]. For each N, choose a constant Cu such that
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The key step in the proof of this is the following"
LEMMA 4.2. Let fo, f, be real analytic vector fields on an analytic manifold

M, and let c M R be analytic. Let K
_
M be compact. Then there exists a constant

C > 0 such that the estimate

(4.16) Ifq f#(X)l <=r! Cr

holds for all x K, all integers r >= 0, and all choices of the indices il, , it, 0 <= it <= m.
Proof. The conclusion clearly holds for a finite union of compact sets if it holds

for each one of them.
So it suffices to prove that every point p M has a neighborhood on which (4.16)

holds. We may then assume that M is an open subset of R", that p 0 M, and that
the re, c actually extend to complex analytic maps on some complex polydisc

(4.17) D(n,a)={z" z--(Zl,’" ,Zn)eCn, lZi[<ol, 1,... ,n}.

Now consider the control system

(4.18)
dz

Y v,/ (z), , c,
dt =o

where the f are the analytic extensions to D(n, a) of the f. The system (4.18) can
also be expressed as a real control system in D(n, a), regarded as a subset of I".
Hence all the usual properties of such systems apply. In particular, there exists a time
T >0 such that, whenever v (v0,’’ ", v,,) is a control with values in the polydisc
D (m + 1, 1), and defined on an interval [0, t], -<_ T, then the unique trajectory of v
which goes through any q eD(n, a/) at time 0 is defined on the whole interval [0, t],
and stays in D(n, 2a/3).

We now fix T, and consider a particular class of controls. Ley I (il,’’’, i,) be
a multiindex of arbitrary length, with 0 <= 6 -<-m for ] 1, , r. Define a control v
depending on a parameter = (zl,’", z,)eD(r, 1), and with domain [0, T], by

i-1 iT
v ’"(t) zieir for T -< <--,

where (e0,’’ ", era) is the canonical basis of C"+1. Let ’" denote the trajectory of
v t’" which goes through q at time 0. Then 5" is defined on [0, T], and takes values
in D(n, 2c/3), for all q D(n, c/3). Now, for each complex vector field g" D(n, )
let {(t)} denote the flow of g, so that "(0)(q)= q, and

(4.19)

for all q, t.
Then

d((I) (t)(q))= g((t)(q)),
dt
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Clearly, if g is a complex analytic vector field, the map (z, q)--> dPzg(t)(q) is analytic
in z and q for every t. (For instance, one can obtain the trajectories by successive
approximations, and it is clear that all the successive approximations are analytic in
z, q. Or one can consider the vector field h (0, zg) in cn+l--i.e, one can regard z
as a new variable--and then it is clear that (z, dPzg(t)(q))=dph(t)(z, q).) So "(iT/r)
is analytic in q and z, for q eD(n, a/3), zeD(r, 1). Moreover, "(iT/r) belongs to
D (n, 2a/3) for all such z, q.

If O is a complex-valued analytic function on D (n, a), then we can consider the
function 0* ’D(n,a/3)xD(r, 1)C defined by 4*(q, z)= O(:"(T)). Then a simple
computation shows that

(q, (...(qx

On the other hand, since 0’ (q, z) is analytic for Izil <= 1, we have bounds

(q, O) -< max 10(q’)l’ q’ D n,

In particular, we may let 0 be the analytic extension of O to D(n, a). Then we
find that, if C’= max {l(q’)l" q’ D(n, 2a/3)}, then

1(11"" O)(q )l C’rT-
for all q D(n, a/3). In particular, let K D(n, a/3) f-) R". Then we have proved that

(4.20) I(f, f)(q)l C’rrT-r

for q K. Note that (4.21) holds for all r, (ii,’" ", it), with a fixed constant C’. By
Stirling’s formula, there is a constant C", such that

rr.r -<C"e for allr.
But then

I(fi fi, )(q)[ =< Crr!
for q s K, if C C’C"(eT-1+ 1). Q.E.D.

Using Lemma 4.2, we can prove the convergence of the exponential Lie series.
PROPOSITION 4.3. Consider a system (4.1), and assume that

(i) M is a real analytic manifold and fo, , ,, are real analytic vector fields,
(ii) A > 0,

(iii) K M is compact,
(iv) 4,:M is real analytic.
Then there exists a time T > 0 such that, for every x K and every u ll,,.A for

which T(u)<=T: (a) the curve t-->zr(f,u,t,x) is defined ]’or O<=t<=T(u), and (b) the
series Ser(u,)(f)(O)(x) converges to O(zr(f,u,t,x)). Moreover, the convergence is
uniform as long as x K, u ll,,,A, T(u) <= T.

Proof. First choose a T’> 0 and a compact set K’ K, such that r(f, u, t, x) is
defined and belongs to K’ for x K, 0 <- <- T(u ), whenever u ll,,,A, T(u T’.

The difference between &(rr(f, u, t, x)) and the Nth partial sum of the series
Ser (u,)(f)(O)(x) is given by (4.11). Using (4.11) together with (4.12), (4.13), and
observing that the number of multiindices ! for which [II N + 1 is (m + 1)’+, we find

I(rr(f, u, t, x))-SerN (u,)(f)()(x)l
(At)N+I

(N + 1)!
(m + I)N/i sup {Ift&)(rr if, v, s, x))l}
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where the sup ranges over all x K, v Om,A such that T(v)<-_T’, s such that 0<-s <-
T(v), and I such that III= N + 1.

By Lemma 4.2, there is a constant C>0 such that I(ft)(p)l<-_Cr+l(N + 1)! for
all p K’, and I such that III= N + 1. Since r(f, v, t, x)K’ when v q/..A, 0---< <--_
T(v) <_- T’, x K, we conclude that

(4.21) I (r(f, u, t, x))- Serr (u)(f)()(x)l <-[CAt (m + 1)]+.
Now choose T such that CAT (m + 1)< 1. Then (4.21) shows that Serif (u)(f)()(x)
converges to (rr(, u, t, x)), and that the convergence is uniform as long as x s K,
O<-t<-T(u)<-T, u all,,,a. Q.E.D.

5. Proof of Theorem 2.1. The result to be proved is local, so we may assume,
without loss of generality, that M R" and that Xo 0. Also, if we let 1o =fo + afl,
then the system

dx
(5.1) dt- fo(X + uf (x

has the property that fo(0)= 0, and that every trajectory of (5.1) is also a trajectory
of (2.1), provided that we choose a in such a way that

(5.2) 0 <

On the other hand, it is clear that (5.1) also satisfies the HLCC at 0. If we prove
that (5.1) is STLC from 0, it will follow that (2.1) is STLC from 0 as well. Therefore
we may assume that our original system satisfies the HLCC with ti 0. Finally, we
may replace fl by aft, and so the inequality constraint on u becomes lul<_- 1.

So, from now on we assume that fo, f are C vector fields in R", that fo(0)= 0,
that dim Lie (fo, fl)(0) n, and that

(5.3) k(fo, fl)(0)= k+l(fo, f)(0) whenever k is odd.

Our goal is to show that, for arbitrarily small > 0, the reachable set Reach (0, t)
for the system

(5.4)
dx
at-fo(X)+Ufl(x), lul<- 1,

contains a neighborhood of 0.
Throughout this section, we let X (Xo, X). For each noncommutative poly-

nomial tz in the indeterminates X0, X1, we will use either one of the notations/x (f),
to denote the result of substituting fo for X0 and fl for X1 in t*. (Then/2 is a partial

differential operator and, in the particular case when tz is a Lie monomial, /.7. is a
vector field.)

Whenever tz belongs to one of the algebras A (X), AV(X), we can talk about the
degree 8 (tx) of tz (which is the degree of the monomial of highest degree that appears
in t*) and also of the degree of t* in X, which we denote by 8,(ix) (so that, e.g., if
tz =X+XXoXX, then a()=7, a,(,)= 3). Similarly, we can talk about the
order w (tx) of tz (defined earlier) and the order in X, which we denote by w(tz). We
let o(0)= +oo, and we let ol(/x)= +oo if tz does not contain X. Then it is clear that

and that

(5.6)

(.0 (/. 1/-/,2)
_

(.0 (/J, 1)q- (.0(/./,2)

o(,2) >-- o(,) +
for all
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Let us choose, once and for all, a fixed sequence Xl,..., xn of Lie monomials
in X0, X1, such that the vectors ill(0),’’’, t2n(0) form a basis of Rn. (The existence
of the xi follows from (HLCC 2).) Let D be the largest of the degrees 6(txi), and D1
the largest of the 61(x).

The union of the increasing sequence of subspaces 5 (fo, fl)(0) is Rn, and so there
is an integer E such that 5z (fo, f)(0)= N".

For each i,/’, let Mon (i,/’) denote the set of all Lie monomials 7 in Xo, X1, whose
total degree 6 (rt) is equal to i, and whose degree in X1 is ]. (Precisely, we define

Mon (1, O)= {Xo}, Mon (1, 1) {X},

Mon (i, j) LI {[A, B]: A Mon (il, ix), B Mon (iz, j2)}.)
il+i2=i
jl+J2=j

Let {*lii," 1 <-k <=k(i, j)} be, for each i, j, a fixed sequence of elements of Mon (i, j)
which is a basis of the linear span of Mon (i, j).

In particular, for each j _-< E, we can choose a finite set a (j) of pairs i, k such that
i(f0, fx)(0) is spanned by i-l(f0, fl)(0) together with the riiik(0), (i, k) a(/’). So, if
we let F be the largest degree of all the rtik for all the/"-<E, and all (i, k) a(j), we
can conclude that, for every/" -> 0, every element of Oj (f0, fx)(0) is a linear combination
of rigsk (0) with <-F, s <=/’, s =< E.

We now choose Q to be an integer such that Q > F, and then choose an N such
that

D +QDI <N.

Then every element Z Ln (X) can be written uniquely in the form

(5.7) z Y Y Y
iNji k

Let F (/1, ya), where ,1= 1, ,2=-1.
Let us call a point S Gn (X) "good" if there exists an integer p > 0 and a to [,

with strictly positive coordinates, such that the F-control {F, t} is N-normal and that

Sern ({F, t})= S.

Proposition 3.3 implies that a good S GN(X) exists. On the other hand, it is
clear that, if S is good, then any point of Gn (X) obtained by right multiplication of
S by SerN ({F, t}), for some other F-control {F, t}, is also good (even if {F, t} is not
normal).

Let h :An (X)-An (X) be the automorphism which sends X0 to Xo and Xx to

-X1. Then the elements of An (X) that are invariant under h are those that are even
in X, i.e. those that are linear combinations of monomials that involve X1 an even
number of times. Similarly, the elements S that satisfy I (S)=-S are precisely those
that are odd in X1. Any S An (X) can be written in a unique way as a sum Seven + Soda
of an even element and an odd one.

Now let $1 Gn (X) be a good element. It is easy to see that, if S Sern ({F, t}),
then , ($1)= Sern ({F, (0, t)}). So

S2 Sl1 (S1)
is also good. Now we can write

S1 ez

where Z is a Lie element. Then Z Zeen +Zodd, and areZeven, Zodd Lie elements
so that, in particular,

o (Zo) _-> 1.
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Then the Campbell-Hausdorff formula gives

$2 e z /Zdd ezve-zLd

e 2Zeven +R

where

R =Zrz1 Z2L /Zodd, Zodd -’"
so that to (R 1) __> 2.

Now, $2 can also be written as

where Z2 has a decomposition

But

ZS2=e

Z2 Z2 2+/odd.

(5.8) Zz 2Z /R
2Comparison of these two expressions shows that the odd part Zodd is contained

in R 1, and so

o(Zz
odd => 2.

This procedure can be iterated by induction, and one obtains good elements
Sj Gu (X) which have expressions

z ZSi e =Zvn +Zo,
and satisfy

w (Zo

If we now take f N + 1, S SU+l, Z Zu+, we find that S Gu (X), that S is
good, and that S e z with Z even.

From now on we keep S, Z fixed, and we assume that S is good, S e z, and
that Z is even. We choose an. integer p >0 and a t, with strictly positive
coordinates,, such that

and that {F, t} is N-normal.
We have an expression

Seru ({F, t})= S

Z e 2 Zi]kTli]k,
iN ]<--i k

where "2e’’ means that the sum only runs through even values of/’.
Because {F, t} is normal, there exists a neighborhood U of S in G (X) and a

smooth map

such that

SerN ({F, q(S’)})= S’ for S’6 U,

and that 0(S)= t.
We now use condition (HLCC 3). For each i<-_N, f<-_i, k <-k(i,f), f even, the

vector "iik(O) belongs to J(f0, fl)(0). Since /" is even, it follows that ri.k(0)
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abcY’i-l(fo, [1)(0). So we can find coefficients gijk such that

(5.9) /b (0) 0
abc

where the sum runs over a _-< F, b < j, b _-_ E, c <_-k (a, b).
If {e , } is a family of real numbers, for a <_-F, b < ], b <_-E, c <-kS(a, b), <-N,

] <-i, k <-k(i, ]), and if p {0’ i= 1,..., n} is another finite sequence of numbers,
then we can define

abc abcZ’(e, ) Z + Y sijk e i rt,b + Ot,
ijk abe

Then

S’(e, p) e z’(’).

Z’(0, 0) Z and S’(0, 0) S.
abcLet le[ max {le Ok I}, Il max {11. Then there exists a constant a > 0 such that

S’(e, p) e U whenever lel <--a, IPl <--.
If lel <- a, Ip[ <- a, define a control u.o by

so that

u.. (r’, 4.(s’(e, p))},

Serif (u,a) S’(e, p).

Let 0 < 6 -< 1, and define u,a to be the control 6{F, &O(e, p)}. (That is, the times
t(e, ),..., to(e, p) are multiplied by 6, and then the control itself is multiplied by
6 o.) It is clear that

(t) =6uu,o ,o(6-xt)
for 0 <= < 6T(u,,o) T(u ,,o).

Now, multiplying each of the times ti by 6 is equivalent to keeping the times
unchanged and multiplying both X0 and X1 by 6. On the other hand, multiplication
of a control by 6 o is equivalent to multiplication of X1 by 6. Therefore, the series
for u ,o is

where

Serif (u,,) e

z(e, a) z (e) +z
iik abc

z ()
i=l

d (i) a (,)+
For each ijk, the sumb runs over indices such that a F, b <]. Then, for each

abc which occurs in the sum,

+Qj-(a +Qb)Q+i-a Q-FI.
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Hence, if we define

(,) {e ()},

we have

abc +O]-a-Obe ()=

abc
e0 (8)--,0 as --,0

for every a, b, c, i,/’, k, and

..abe "]
ijk abc

On the other hand, the numbers d(i) all satisfy

d(i)<N.

So, if we define

0(& y)= ((& y), p(8, y)),

for every y (yl, , y) in the closed unit ball of , we find that

O(8, y)0 as 0,

the convergence being uniform in y, for y ,, and that

i=1

Now let be so small that 1(8)1 <--a and that 11(8, Y)I <- a for 0 <
Then the control

U6,y //

is well defined for 0 < 8 8, y . Moreover, we have

(5.11) SerN (v.r)= exp (sN( y/Ix/)+Z (e(8)))
i=1

where Z(e(8)) is given by (5.10).
If we expand the right-hand side of (5.11), it turns out to be equal to 1+

8N (Y’.i=I YiIxi) plus a sum of terms each of which is either (I) a power of Z (e(8)) or
(II) a product of factors 8N(F__I y/Ix/), Z (l, 8), containing at least two factors, and
at least one factor of the first type.

gsabcNow, the construction of the coefficients ijk shows that Z (e, 8)(t)(0) vanishes,
and therefore every power [Z(e, 8)]"(t)(0) vanishes as well. Also, every type II
product contains at least a factor 8 r+l in it. So, we have

SerN (v,s)= 1+8r( i YiIxg) + YI+sN+y2
i=1

where Y1 and Y2 are sums which may depend on 8, y, but which remain bounded as
8 0, and satisfy YI()(0) 0.

U.sing Proposition 4.1, we conclude that, if & is a C function on a neighborhood
of 0, and if we write

7r*(8, y)= "rr(t, va.,, T(va.,), 0),



704 HCTOR J. SUSSMANN

then

(5.12) c(,n’*(6, y)) c(O) + 6r( yt2(O)c) + O(6U+x),
i=1

the 0(6r+) being uniform in y. (Note that T(v.,)= 0(6).)
We now apply (5.12) with the coordinate functions xi playing the role of b. Clearly

t2(0)xi is the/th component of the vector (0), and so we find

*(, y) y,(0) + o(+).
i=1

Now let g" N"o R" be the inverse of the linear map y yii(0), and define, for
xe g-(),

(t, x)= *(t/, g(x)).

Then

o’(t, x) tx + o (t).

Let B be a compact ball centered at the origin, and such that g(B)
Then the maps

1
/t" x-> o’(t, x), xB,

converge uniformly to the identity map of B as t--,0. Therefore t(B) contains a
neighborhood of 0, if is small enough. Hence the set

c, {(t, x): x Bt
contains a neighborhood of zero, if is small enough.

Now, if zeCt, then z= 7r*(6, y) for some ye r, where =t a/1’. Therefore z is
reachable from the origin in time T(v.y). If , is an upper bound for the times
T({F, t(S’(e, 0))}) for then T(v.,) <= 8?. So z is reachable from 0 in
time a/r,r. Hence

Ct
_
Reach (0,

Therefore Reach (0, s) contains a neighborhood of 0, if s is small enough. This
completes the proof.

6. Necessary conditions. We show that the sufficient condition of Theorem 2.1
is not necessary for small-time local controllability, but that some parts of it are, at
least for analytic systems.

First we prove"
PROPOSITION 6.1. Suppose the vector fields fo, fa are real analytic. Then (HLCC 1)

is a necessary condition for small-time local controllability from Xo.
Proof. We may assume that M is an open set in Nn, and x0 0 M. Assume that

the system (2.1) is small-time locally controllable from 0.
We first prove that 0 must be an equilibrium point. Assume this is not so. Then

the segment joining the vectors fo(0)- Afa(0), fo + Aft(0) does not contain the origin.
This implies the existence of a linear functional A N" Nsuch that (A, f0(0) -A/Ca(0)) > 0
and (A, fo(0)+A/a(0))> 0. Let b:N" -t be a smooth function such that b(0) 0 and
that (db)(0)- A. Then, on some neighborhood U of 0, there is a fixed a >0 such
that (foe Afacb)(x) >-_ a and (fob + Afacb)(x) >- a for all x e U. Let T > 0 be such
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that no trajectory of (2.1) from 0 leaves U in time -<T. Then, if x(.):[0, t]-->M,
0 < =< T, is any such trajectory, corresponding to a control u (.), we have

(x(t)) 4,(0) + [ [(fo)(x(s))+u(s)()(x(s))]ds >=t >-_0.
.o

So no point pM, for which O(p)<0, is reachable in time <=T. Since & has a
nonzero gradient at 0, there are points p arbitrarily close to 0 for which O(p)< 0.
But then (2.1) is not STLC from 0, which is a contradiction. So 0 is an equilibrium point.

Now we must exclude the possibility that f0(0)+ all(0)= 0 for. a A or a =-A.
After some obvious transformations, this is equivalent to proving that a system

(6.1) 2 =f(x)+vg(x), 0=<v-<l,

(f, g analytic) cannot be STLC from 0 if f(0) 0. So, let us assume that (6.1) is STLC
from 0, and that f(0) 0. Clearly, g(0) # 0. Let A:R" - R be a linear functional such
that (A, g(0)) 1, and let & n be analytic, and such that O (0) 0, (d0)(0) A.

Let U be open, such that 0 U, that the closure of U is a compact subset of M,
and that (g)(x)- 1/2 for x U. Then there is a constant C > 0 such that the estimate

(6.2) I(h,1.. h)(x)l crr!

holds for all il, , it, and all x e U. (Here we let h0 f, h g.)
Let T > 0 be such that all the trajectories of (6.1) from 0 stay in U up to time

T. If v(.):[0, t]-->[0, 1] is a control with t<=T, and x(.):[O,t]-->U a corresponding
trajectory, with x (0)= 0, we have

&(x(/)) Io (fO)(x(s)) dS+ Io v(s)g(x(s)) ds,

(f)(x (s)) (fib)(O) + (f2O)(x (o-)) do- + v (o-)(gf )(x (or)) do-

so that (since (f&)(0)= 0):

Ioti itiO(x(t)) (fa)(x (o’)) do" ds + v(o")(gf)(x(o-)) do- ds

+ v (s)(g)(x (s)) ds.

Continuing in this fashion, one proves by induction that

I0tI{.}1 IOsin-1(x(t)) (f"O)(x(s,,)) ds, ds

IOtIOS1 IO+ E
sk_

v(st,)(gf’-a)(x(s,)) dsk dsx.
k=l

Since x(s)e U for s el0, t], estimate (6.2) gives

(fO)(X(Sm)) dsm(6.3) ds __<(t)-.
Let T’ be such that CT’ < 1, T’=< T. Then, if -< T’, (6.3) yields

(x (t)) E Bk (t),
k=l
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where

v (s)(g[-6)(x (s)) dsBk(t) dsl.

Inequality (6.2) yields the estimate

[Bk(t)l<=Ckk! v(s) ds dsx,
aO

so that

and therefore

Let

Since the series

(t-s)k-1[B(t)l =< Ck! v(s)
(k 1)i ds

[Bk(t)l<-kC(Ct)k- fo v(s) ds.

D(t)= Y B(t).
k=2

E k (Ct)-k=2

converges uniformly for 0 =< -< T’, we have a bound

for some fixed constant E.
On the other hand

So:

ID(t)l <-Et fro v(s) ds

B(t) v(s)(g4))(x(s)) ds >-’ v(s) ds.

6(x(t))>= -E v(s)ds.

Let T"<= T’ be such that 2ET’< 1. Then, if 0<= =< T", we see that O (x (t)) >= 0.
Therefore, no point p for which &(p)<0 is reachable from 0 in time =<T". Since
(d0)(0) # 0, we conclude that (6.1) is not STLC from 0. Q.E.D.

We can also show
PROPOSITION 6.2. Suppose the vector fieMs fo, f are real analytic. Then (HLCC 2)

is a necessary condition for small-time local controllability from Xo.

Proof. If (2.1) is STLC from x0 then, in particular, the reachable set from xo has
a nonempty interior. That is, (2. i) has the accessibility property from Xo (cf. Sussmann-
Jurdjevic [8]). For analytic systems f(x, u), the accessibility property from a point
x0 is equivalent to the condition that the Lie algebra generated by the vector fields
x - f(x, u) be of full rank at Xo (cf. [8]). So our conclusion follows. Q.E.D.
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We now study the simplest possible way in which (HLCC 3) could be violated.
That is, we consider an analytic system (2.1) for which

(6.4) If1, [fo, fl]](Xo) 91(fo + all, fl)(Xo).
PROPOSITION 6.3. Consider an analytic system (2.1), and a point Xo eMfor which

(6.4) holds. Then (2.1) is not STLC from Xo.
Proof. The conclusion is clear if either (HLCC 1) or (HLCC2) is violated.

So we may assume that (HLCC 1) and (HLCC2) hold. Also, (6.4) remains un-
changed if If1, [fo, fl]] is replaced by [/1, [fo + tTfl, fl]], where t7 is such that It21 <A,
(fo + afl)(Xo)- 0. Moreover, it is clear that we can enlarge the control set and make
it symmetric about iT. Then we can rename f0 + tTfl and call it fo, i.e., we can assume
that t7 0. Finally, we can assume A 1, M open in R", Xo- 0 e M.

So we have a system

(6.5) fo(x + uf (x ), lu <= 1,

for which f0(0)= 0, and we assume that

If1, [fo, fl]](0) Linear span {(ad f0) (fl)(0): ] 0, 1,...}.

We now choose an analytic function , defined in a neighborhood V of 0, which
satisfies (0) 0, (g)(0) 0 for all g 6# (fo, fl), (If1, If1, fo]])(0) 1, and f1 -= 0
on V. (To show that & exists, let gl, , g, be vector fields such that gl(0), ’., g,(0)
is a basis of R", that g1(0),.. , gk (0) is a basis of 6e (fo, fl)(0), for some k, that g fl
and gk+l If1, If1,/o]]. If Pg’ denotes the flow of g,., then there is a neighborhood V
of 0 such that every p V has a unique expression

p ’(tl)g(t2) g- (t, )(O).

Then we define (p) tk +1.)
Next we choose a T > 0 such that, for every control u for which T(u)<-T, and

every e [0, T(u)], the series

(6.6) Ser ()()(u)(0) u (f)(0)

converges to (r(f, u, t, 0)), and the convergence is uniform in u, t.
The terms of the series (6.6) are of four types:
(1) terms corresponding to a multiindex I (il, , it) for which il 0 or ir 1;
(2) terms for which I is of the form (1, 0,. ., 0);
(3) the term that corresponds to ! (1, 1, 0);
(4) the terms for which (i) I contains at least two l’s, (ii) I begins with a 1 and

ends with a 0, and (iii)III >= 4.
The Type I terms vanish because fo(0)= 0, fl& 0. The Type 2 terms vanish as

well, for the following reason" if I (1, 0,. ., 0), then lab is of the form flfo. Now
flfo If1, fo]fo-1 +foffo-,

and (foff"o-,f,)(O)= 0 because fo(O)= O. Similarly

If,, fo]fo -’ [[f, fo], fo]/o-2 +foEfl, fo]fo-2

fo]fo )(0) 0. Continuing in this way, we find thatand, again, (foil1
k(flfo)(O) (-1)" (ad fo)" (fl)()(0),

kand therefore (flfo)(O) 0, because (ad f0)
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where

We now compute the contribution of the Type 3 term.
We get:

u (o.) u (r) dr do" ds (ffoCb)(O),

But

(flfO)(0)- v(s ds

v(t) Io u(s) ds.

ffo f[f, fo]+ffof [ft, If1, fo]]+ 2[fx, fo]f +fof.
Since fo(0)= 0, and f1 -= 0, we conclude that

(ffo4,)(o) ([A, [A, fo]])(0) .
So the contribution of the Type 3 term is, simply, 1/2 v(s)2 ds. Therefore:

1 Io’ )24 (Tr(f, u, t, 0)) - v (s ds + B,

where B is the sum of all Type 4 terms.
Now let I be a multi-index corresponding to a Type 4 term. Then I (1, 0k, 1, J),

where 0k denotes a sequence of k zeros (k->0), and J is a multi-index such that

I11 / k / 2 --III, and IJI >- 1. If J (/’1,""",/’r), we have

IO fOtIoSrIos2

(s1) Wk(Sl) dsr’’’ dSl,(6.7) u u’r (st)"

’k

dr1.W(t) u (r) u (rk +2) drk +2

where

Then

If k 0, we have

Wk (t) -. u(s)(s-o")kudo"ds.

v(t)
Wo(t) .

2

If k >0, then we can write Wk(t) as

lfo’ [I ]k-. u(s) (s-o.)ku(o") do" ds,

and we can use integration by parts to conclude that

_1 Io’ IoW(t) (t-o")u(o") do"-(k v(s) (s -o")-*u(o") do" ds.
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Another integration by parts yields

Io(t-o-)ku(o-) &r=k Io/.) (o-)(t- o’)k-1 dr.

Also, if k > 1

(s o-)k-lu (o-) do- (k 1) v(o-)(s -o-)-2 do-,

and, if k 1

(S -o-)-lu(o-) do- v(s).

So we get

Wl(t) v(t) Io V(S) dS lo V(S)2 ds,

and, if k > 1,

Io Io IoW(t)=(k l)tV(t____.) (t-o-)k-lv(o-) do-
(k2)-------S. v(s) (s-o- (o-) do-.ds.

If we let IVl2,t denote the L2 norm of v on [0, t], we find
k+l/2

using the Schwarz inequality.
Then, if k > 1, we get

k-1/2

iw(t)l<_lv(t)llvl=,
(k-1)!(2k-1)1/2+

Then (6.7) yields (since r _-> 1):

’ ul <= Yo’ Ir f2 W(s l)l ds dsr-o (t-s)-lw(s)l ds.
(r- 1)]

Then we get the estimate

=(r- 1)t (k-2)t

for some constant F, and for k > 1.
When k 1, we find

=(r-1)
Finally, when k 0 we have

Iot[ Ftr-
=(r-i)

(k 2)! (2k 3)1/2(2k 2) 1/2"
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On the other hand, we have the bound

[(fxO)(0)l <-- Cr+k +2(r + k + 2)!,

for a fixed constant C. Therefore we get

u (ft&)(0) <-FCr+’+2tr+-I (r+k +2)!
(r- 1)! (k -2)!

where, if k 0 or k 1, the factorial (k- 2)! is replaced by a 1. This implies that

I(Io U (fIt))(O) +2)slvlz<_FCr++.t+-l (r + k)! (r + k
r!k! 2,t.

For any given r, there are 2r-1 choices for J. Therefore the contribution of all
the Type 4 terms is bounded by

= , FC++Z(r+k +2)s(r+k).__’2-t+k-alv122,,.
=o r!k!

k+r>=2

But

so that

o=2 k +r=o
FC3(p + 2)5(2Ct)O- O!

fl < 2FC3[v[2
2,, Z (0+2)5(4Ct)-1.

0=2

From this it follows that/3 satisfies

<-Htlvl,t for0<-t<-T

for some constant H, if T is small enough. Choosing T even smaller, if necessary, we
can have HT<=1/2. Then, if O<=t<=T, cb (r(f, u, t, O)) is the sum of 1/21v12,, and of the
contribution of the Type 4 terms, which is bounded in absolute value by 1/21vl ,,, so
4 (Tr(f, u, t, 0)) => 0. This is true for every control, and every -< T. Therefore no point
p whered(p)<OisreachablefromOintime <-T. So(6.1)isnotSTLCfromO. Q.E.D.

So far, we have described what happens in a simple situation when (HLCC 3)
fails. (HLCC 3) requires, in particular (assuming, for simplicity, that t7 0), that

(6.8) Z(fo, .f’)(Xo) #’ (.t’o, f)(Xo).

The simplest violation of (6.8) occurs if

(6.9) If1, [fo, fa]](Xo) 6e (fo, f)(Xo)

fails. In this case, we have seen that (2.1) cannot be STLC from x0. The next possibility
would be for (6.9) to hold, while

(6.10) Ell, [fo, Efo, fa]]](xo) 9’ (fo, fl)(xo)

fails. However, it is easy to see that this cannot happen. If fo(xo)= 0, and if (6.9)
holds, then (6.10) automatically follows. Indeed, let g 5 (fo, fl) be such that

g(xo) [fo,
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Then

If, g] xo) [fo, [fo,

because both fo and g-[f, [fo, fx]] vanish at Xo, and therefore their Lie bracket
vanishes as well.

But [fo, [f, [fo, f]]] [f, [fo, [fo, f]]], and [fo, g]e ,.l(fo, fl). So (6.10) holds.
This shows that, if we want to pursue the study of the violations of HLCC in an

orderly fashion, the next case to look at is when

(6.11) [ft, [fo, [fo, [fo, ft]]]](Xo) ,5’a (fo, fx)(Xo)

fails. If HLCC were necessary, as well as sufficient, for STLC from Xo, then it would
follow, in particular, that a system for which (6.11) fails to hold cannot be STLC from
Xo. Unfortunately, this is false. We show this by means of a counterexample.

Let M R3, with coordinates x, y, z, and consider the system

(6.12a) =u,

(6.12b) -x,

(6.12c) 2 =x3+y z,
with the control constraint lu[<-_ 1. Then

0 2) 0
G,

The Lie brackets of interest are

3 2 0
--+3x ,[f, fo]
3y 3z

Ell, [f, foil 6Xoz,

0
[fo, If1, fo]] -2Yz-z

O
[fo, [fo If1, foil] -2x--,

Oz

[fo, El:, Ell, foil] 0,

O
Ill, Ill, [fl, f0]]] 6 Z’

[fo, [fo, [fo, Ell, fo]]]] O,

0
Eft, [fo, [fo, Ell, fo]]]] -2--.

Oz

Therefore Ol(fo, ft)(0) is two-dimensional, and

If1, Ill, f0]](0), If0, If1, If1, f0]]](0)

vanish (so that (6.9) and (6.10) hold at 0). However, (6.11) fails at 0. But the vector
Ill, Ill, If1, foil](0) is linearly independent rom 5e(fo, f)(0).

We now show that the system (6.12) is STLC from Xo. Let X (Xo, X), and let
us work in A4(X), the free associative algebra in the noncommuting indeterminates
Xo, Xx, where all monomials of degree ->5 are declared to vanish. Let F (1, -1). By
Proposition 3.3, there exists a 4-normal F-control {F, t}. Using the "odd-even" trick,
as in the proof of Theorem 2.1, we can find a 4-normal F-control {F, to} such that

Ser4 ({F, to}) ez

where Zo is a linear combination of Lie monomials in Xo, X1 that contain an even
number of Xl’S. Therefore Zo is a linear combination of Xo, [X1, [Xo, Xa]] and
[Xa, [Xo, [Xo, Xa]]]. This implies that Zo(f)(0)= 0.
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Exactly as in the proof of Theorem 2.1, the fact that (F, to) is 4-normal implies
that, if e > 0 is small enough, then we can find a family of controls u,, depending on
the parameter r (n l, r2, r3), Inl <= e, such that u0 {F, to}, and that

z(n)Ser4 (u,) e

where Z(rl)=Zo+rltXl+n2[X1, Xo]+rl3[Xl[Xl,[X1, Xo]]]. Since T(u,) is the
coefficient of Xo in Z(r/), the time T(u,) is actually independent of r/, and equal to
a number T > 0. If we let, for 6 > 0,

we find that

for [0, ST],

e z(.)Ser4 (u ,)

where

Zs (n Z nt- n13Xl --T/232[X1, Xo] .nt- n3a4[Xl, [Xl, [Xl, Xo]]],

and where Z is a linear combination of Xo, [X1, [Xo, X1]], and [X1, [Xo, [Xo, X1]]],
with &dependent coefficients. Therefore Z (f)(0)= 0.

Now let B denote the ball of radius e in R3, centered at the origin. For y
(y 1, y2, y3) B, and 0 < 3 < 1, define

where

Then T(v,y) 3T, and

where

/),y gn(S,y

’/(3, y)--(y133, y232, Y3).

Ser4 (US,y) e

Z8 (’/(3, y)) Z + 34(ylXl + y2[Xl, Xo]+ y3[Xl, [Xl, [Xl, X0]]]).

Therefore

Ser4 (v.y)= 1 + 34(yX + y2[X, X0] + ys[Xt, [X, [X1, Xo]]]) + Y

where Y is the sum of an 0(85) and of a sum of powers of Z. If we plug in the [i
for the Xi, apply the result as a differential operator to a smooth function &, and
evaluate at 0, we find, using Proposition 4.1 plus the fact that Z ([)(0)- 0"

(6.13) & (rr(’,
\i=1

where

Vl--fl(O), V2 [fl, fo](O), V3 [fl, [fl, [fl, fo]]](O).

Applying (6.13) to the coordinate functions, we find

(6.14) rr(’, V,y, 3T,
i=1

Since {Vl, v2, v3} is a basis of R3, (6.14) implies, exactly as in the proof of Theorem
2.1, that (6.12) is STLC from 0.
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LOCAL CONTROLLABILITY, REST STATES AND CYCLIC POINTS*

ROSA MARIA BIANCHINI

Abstract. The problem of steering a neighbourhood of the state x of a linear time-invariant control
system, to the point itself is considered. The set of points for which this property holds when the control
is subject to magnitude constraints, is characterised. Moreover it is proved that this set is strictly related
to the set of points that can be reached from themselves by an admissible control map.

Key words, linear autonomous systems, local controllability, periodic trajectories

Introduction. Let us consider a linear autonomous control system (A, F)

d
d-- x (t) Ax (t) c (t),

where A is a real n n matrix, and c(.) is a locally integrable map whose values
belong to F a nonempty subset of ". The system (A, F) is said to be locally controllable
if and only if there exists a neighbourhood of the origin whose points can be steered
to zero in finite time along trajectories of (A, F).

If 0 belongs to the convex closure of F, cl co F, it is known [2] that (A, F) is
locally controllable if and only if there exists a neighbourhood W of the origin and
a time T>0 such that each point of W can be steered to 0 in the same time T.
Moreover [2], [4], [6] the conditions (a) and (b) below are, given the hypothesis
0 e cl co F, necessary and sufficient for local controllability"

(a) There is no eigenvector y, y 0, of A* such that y*c is constant for c in F.
(b) There is no real eigenvector y, y 0, of A* such that supper y*c =< 0.

It is easy to see that 0 e cl co F is not a necessary condition to get local controllability.
In 1 we study this property without any assumption on F. We prove that, as in the
case when 0 e cl co F, local controllability implies the existence of a neighbourhood
of the origin whose points can be steered to zero along the trajectories of (A, F) in
the same time, but in general conditions (a) and (b) are no longer sufficient to get
local controllability, although they are necessary. In 2 we consider the local controlla-
bility of (A, F) at a point x, i.e., the local controllability of the system (A, F-Ax).
We study the set C(A, F) of points x at which (A, F) is locally controllable. We prove
that C(A, F) is an open, convex set and we give necessary and sufficient conditions
for this set to be nonempty.

This study will point out the important role played in local controllability, by the
interior rest states of (A, F), i.e., the points x such that 0 int co (F-Ax). It will
be shown that C(A, F) coincides with the set of points that can be reached from an
interior rest state and from which the system (A, F) can be steered to an interior rest
state. This property is used to give an explicit representation of the set C(A, F) and
then to give a necessary and sufficient condition for local controllability in the general
case.

In 3 we consider the cyclic points of the system (A, F). A point x is a cyclic
point of (A, F) if there exists a control that steers x to x in time T > 0. We prove that
if C(A, F) is not empty, its closure contains all the cyclic points.

* Received by the editors September 10, 1979, and in final revised form September 3, 1982. This
research was performed under the auspices of CNR GNAFA.

Istituto Matematico U. Dini, Viale Morgagni 67/a, 50134 Firenze, Italy.
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1. Local controllability. Let us first introduce some notation. Let Y be a subset
of ; then cl Y denotes the closure of Y, int Y the interior of Y, co Y the convex
hull of Y, intn Y the interior of Y relative to the minimal affine manifold containing
Y. Let A be a matrix; then A* is the transpose matrix of A. Let V(t, A, F) denote
the set of points that can be steered to 0 in time along the trajectories of (A, F),
i.e., the points which can be reached in time t, from O, by solutions of the system

-Ax + c (t).
Thus

V(t, A, F)
t

c(’) e F)

Let V(A, F) CI V(t, A, F).
t:>0

DEFINITION 1.1. (A, F) is locally controllable if and only if

0e int V(A, F).

The following example shows that if 0 cl co F, conditions (a) and (b) are no longer
sufficient to get local controllability. Let

A=
-1

F={(Xl, X2)" (Xl-1)2+(x2-1)2<21-}.

Then (A, F) satisfies conditions (a) and (b) but it is not locally controllable.
The conditions are still necessary. In fact"
THEOREM 1.1. If (A, F) is locally controllable, then (a) and (b) hold.
Proof. Let y 0 be a real eigenvector of A* such that supper y*c =<0 and let

x V(A, F)

y*x fo y*e-aSc(s)ds=Ioe-XSy*c(s)ds<-_O.
Then V(A, F) is contained in a half space and (A, F) is not locally controllable. Let
y, Im y 0, be a complex eigenvector of A* such that y*c k for each c in F. Re y
and Im y are two real linearly independent vectors. Let Y be the subspace spanned
by Re y and Im y and let P be the orthogonal projector of R" onto Y. Then PV(A, F) c
V(A, PF) and since PF is a point, 0 is not an interior point of V(A, PF) relative to
Y. This implies that (A, F) is not locally controllable.

Remark 1.1. Let us remark that condition (a) is equivalent to int V(t, A, F) ,
for all > 0. Then if (a) holds int V(A, F) . The converse is not true, as the following
example shows:

(1 ), F {(d, 1)" d R},A=
0

V(A,F)={(Xl, X2): x2>0}. Then int V(A, F) . But (0, 1) is an eigenveetor of A*
such that y*c 1 for all c F.

From the preceding theorem: Theorem 1.2 follows.
THEOREM 1.2. (A, F) is locally controllable if and only if there exists T > 0 such

that 0 int V(T, A, F).
Proof. Since (A, F) is locally controllable, Theorem 1.1 implies that (a) holds:

Then int V(t,-A,-F) for all >0. Let W be a neighbourhood of 0 contained
in V(A, F). If tl is sufficiently small

H W fq int V(t, -A, -F) .
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Let z H. Since z V(A, F), there exists ca(. Lo(, F) and t2 >0 suoh that

-a (s) ds.(1.1) z e c

Let K =e-tA(z-H); K is an open neighbourhood of the origin. Moreover (1.1)
implies that K V(tx + t2, A, F) and the proof is complete.

It is known that, for all > 0, the following relation holds

cl V(t, A, F) cl V(t, A, cl co F).

Then Theorem 1.2 implies:
COROLLARY 1.1. A control system (A, F) is locally controllable if and only if the

same is true for the system (A, cl co F).
The obvious relation V(t, -A, -F)----eAtV(t, A, F), implies also:
COROLLARY 1.2. A control system (A, F) is locally controllable if and only if the

same is true for (-A, -F).
Let us consider a more restrictive class of admissible controls. Let K(R, F) be

the collection of all piecewise constant maps c(.):R--> F. A. Bacciotti [1] has proved
that if V(t, A, F) is the set of points that can be steered to 0 in time by means of
a control c(. belonging to K(, F), then

intR V(t, A, F) intR V(t, A, F).

Then Theorem 1.2 implies that, if V(A, F) U t>o V(t, A, F), then:
COROLLARY 1.3. ff (A, F) is locally controllable V(A, F)= V(A, F).
Proof. Since V(A, F)c V(A, F), we have only to prove the opposite inclusion.

Let x V(A, F), then there exists t’ such that

x V(t’, A, F).

From the definition of V(t, A, F) it follows that

V(t’ + t", A, F) V(t’, A, F) + e-At’v(t’’, A, F)

and then if T is such that 0 e int V(T, A, F)

x e int V(t’ + T, A, F).

Bacciotti’s result [1] implies x V(A, F).
Let us now derive an important property of the set V(A, F) in the case (A, F)

locally controllable. Let us denote by X,X/

A,X the sum of the radical subspaces
associated with the characteristic roots of A having real part equal to 0, real part
positive and real part negative, respectively. Kun [7] has proved that if X. {0}, then
(A, F) locally controllable implies V(A, F) N. In general if P/ denotes the projection
of N onto X, alongX +XA, then the following property holds"

PROPOSITION 1.1. Let (A, F) be locally controllable. Then

V(A, F)=P+V(A, r)+x2 +x.
Proof. Obviously V(A, F)cP+V(A, F)+X +X. Let us prove the opposite

inclusion. Let x eP+V(A,F) and y eX +X,. Then there exist z e V(A, F) and
y’eX +X such that z =x +y’. If c,(.) is a control that steers z to 0 in time tl,
c,(.) will steer (x +y) in time t to a point u eX +X, since this subspace is A
invariant. But Kun [7] has proved that X +XA V(A, F), hence u V(A, F), and
the proof is complete.
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2. The rest states and the set of locally controllable points. Let x R". Then
DEFINITION 2.1. X is locally controllable by (A, F)((A, F) is locally controllable

at x) if and only if (A, F-Ax) is locally controllable.
Let us denote by C(A, F) the set of points locally controllable by (A, F). We

want to study this set. Let us introduce the following definition [4]:
DEFINITION 2.2. A point x e R" is a rest state of (A, F) if 0 e co (F-Ax). It is an

interior rest state if 0 e intR CO (F-Ax).
Let us remark that a rest state x belongs to C(A, F) if and only if (A, F-Ax)

satisfies conditions (a) and (b); if moreover x is an interior rest state, then condition
(a) implies condition (b). So if (A, F) satisfies condition (a) each interior rest state
belongs to C(A, F).

PROPOSITION 2.1. C(A, F) is not empty if and only if condition (a) holds and
there exist interior rest states of (A, F).

Proof. Since (A, F) satisfies condition (a) if and only if the same is true for
(A, F Ax), /x e ", what has been said above implies that the conditions are sufficient.

Let us prove that they are necessary. Let x C(A, F); then Theorem 1.1 implies
that (A, F-Ax) satisfies conditions (a) and (b). Then (A, F) satisfies condition (a)
and from (b) (see [4]) it follows that (A, F-Ax) and hence (A, F), has interior rest
states.

Let us denote by V(x, A, F) the set of points that can be steered to x by means
of trajectories of (A, F). By definition we have

V(x, A, F) V(A, F Ax) + x.

LEMMA 2.1. Ifx and y belong to C(A, F), x e V(y, A, F).
Proof. Since x e C(A, F), Corollary 1.2 implies that x e C(-A, -F). Then from

Proposition 1.1

V(x, -A, -F) P-V(x, -A -F) +X/ +x,
where P- is the projection of n onto X_+A along X-A +X,, i.e., the projection of

" onto X along X +X,. y e C(A, F) implies that V(y,A, F)=P+V(y,A, F)
+X +X,, and then

V(x, -A, -F) f) V(y, A, F) .
Let z V(x, -A, -F) V(y, A, F). Then x V(z, A, F) and z e V(y, A, F) which
proves that x e V(y, A, F).

Remark 2.1. Corollary 1.3 and Lemma 2.1 imply that if x and y belong to
C(A, F), there exists a piecewise constant control that steers x to y.

COROLLARY 2.1. If x and y belong to C(A, F), V(x,A, F)= V(y,A, F).
Proof. x V(y, A, F) implies V(x, A, F) c V(y, A, F). Changing x with y, we

obtain the opposite inclusion.
THEOREM 2.1. If X C(A, F)

C(A, F) V(x, A, F) fq V(x, -A, -F).

Proof. Let y e C(A, F). Lemma 2.1 implies y e V(x, A, F) and x e V(y, A, F). But
xeV(x,A,F) is equivalent to yeV(x,-A,-F) and then yeV(x,A,F) 71
V(x,-A,-F) which proves

C(A, F) V(x, A, F) fq V(x, -A, -F).

Let us prove now the opposite inclusion. Let z V(x, A, F)f-)V(x,-A,-F). Since
z V(x,A, F) and since V(x, A, F) is an open set [8], there exists a neigbr,ourhood
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Wz of z such that Wz c V(x, A, F). But z V(x, -A, -F) and then Wz c V(x, A, F) c
V(z, A, F) which proves that z C(A, F).

COROLLARY 2.2. C(A, F) is an open and convex set.

Proof. If C(A, F) is empty, there is nothing to prove. Otherwise Proposition 2.1
implies that there exists an interior rest state z belonging to C(A, F). Since z is a rest
state [8] both V(z, A, F) and V(z, -A, -F) are open and convex sets. Then by Theorem
2.1 C(A, F) is the intersection of two convex and open subsets.

We want to characterise the set of locally controllable points by its support
function. Using this characterisation we will be able to give an explicit condition for
local controllability.

THEOREM 2.2. Let 0 co F. Then
+oo

Proof. Let us introduce the following notation" If X is a subset of R", then
Hx: R" is the support function of co X, i.e., Hx(y) supxx y*x. It is known that
Hx(" is a convex, lower semicontinuous map. This implies that s -Hr(e-A*sy) is a
nonnegative measurable map, and so its Lebesgue integral exists and it is finite or
infinite [5]. Let x int V(A, F); from 0 co F it follows that there exists t’ such that
x int V(t’, A, F). Let

We have

q/={c(’)6Loc(,F)} and y6n"-{O}.

+00

y’x< sup { ye-aSc(s)dsI<=fo supy*e-aSxds.
c(.)et xF

Let x be such that

y*x < I0 SUPxr y* e-ASx ds

for all y 6n-{0}, and let us suppose xint V(A,F). Since 0co F implies that
V(A, F) is a convex set, there exists z R" -{0} such that

z’x-> sup { z * e-aSc (s ds
t>O
c(.)

Hence

*x >- | sup Z* e-Asx ds,z
Jo

a contradiction.
From Theorems 2.1 and 2.2 it is easy to derive the following:
COROLLARY 2.3. X is locally controllable by (A, F) if and only if the set of interior

states is not empty and moreover

Y*(X-X)<min{I0 sup y* e-AS(x-Ax) xrinf y* eAS(x-Axo) ds

for each y belonging to ’-{0}, where Xo is an interior rest state.
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Remark 2.2. Let us note that if (A, F) satisfies condition (a) and Xo is an interior
rest state, then if y does not belong to X/

A

* -A, (X Axo) dssup Y e +o,
xF

and for each y which does not belong to

inf y* eaS(x-Axo)ds C
x.F

Moreover if y s X, then

o sup y* e-AS(x-ax) dS o sup y* e-ASx ds y*x0
xF xF

and if y X, then

o inf y*ea(x-Ax)ds=a inf y*eaxds y*x
xF xeF

O.

And so Corollary 2.3 can be reformulated in the following way"
COROLLARY 2.3. X is locally controllable by (A, F) i[ and only i:
i) (A, F) satisfies condition (a);

ii) ImA int coF ;
iii) [or each y belonging toX -{0}, y*x <I2 supper y* e-ax ds;
iv) or each y belonging toX -{0}, y*x <-inlr y* eax ds.

3. ele s. Let us denote by V(t, x,A, F) the set of points that can be
steered to x in time by a trajectory of (A, F).

DEFINITION 3.1. A point x is cyclic or (A, F) if there exists >0 such that
x V(t, x, A, F).

By Theorem 1.2 and by the definition of locally controllable points it follows that
each point of C(A, F) is a cyclic point. Then if (A, F) denotes the set of cyclic points

C(a, rl (a, rl.
This inclusion may be a proper inclusion; in fact it is easy to construct a system for
which C(A, F)= but (A, F) is not empty. But if C(A, F) , then its closure
contains (A, F).
TOM 3.1. I[ C(A, F) , then

(A, F) c cl C(A, F).

Pro@ Let y be a cyclic point. Then there exists t > 0 such that

y V(t, y, A, F).

Let z end; V(t, y,A, F) V(t,z,A,F)-e-a(z-y). Then

(3.1) (I-e-a)y e V(t, z,A, F)-e-az.

Let us first consider the case in which A is such thatX {0}. In this case (I- e -a’)
is an invertible matrix. Let W be a neighbourhood
int V(t, z,A, F) and then (3.1) implies that

H (I-e-a)W {int V(t, z,A, F)-e-az}
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is not empty. Let x H. Then

x int {V(ta, z,A,F)-e-A’l(z-x)}=int V(tl, X,A,F)

which implies x C(A, F).
Consider next the case in which X # {0}. Let Y be the quotient space Rn/xa.

Y is a vector space, dim Y n-dimX p. Let zr denote the canonical projection
of Rn onto Y. Since AXa cXa, there exists a unique linear operator such that
the following diagram commutes

A
[n [n

Y - y
Let J be the isomorphism between NP and Y and let fi be the matrix associated with
J-asJ. By its construction it follows that A is an invertible matrix. Let zrF; if
y (t) is a solution of (A, F), then J-ary (t) is a solution of (A, P).

Let x be a cyclic point of (A, F); J-arx is a cyclic point of (fi, ’) and since
C(, ’) J-azrC (A, F) # what we have proved before implies that e cl C(fi, P).
Let W be a neighbourhood of x, lg/= J-aTrW is a neighbourhood of Y and so there
exists 37 e if" f3 C(fi, P). Let z C(A, F). Since J-azrz C(fi,, ’), by Remark 2.1
there exists a piecewise constant control Ca(’): N F such that the solution (t) of
(A, F) relative to the control Ca, (0)= , satisfies the condition 2(t’)= , for some
t’>0. Let ca(’)’RF be a piecewise constant map such that J-azrca(.) =(a(.) and
let z(t) be a solution of (A, F) relative to the control ca(’) and such that z(0)e zr-aJy.
By the construction of ca(’) it follows that z(t’)e 7r-aJY. z +Xa. But z +X
V(z,A, F) and then rr-aJf V(z,A, F). By Remark 2.1, since and )7 belong to
C(fi, ’), there exists a piecewise constant control (2(’)’N’ that steers to 37.
Using the same arguments as before, we derive that 7r-aJi V(y’,A,F),
7r’-1J37. But z V(y’, A, F) implies y’ V(z, -A, -F) and then "a’-aJ c V(z, A, F)
V(z, -A, -F) C(A, F). Since 37 J-azrW, it follows that W f’) C(A, F) # and the
proof is complete.
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A FINITENESS CRITERION FOR NONLINEAR INPUT-OUTPUT
DIFFERENTIAL SYSTEMS*

MICHEL FLIESS- AND IVAN KUPKAt

Abstract. We solve the following problem which has been dealt with in several publications: when
does a system have the same input-output behaviour as a system depending linearly on the state variables?
Precise definitions of this question are supplied in the text. A particular case of the problem is the equivalence
of a system with a bilinear one. At the end, we illustrate our methods and the scope of our results by a
brief study of several examples.

Key words, nonlinear systems, state-affine systems, bilinear systems, representative functions, noncom-
mutative generating power series

Introduction. In this paper, we prove a simple criterion for a general system to
define the same input-output map as a subsystem of a system defined on a vector
space by a family of affine vector fields and an affine output mapping.

Our criterion can be summed up in the following way" the vector space generated
by the output function and its successive Lie derivatives along the vector fields of the
system is finite dimensional. We study the problem in both the real analytic and the
indefinitely differentiable categories. We also give sufficient local conditions which
insure that the above finiteness condition is satisfied. Finally, in the real analytic case,
we give a second, faster, proof based on the theory of noncommutative generating
series (cf. [23).

The problem stated above was studied for the first time by Krener [5], and later
by Lo [8] and Hijab [3]. The solution using generating series has been extended to
discrete-time systems by Normand-Cyrot [10] (see also Sontag [12]).

We end the paper with several examples, one from statistical physics (cf. Schenzle
and Brand [11], Suzuki, Kaneko and Sasegewa [13]) and one from the theory of
representative functions due to Hochschild and Mostow [4]. This last theory is closely
related to our methods. In fact our paper can be considered as a .study of finite
dimensional representations of transformation pseudogroups.

1. Notation and usual definitions. In all this work, the control space and the
output space will be kept fixed. We shall assume that the control space, denoted by
C, is an open subset of a finite dimensional vector space and that the output space,
denoted by E, is a finite dimensional vector space. Moreover, we assume that we have
an admissible set of controls. A will be a set of measurable functions u [0, Tu ]--> C
(Tu > 0 depending on u), containing the constant controls.

DEFIrITIOr 1. (I). A polysystem (cf. Lobry [8]) will be a couple (M, E), where
M is a C (resp. C’) connected manifold, countable at infinity, E is a family {Ec [c C}
of C (resp. Co’) vector fields, satisfying the following conditions:

1) The mapping M C -> TA// (tangent structure of M), (m, c) -> Ec (rn) is C
(resp. Co’).
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2) For any u and any m M, the system d(t)/dt= Eu(t)(q(t)), o(0)=m,
has a unique maximal solution 0n.u ’[0, T,.u[ M.

(II). An input-output system (M, , h) is a triple where (M, E) is a polysystem
and h M E a Coo (resp. Co’) mapping, called the output function.

Let us denote by AC(E) the space of all absolutely continuous mappings
’[0, T,[ E (T, > 0 depends on ).

DEFINITION 2. The input-output mapping of an in.put-output system (M, E, h)
is the mapping/’ &o xM AC(E), defined as follows’ h (u, m) h

DEFINITION 3. An input-output system (M, ,h) is called state-affine (cf.
Sontag [12]) if and only if

1) M is a finite dimensional vector space,
2) the vector fields {..c c C} are affine,
3) h" M E is an affine mapping.
DEFINITION 4. An input-output system (M, .., h) is called control-affine if, and

only if,
1) C is a vector space,
2) the mapping C -. vector fields on M, c c, is affine.
DEFINITION 5. An input-output system (M, E, h), which is both state- and con-

trol-affine is called affine.
2. Subsystems of an input-output system. The definitions that follow give a

precise mathematical content to the idea that the input-output behaviour of one
system is reflected inside the input-output behaviour of another system. Such a
conceptualisation is required since one may want to restrict the behaviour of a system
by either cutting down the state space or using a smaller family of control fields. Our
concepts are related to those of Krener [6] and Hijab [3].
We denote by << the following partial order relation on AC(E): if , AC(E),

p<< if:

on [0, T[, p and 0 coincide.

DEFINITION 6. Given two Coo (resp. Co’) input-output systems (M, .., h) and
(M’, E’, h’), an immersion of (M, E, h) into (M’, ’, h’) is a Coo (resp. Co’) mpping
-" M M’ such that"

i) For any couple (x, y)M.M, h(x),# h(y) implies h’O’(x))# h’(z(y)).
2) For any (u, m)M, h(u, m)<< h’(u, ’(m)).

In this situation, we say that (M, E, h) can be represented as a subsystem of (M’, ..’, h ’).
DEFINITION 7. (I). Given a C (resp. C) polysystem (M, ..) and a family of

Co (resp. C) mappings of M into a finite dimensional vector V, the observation
space 2 of is the smallest vector subspace of Coo(M, V) (resp. C (M, V)) containing

" and stable under the action of the vector fields of E.
(II).The family is called representative 3 if the observation space is finite

dimensional.
Notation. We shall denote by O() the observation space of .
Remark. ; is the vector subspace of C(M, V) (resp. C (M, V)) generated by

the functions {X Xflf; X,. ., X, ; a,. ., a, N}.

Such systems were also called (internally) bilinear or regular.
This terminology is borrowed from Sontag [13].
Compare with [4].
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The next definition is more technical, but it is useful in practice. Let us denote
by J, (M, V) the space of all oo-jets at m of mappings M V (i.e., the space of all
Taylor series at m) and ," C(M, V)J (M, V) the mapping which to each f
associates its oo-jet at m (i.e., its Taylor series). It is well known that Coo (resp. Co’)
vector fields on M act onJ (M, V).

DEFINITION 8. (I). With the same notation as in Definition 3, the observation
space of the family at a point m M is the smallest vector subspace of J (M, V)
containing the family/’ and stable under the action o the fields from ...

(II). ;T will be called representative at m if its observation space at m is finite
dimensional.

Notation. We shall denote by O(, m) the observation space of ;T at m.

3. Main results.
THEOREM 1. (I). If the output mapping h of a C (resp. Co’) input-output system

(M, , h) is representative, then the system is representable as a subsystem of a Coo
(resp. C’) state-affine system.

(II). If moreover (M, E, h) is control-affine, it is a subsystem of an affine system.
(III). If the class of admissible controls contains the piecewise-constant controls,

then the converses of (I) and (II) are true.
In this theorem, the condition for h to be representative is a global one. But it

can be replaced by local ones.
THEOREM 2. If (M, , h) is a real analytic input-output system, then h is rep-

resentative if, and only if, it is representative at one point ofM.
This theorem is trivial. The next is harder.
THEOREM 3. Let (M, , h) be a Coo input-output system such that is weakly

controllable. Then h is representative if, and only if, it is representative at each point
o[M.

In both Theorems 2 and 3, the only if part is trivial; the conditions in Theorem
3 cannot be weakened much. If we drop the weak controllability, it becomes false. If
we do not assume that the set of all points at which h is representable is not everywhere
dense, it is also false.

4. Proofs of the theorems.
a) Proof of Theorem 1. First the "if" part. Let us denote by (..) the R-Lie

algebra of vector fields generated by the family {--.c [c C}. (E) operates on the
observation space of h by the Lie derivatives" 0" (E) End (O(h)). Call H the space
of all R-linear mappings O(h)-E.H is finite dimensional and (..) operates on H
in a natural way. Calling p "(E) End (H) the corresponding R-linear representa-
tion, it is defined as follows" for H, X (E) and f O(h), (p(X)l)[f] -l(O(X)f).

The linear vector fields on H associated to the endomorphisms {-p(Ec)lc C}
define a polysystem (R) on H with control space C. Define a R-linear mapping h H-Eas follows’ h-’(l)= l(h). It is then clear that the triple (H, (R), h) is a state-affine input-
output system, which is affine in case the polysystem (M, ) is control-affine.

Presently, we shall show that (M, E, h) is a subsystem of (H, 19,/). Let us
define a mapping -" M-H as follows" for mM and for fO(h), -(m)[f]=f(m).
It is clear that - is Coo (resp. Co’). To show that it is an immersion, we have
to check the conditions 1 and 2 of Definition 6. Now it is clear that ho-=h.
Condition 1 follows. As for condition 2 let (u, m)6M. For simplicity, call q
the trajectory q,.n. Let =ro. By definition, dq(t)/dt=..u(t)(p(t)) for almost
every t[0, T,,,[. For any fO(h), d(foq)(t)/dt=(O(..u(,))f)(q(t)). But foq=
r(q)[f] O[f] and (O(E(,))f)(q(t))= -p(,))6(t))[f] Ot)(O(t))[f]. Hence
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(d/dt)(d/(t)[f])=(R),,)($(t))[f]. This being true for all f, one gets dd/(t)/dt=
O,(,)($(t))..Moreover, $(0)=r(0(0))=’(m). Hence, t(u,r(m))=tod/=hoq. This
shows that h (u, r(m)) h (u, m) on [0, T,[. Condition 2 is satisfied.

Finally, it is clear from the construction that, if (M, ) is control-aftine, the
input-output system (H, 19, h) is affine.

To show the converse of (I) and (II), we need the following simple result’ given
any (c 1, Cn) Cn, there exists an open neighborhood V of {0} M in R" xM such
that the mapping e" V->M, (t, t,, m --> exp t,.., oexp r,_.._
exp tE(m) is defined and Coo (resp. C). For any =(t.,..., t,)R_, define the

i-x <piecewise-constant controls u as follows: u,(t)=c if Y.k=l tk <t =Y.,__I t,. Then for
any (, m) V, h e (, m) =/(u, m). Assume now that -" M --> W defines a C (resp.
C’) immersion of (M, .., h) into a state-affine system (W, 19, 1). It follows that, for
each R_, the mapping m V()= {m 1(, m) V}-> h(e(, m))E is the restriction
to V() of an element from ’*(L), where L is the space of all R-linear mappings
W-E. Since L is finite-dimensional, for any multi-index a (al,." ", a,,) N" the
mapping m eM (c3ll/c3t c3tn )h oe( m) belongs to -*L. A trivial computation
shows that this derivate is "z’1’2 "’"h This ends the proof.

Proo[ o[ Theorems 2 and 3. Theorem 2 is an immediate consequence of analytic
continuation.

The proof of Theorem 3 is harder. We prove a special case first. Let us assume
that there exists an integer d -> 0 such that dimR 0(h, m) d for all m e M. Then we
can prove the following lemma.

LEMMA 1. If dimR O(h, m)= d for all m M, then
a) dimR O (h) d,
b) j, 0 (h 0 (h, m) is bijective for all m M,
c) O(h) is invariant by the pseudogroup PS() generated by ...
Proof. The space Joo(M, E) of all infinite jets of Coo mappings from M into E

has a natural vector bundle structure4 if we endow each fiber J (M, E) with the
simple convergence topology; a sequence {/’f k N} converges to jf if, for any
Coo vector fields XI,’’’, X on M, the sequence {(X Xf)(m)l k N} of vectors
in E converges to (X... Xf)(m). This vector bundle Joo(M, E) is endowed with a
natural connectionD having the following characteristic property" let s to J(M, E)
be a Coo section defined on an open set to; then Ds--0 if and only if there exists a
function f C(o), E) such that Joof s.

It is clear that the union t.3 ,,uO(h, m) carries the structure of a d-dimensional
vector subbundle 0(h) of Joo(M,E). Since ((h) is generated by the sections joof,
f O (h) and since D (]oof) 0, it follows that D restricts to a connection D’ on 0(h)
which is integrable. ]oo0(h) is a vector subspace of the space of horizontal sections
for D’. This last vector space is finite dimensional. Points a) and b) follow from this
statement. Since O (h) is finite dimensional andX. O (h) c O (h) for allX .., c) is true.

In the general case, let v" M N be the function rn dimR O (h, m). It is clear
that v is lower semicontinuous. Baire’s theorem implies then that the set o) of all
m eM such that v is constant in a neighborhood of m is open and dense in M. On
each component too of to, v is constant and we can apply Lemma 1 to the restrictions
..o [o’o and ho h [o’o. The next lemma extends part a) of Lemma 1 to certain points
of the boundary of wo. Before stating it, let us notice the following: it is clear that
the mapping ],," O(h) O(h, m) factors through O(ho). For simplicity’s sake, we shall
call the induced mapping/’, also.

4 See the appendix.
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LEMMA 2. Let m be a point of the boundary of too and let X .. (-) be such
that e tx (m) is defined for [0, a (a > 0) and e tx (m) too for 0 < <- a. Then the
mappingf O(ho) O(h, rn is bi]ective and u(m u(too).

Proof. Since X.O(ho) O(ho), X induces a R-linear endomorphism L of the
finite dimensional R-vector space O(ho). Let us denote by e tL the exponential of L.
For simplicity, we shall call mt the point e ix(m), 0 <- t <=a. Composition on the left
with e (a-0x induces R-linear mappings * J,. (M, E) J,,, (M, E) such that on O(ho),

I m, e for -a --<_ -t < 0. By continuity, it follows that o* /’,,a I, e
on O(ho). Since Ker 1,,a ={0} and Ker q0* ={0} one gets Ker !,, {0}. This implies

othat !,, is an isomorphism of O(ho) onto O(h, m).
To finish the proof, we shall show that the complement F of to in M is invariant

under t_J (-..). Since F has an empty interior, this shows that F is empty. Let
X E (-..); if F is not X-invariant, there is a point m F such that e tx (m) is defined
for [0, a] and e tx (m):F if >0. There exists a connected component too of to

containing the set {etX(m)lO<t<-a}, and, by Lemma 2, u(m)= u(to0). We will discuss
the following two cases disjointly:

1) There is a neighborhood V of m such that ulV-F is constant.
2) There is no such neighborhood.
In the first case, u is constant and equal to u (too) on V-F, since V f3 too V-F.

Then for all x V, u(x)<-u(too) because F has an empty interior and u is lower
semicontinuous. There exists also a neighborhood W of rn such that u => u (m) u (too)
on W. Hence u is constant on the neighborhood V f3 W of m. This implies that m
and contradicts the fact that m F.

In the second case, any neighborhood of m contains points x such that x to and
u(x) u(too). If we choose such a point m sufficiently close to m, ex(m a) will be
defined for all [0, a ] and e ax (m) too. It is easy to find a ball B of codimension 1
in M, centered at mx, contained in to, such that e ‘x is defined on B for all [0, a]
and e"X(B)=too. Then u(B)= u(ml) and u(eX(B))=u(too).

Let us denote by T the flow box {e ,x (B)I0 <-- -<_ a } and by yy the arc {e ,x (y)10 -<- -<_
a} for any yB. Since u(y)=u(B)=u(m)u(too)=u(eaX(y)), /yfqF is not empty
for any y B. It is clear that the set R of all y B such that y fqF has no interior
with respect to yy, is a Baire subset of B. Let RF be the space F f3 U{yy Y fi R } and
let Z be the open subset in RF of all x RF such that u is locally constant on RF
at x. RF is homeomorphic to a separable complete metric space, since it is a countable
intersection of open sets in F. This shows that Z is dense in RF.

Take a q Z. There is an open set U in T such that q U and u is constant on
U (3RF, and equal to u say. Calling 3’ the arc "yy containing q, 3’ f)F is totally
disconnected. One can find then an open ball D of codimension 1, transversal to X
and a number a >0 such that the tube Tx U{e ’X (D lO <= <-a} is contained in U and
the set D Ue"X(D) in T-F. By Lemma 2, u is constant and equal to u on yy T
for any y R such that yy f") Tx f3F is not empty. In particular u is equal to ux on D.
If, for ome y, yy f’)T1 f)F is empty, then u is constant on yy f3 T and equal to u(D),
that is ux. Hence for any y R, /](’yy T)= b’l. Since any open component of Tx-F
meets some yy, y R, u is constant and equal to u on T-F. By the first part, T is
contained in T-F, contradicting the fact that q F.

This ends the proof of Theorems 2 and 3.
Another proof of Theorem 1 in the C control-affine case. In this part, we assume

Pthat (M, E, h) is real analytic and that .. X0 +i= u.cY., where the Xo, Xx,..., Xo
are C vector fields on M. To each m M, we associate the following formal power
series in the noncommutative indeterminates :0, 5x, ",: and coefficients inE (cf. [1 ])
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g,, , (Xa" h)(m)G,

{0,1 }r, Owhere p =Ur_->0 ,p =(a
x xx,_l x,.

The connection between the system (M, E, h) and the generating series g,, is the
following" for all u e, the L1-norm of which is sufficiently small, one gets

l(m, u) Y’, (Xah )(m )w,

where w is the iterated integral defined by induction as follows"

Wo(t) t, wg(t) Io Uk(S) ds (k 1," ", p),

w(t) Io w(s) dWal(S

To help the reader to understand the relation between these concepts and what
has been done before, let us mention that the above series play the same role with
respect to h as the Taylor series play in the classical case of a function. In fact, the
Taylor series are particular (commutative) cases of the preceeding (cf. I-1]). A concep-
tual framework, similar to the jet space theory, can be developed to handle the above
expansions not only in the real analytic case, but in the C one as well. For lack of
space, we shall not do it here. Finally, we have the definition and the theorem already
stated in the foregoing approach.

DEFINITION 6’. (el. [2]). Given two C control-affine systems (M, Xo+
2= uX, h and (M’,X + Y=l uX, h’), an immersion of (M, Xo + Y’. uX, h) into

’) C /14’ ’--M’, Xo + , uiX, h is a mapping r M --> such that, at m eM and m r(m)
M’, the two systems have the same generating series.

THEOaEM 1’ (cf. [2]). Assume contains the piecewise constant controls. A C
control-affine system (M, Xo + Y’..= urg, h) can be immersed in an affine system if, and
only if, the observation space of h is finite dimensional.

Proof. We shall only sketch it, leaving the details to the reader (see [2]). Denote
by s the associative R-algebra of differential operators generated by X0, X1," ", Xp.
sg operates in a natural fashion on O(h). Call p : -* End (O(h)) the corresponding
R-linear representation of sg. If H denotes the vector space of all R-linear mappings
of O (h) into E, s induces a representation 0’: s --> End (H). Define a system (H, Yo +
YL uiY.,/)asfollows ifA ell, Y(A) p’(X)A,/(A) ?, (h ). The system is affine. An
immersion of (M, _, h) into this system is defined by -:M--> H, ’(m)[f] =f(m), for
all f e O(h ).

5. Some examples.
a) A physical example. Our first example has its origin in statistical physics (cf.

Schenzle and Brand [11], Suzuki, Kaneko and Sasagewa [13])"

A(t) ax(t)-bx(t) + ul(t)x(t),

1
y(t)= ),-1 (a,bR, aeN, a >2)

x(t

Here, M=R-{0}, C=R, E=R, E=X+ulY, where X=(ax-bx)O/O2 and Y=
xa/ax, h(x)= 1Ix -1.
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The Lie algebra Lie (..) is two-dimensional: if we denote xO/Ox by Z, we get
X aY bZ and [ Y, Z] (1 a)bZ. Since O (h) R. 1 @R. h, consider the map

X a(l-)__
(or 1)+ ---r-- b(a 1) a(1-a)

x

Y -a_
0 1 a a_i

x

Hence, the above system can be immersed in the following ane system:

22=b(a-1)xl+(1-a)(a +ul)x2,

b) A simple example showing thatL(E) does not have to be finite dimensional.Take
C=R, M=R3, ={X+uYluC}, where X=O/Ox-eY20/Oz, Y=O/Oz +eX20/Oz.
The function h:M-E is given by h (x, y, z)= e x + e y. Then O(h)= R ex (R eYH is
the dual of O(h); hence H ReRe2, where {e x, e2} is the basis dual to {e x, e}.
Wd get 19 {p (X) + up (Y) lu e C}, where

o(x)= (Y)=
0

h H- R is defined by h (e 1) h (e 2) 1. We have verified that the above system can
be immersed in an affine system, although its Lie algebra Lie (..) is clearly infinite
dimensional.

Representative [unctions. (i) Consider the one-dimensional systemon the real line

2 (t) u (t), y (t) h (x (t)).

The observation space is spanned by {d"h/dx"llz _-->0}. Hence h is representative if
and only if it is an exponential polynomial.

(ii) Take C=R, E=R2t+1 (/=>1), M={(x,y)[x,yR, x#O}, ..={Z+uX+
vYlu, v eR}, where X =-O/Ox, Y =-2lxO/Oy +X20/OX, Z lO/Oy -xO/Ox. Define
h’ M R2+ as follows" h(x, y) (e y, eYx -, eYx-Z, ., eYx 2). Then h is representa-
tive. The details are left to the reader. We satisfy ourselves with the remark that
{X, Y, Z} generate a Lie algebra isomorphic to ,tt (2).

Appendix. Vector bundles with infinite dimensional fibers and associated connec-
tions. A C vector bundle is a quadruple (Vvt, zr, M, V0) of a topological space VM
(total space), a C manifoldM (base space), a continuous surjective mapping zr’ VM
M (projection) and a topological vector space Vo (typical fiber) satisfying the following
conditions’

1) For each m M, there exists an open neighborhood U,, of m and a homeo-
morphism ,,: ,r-(U,,) ot; U,, x Vo such that, for all v 7r-l(U,,), ,.(v)
(r(v), o,,(v)).
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2) For anyp, q M, such that Up (q Uq # , the mapping gpq: (Up VI U) Vo Vo,
(x, y)-- qp 1(x, y) is linear and continuous in y for each given x Up f3 Uo and is
a C mapping Up fq Uo Vo in x for each given y in Vo.

A Coo section s of (Vt, 7r, M, Vo), defined in an open subset U of M, is a
continuous mapping s: U Vt such that: 1) ros =Idu, 2) for any m M, such that
U,, tq U # , the mappingx U,, Yl U,,(s(x)) V0 is C. For any open set U
the set Foo(U, Vt) of all Coo sections defined on U is a vector space.

A linear connection D on (VM, zr, M, Vo) is the data for each open subset U of
M of a linear mapping Du Foo(U, Vta) A’U(R)FOO(U, Vt), where A’U is the space
of all C differential forms of degree 1 on U, satisfying the following conditions: 1)
the Du commute with the restriction mappings, 2) for any s F(U, Vt) and any
f C(U), D(fs) fDvs + df(R)s.

In the case of J(M, E), the typical fiber is ;d(E), the space of all formal power
series in d dimM commutative variables, with coefficients in E, endowed with the
topology of convergence of the coefficients. One proves (Kumpera and Spencer [7])
that there exists a unique connection D on Joo(M, E) having the following property:
for any Coo mapping f: U E, Dvjoof 0. If (x 1, , Xd) U -R d is any chart of M
defined on an open set U, any s Foo(U, J(M, E)) is represented by a formal power
series in d variables X1,’", Xd, .,,rd sX, where the s are C functions U E.
Dus is then represented by a series Y. trX, where the tr are C differential forms
on U with values in E"

d

e (o,..., o, 1, o,..., o).
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OPTIMAL CONTROL PROBLEMS INVOLVING SECOND BOUNDARY
VALUE PROBLEMS OF PARABOLIC TYPE*

Z. S. WW’ AND K. L. TEO:

Abstract. Three classes of optimal control problems involving second boundary value problems of

parabolic type are considered. The controls are assumed to act through the forcing terms and through the

initial and boundary conditions.
A sufficient condition for optimality is derived for the first optimal control problem. For the second

problem, a necessary and sufficient condition for optimality is derived, and a method for constructing an

optimal control is given. For the third problem, a necessary and sufficient condition for optimality is derived,

a result on the existence of optimal controls is proved, an iterative method for solving this optimal control
problem is devised, and, finally, the convergence property of this iterative method is investigated.

Key words, parabolic differential equations, second boundary value problems, optimal control prob-
lems, necessary and sufficient conditions, existence theory, algorithms, convergence of algorithms

1. Introduction. In this paper, we consider three classes of optimal control
problems involving second boundary value problems of parabolic type with controls
appearing both in the forcing terms and on the boundary and initial conditions. The
partial differential equations involved are as described in [5] and [2]. The first problem
is the most general case in which a convex cost functional is considered. A sufficient
condition for optimality is derived for this general optimal control problem. In the
second problem, the cost functional is assumed to be linear with respect to the solution
of the second boundary value problem. The third problem, which overlaps the second
one, involves the convex cost functional and a special case of the second boundary
value problem. More precisely, the forcing terms and the initial and boundary condi-
tions of this special second boundary value problem are linear with respect to the
control variable.

For the second and third problems, answers to four major questions found in the
study of optimal control theory are provided. These four questions concern:

(i) necessary conditions for optimality,
(ii) sufficient conditions for optimality,
(iii) existence of optimal controls,
(iv) methods for constructing an optimal control.
For the second problem, an optimal control can be computed in only one iteration.

This is not possible for the third problem. However, the method proposed, which is
an iterative method, can be used to construct a minimizing sequence of controls.
Furthermore, certain convergence properties 6f the sequence of controls are also
established.

Except for question (ii), answers to the questions are not known for the first
problem. Continuing research in this area, which is expected to be heavy going, will
certainly lead to some interesting results.
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Optimal control problems involving second boundary value problems of parabolic
type have also been treated in [3], [4], [5], [9] and many others.

In [3] and [5], only very special cases of our third optimal control problem are
considered.

Lions and Magenes [9] deal with the case involving a quadratic cost functional
and a linear parabolic systems with constant coefficients. Furthermore, only a necessary
and sufficient condition for optimality is derived for this case.

In [7], an abstract convex optimal control problem is considered. A method of
estimating the rate of convergence of approximation to this problem is proposed, and
a necessary condition for optimality involving projections on the set of admissible
controls is derived. These general abstract results are then applied to a class of optimal
control problems involving second boundary value problems.

In [4], a class of boundary-distributed linear control systems in Banach space is
considered. A necessary condition for optimality is then derived for a convex optimal
control problem involving such systems. A duality result is also obtained. These results
are applicable to convex optimal control problems involving first or second boundary
value problems of parabolic type.

In both i-4] and [7], the second boundary value problems concerned are only
special cases of our third optimal control problem in the sense that the coefficients
of their differential equations are all independent of the time variable.

For our first and second optimal control problems, we note that the controls enter
the data for the linear equation in a nonlinear way (in distinction to truly nonlinear
problems where the governing equation is itself nonlinear). The problem of optimal
control of induction heating discussed in [5, p. 19] is an example of such a problem.

Note that the heavily worked time optimal control problem does not fit the
framework of this paper. For references on some time optimal control problems, see
[5], [2, Chap. 5] and the relevant articles cited therein.

2. The problem statement. Let be a bounded region in R (n-dimensional
Euclidean space) with its boundary and closure denoted by S and II respectively. It
is assumed throughout the paper that f has the uniform C3-regularity property as
defined in [1, 4.6, p. 67]. With this assumption, the boundary S of I) is of the class
C3 (in the sense defined in [5, p. 10]).

Denote a point in R by x =-(Xl, ,x,), and time by t. Let T be a fixed positive
real number. Let O -= D, x (0, T), O f x [0, T] and ST S x [0, T],

Consider the parabolic partial differential operator L defined by

() L" -= --(" i=1i x/]=19[il aii(x, t)Ox,O-+ai(x’ t)’]- ,=1
b,(x, t)xi_C(X,t)(,(9

where aij(i,/" 1,. ., n), ai, b (i 1,. ., n) and c are measurable functions from
into R.

Let U1, U2 and U3 be fixed compact and convex subsets of R", R "- and R
respectively.

Let u l, u2 and u3 be measurable functions from O, I) and ST into U1, U2 and
U3 respectively. Then, u =(u l, u2, u3) is called an admissible control. We denote by

(01, 02, 03) the class of all such admissible controls.
LetF.:OxU-,R (f= 1,...,n),f:OxUR, Oo:fxU2R andO:STXU3

R be measurable functions.
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We now consider the following second boundary value problem:

Lqb(x, t)= [Fi(x, t, ui(x, t))]+f(x, t, ul(x, t)), (x, t) Q,
i=1 OXi

(2) b I,=o Oo(X, uz(x)), x f,

+ (s, t)& O(s, t, u3(s, t)), (s, t)
ST

where 0b/0uL i..= (aij(s, t)Oc/Oxj + ai(s, t)c) cos a, (s, t) ST;a is the angle formed
by the outward normal to S with the x axis, and 0-" ST-R is a measurable function.

To specify our optimal control problem, we need to introduce a cost functional.
For this, let GI:QR R, G2:fR R, G3:ST-R R, HI:QUaR, H2:fI
U2 R and H3:ST U3 g be real-valued functions. Furthermore, we assume that
Gl(x, t," ), G2(x,. ), G3(s, t, ), HI(x, t, ), H2(x," and H3(s, t, are differentiable and
convex functions on their respective domains of definition.

Let 4 (u) denote the weak solution (to be defined in Definition 2.1) of the second
boundary value problem (2) corresponding to the control u -= (u

Our optimal control problem may now be stated as:
Subject to the system (2), find a control u q/that minimizes the cost functional

J(u) fO I {GI(X, t, c(u)(x, t))+Hl(x, t,/AI(X, t))} dx dt

(3) + In {G2(x, da(u)(x, T))+H2(x, uz(x))} dx

+ f [ {G3(s, t, c(u)(s, t))+H3(s, t, u3(s, t))} ds dt.
aS

For convenience, this optimal control problem will be referred to as the
problem (P).

We now itemize the aims of the present paper as follows:
1. We shall derive a sufficient condition for optimality for the problem (P).
2. Consider the problem (P) under the additional assumptions that the functions

Gi(i 1, 2, 3) are linear in b. For this special problem, we shall derive a necessary and
sufficient condition for optimality and then detail a method for constructing an optimal
control.

3. Consider the problem (P) under the additional assumptions that the func-
tions F (i 1,..., n), f, if0 and are linear in their respective components of
u (u l, u, u3). Then, firstly, we shall show that this special problem has a solution.
Secondly, we shall derive a necessary and sufficient condition for optimality. Thirdly,
we shall devise an iterative method for solving this problem. Finally, the convergence
property of this iterative method will be investigated.

3. Preparatory results. To. begin, we shall note that the results of this paper
depend heavily on the theory of parabolic partial differential equations provided by
[8]. Thus all subsequent definitions and assumptions are drawn from that source.

Let Lp (fl) be the space of all pth power integrable functions b from lq into R, with
finite norm
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and let Lo(12) be the space of all essentially bounded measurable functions
into R, with finite norm

I1 IIoo,.-- essxa sup

Let Lq,r(O), 1-< q, r <-oe, denote the space of all measurable functions f from Q
into R, with finite norm

[]fll.,.o--= [ Io { Ia If(x. t)lq dx}
r/o

dt]
1/r

for 1 -<_ q, r -<_

[Ifll,.o.o esstt0.r3 sup {Ill(", t)[[q.n}
for 1 -< q <

IoT t]
1/

[Ifll,r,O= {Ill(’, )II,Y d

for q
sup If(x, t)[

forq =, r=.
For simplicity, we denote Lq,q(O) by Lq(O) and the norm I1" [Iq,q,O by II, II.o,
Let W’1 (O) be the Hilbert space of all measurable functions defined on O with

finite scalar product

(Z, Y)W,I(Q)IQ f {Z(x,t)Y(x,t)+
i=1" Zxi(x’t)gxi(x’t)+Zt(x’t)gt(x’t)} dxdt,

where Z, -OZ/Ox (i 1,..., n) and Zt =-OZ/Ot are the generalized derivatives, and
the same notation is applied to the function Y.
W’ (Q) is the Hilbert space of all measurable functions defined on O with finite

scalar product

(Z, Z)w.O(o)I)I {Z(x’t)Z(x’t)t-i=1 Zxi(x’t)Zxi(X’t)} dxdt.

V2(O) is the Banach space of all those functions b in W’ (O), with finite norm

where

IIqxll:z,o=[IoI {i=l (bx,(x, t)):z} dx dt]
1/:z

V2’ (Q) is the Banach space of all those functions b in V2(Q) that are continuous
in (in the norm of L2(II)) and equipped with the norm

sup {limb (’, t)ll}2,n / IIbx I1=,o.
te[0,T]

Besides, let C(Q) be the space of all those functions, from Q into R, which are
continuously partial differentiable of arbitrary order, and let C (Q) be the space of
all those functions in C(Q) with compact support in Q.

We shall denote by ds the surface measure on S, induced by dx. The integral of a
function f(s) over the boundary S is to be understood as defined in [1, 5.21, p. 114]
and is to be denoted by sf(s) ds.
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Let La,r(ST) 1 <=q, r =< , denote the space of all such functions defined on ST with
finite norm which is as given for ][. ][,,o with Q, , dx being replaced by ST, S, ds
respectively.

Throughout the paper, we make the following assumptions.
(A1) aiiL2(Q) (i,j= 1,... ,n).
(A2) There exist positive constants a and a2 such that, for all =(i,"’", :.) R",

a (i)2 _<_ E a,i(x, t)Jisci <= a2 (sci)2,
=1 i,j=l i=1

uniformly on O.
(A3) There exists a positive constant M1 =-M(q, r) such that

,o <=M,
i=1 q,rl,0 i=1 ql,r,(

and

IlCI]ql,rl,0M1,

for a certain pair of constants q and r satisfying

1 n--+qr 1,

rl [1, o) for n 2,

rl [1, 2] for n 1.

(A4) There exists a positive constant M2-M2(q2, r2) such that

where q2, r2 are subject to the requirements

1 n-1 1

r2 2q2 2’

q2 (2n 1, ], r2[2, )

q2 (1, ), r2 (2, )

q2=r2=2

for n > 2,

for r 2,

for n 1.

(A5) F.(.,., Ul(’," )) L2(Q) (f 1, 2," ’’, n) for all
(A6) f(.,., Ul(’, "))Lq3,r3(Q), for all u, where q3 and r3 are subject to the

restrictions"
n t/
=1+-
2q3 4’

r3[1,2] forn_>--3,

1

q3 2
+2’

r36 [1, 2) for n =2,

r3 [1, }] for n 1.

q3 (1, 2],

q3 [1, 2],

(A7) 4o(’, U2(" )) L2() for all /12 02.
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(A8) O(’, ’, b/3(’," ))ELq4,r4(ST) for all U3E 0"3, where q4, r4 are subject to the
restrictions:

1 n-1 n 1

r4 2q4 4 2’

q4
n-2

r2e[1,2] forn>2,

(4)

q46(1, co], r4[1,2) forn =2,
4

q4 r4 3 for n 1.

For brevity, we introduce the following notation"

(, Vl)(t)= aii(x, t)x,(x, t)+ai(x, t)(x, t) nx,(x, t)
i=1

(5)

and

ff’(u)(x, t)=- (Fi(x, t, ul(x, t)))x, + f(x, t, u(x, t))
i=1

For the system (2), we introduce the following definition.
DEFnITION 3.1. For each u E q/, a function (u) is said to be a weak solution of

the second boundary value problem (2), if
(i) (u)e V’ (O),

(ii) for each r [0, T],

4) (u)(x, ’) (x, z) dx (u)(x, t),q,(x, t) dx dt

(7) + 5f(4 (u), rt)(t)+ (P(u), rt)(t)

+ J (o’(s, t)&(u)(s, t)-gt(s, t, u3(s, t)))q(s, t)dsI dt

Ill I/t0(X’ b/2(X))T (X, 0) dx

for any r e W21’1 (O).
LEMMA 3.1. Consider the second boundary problem (2). Suppose that Assumptions

(A1) to (A8) are satisfied. If (u) is a weak solution, then it satisfies the estimate

(8)

where

(9)

II6 (u)IIQ =<KI{IIF(’, ", b/l(’, "))11=,O +llf(’, ", u(.,. ))ll,.r.Q

+ II0(, u=(. ))11=, +11(, , u(.,. ))llq4,r4,ST},

IIF(’, ", u,(.,. ))[12,o (Fi(x, t, u l(X, t)))z dx d
i=l
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and the constant K1 depends only on n, al, a., MI, M. and the quantities ql, rx, q2 and
r2.

The corresponding conclusion of the lemma is well known for the case involving
the first (rather than the second) boundary value problem. Its proof is given in [8, 2,
Chap. 3, pp. 139-143]. By making some modifications, as suggested in [8, 5, Chap.
3, pp. 169-170], in the arguments used in the proof for the case of the first boundary
value problem, we can show that the estimate (8) is valid.

Remark 3.1. Consider the system (2) with f replaced by Y’= fg. Suppose that the
Assumptions (A1) to (AS) and (AT) to (A8) are satisfied. Furthermore, we assume that

f L,.,(Q) (i 1,’ ", v), where for each 1,..., u, the quantities i and r satisfy
the same restrictions as those given in (A6) for the quantities q3 and r3. Then, by a
similar approach as indicated in the statement made in the paragraph following Lemma
3.1, we can show that the estimate (8) with

Ill(" ", U l(’," ))llq3,r3,1
replaced by

]If’(’, ", u(., .))[[ai.e,o
i=1

is valid.
The next lemma follows immediately from [8, Thm. 5.1, pp. 169-170].
LEMMA 3.2. Consider the second boundary problem (2). Suppose Assumptions

(A1) to (A8) are satisfied. Then, for each u all, the problem admits a unique weak
solution c (u ).

Next, we shall introduce the adjoint system of the problem (P). To begin with, let

VG (x, t, ^c t, )

and

OG2(x, qb
VG(x, 4,)-=

,94,

VG3(s, t,)0G3(s, t, b)
o4 =’

where Gg (i 1, 2, 3) are given in the definition of the cost functional J.
The following system is called the adjoint system"

L*Z(x, t) VGI(X, t, &(u)(x, t)), (x,t) 6O,

(10) Z (x, T) VGz(x, (u)(x, T)),

ST
VG3(s, t, b (u)(s, t)), (s, t) ST,

where the operator L* is defined by.

(11) L* -=

and

t9/// X/ i--10t i=1
aii(x, t)x,-bi(x, t) ai(x, t)x,-c(x, t),

(12) OZ._._ aii(s, t)Zx, bi(s, t) cos
OlL*

with ai as defined for the system (2).
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To proceed further, additional assumptions on the functions Gi (i- 1, 2, 3) are
required. These assumptions are given below.

(A9) (i) For each u, VGI(’,.,c(u)(’,’))Lq3.r3(Q), where q3 and r3 are
defined in Assumption (A6).

(ii) For each u //, VG:(., 4 (u)(., T)) L:(f), and
(iii) For each u //, VG3(.,., &(u)(.,. ))Lq4.r3(ST), where q4 and r4 are defined

in Assumption (A8).
Now we need to show that, for each u 0//, the adjoint problem (10) has a unique

weak solution in the sense of the following definition.
DEFINITION 3.2. For each u ag, a function Z(u) is said to be a weak solution of

the adjoint problem (10) if
(i) Z(u) vl’ (Q);

and

(13)

(ii) for each z [0, T],
T

IlaZ(u)(x, -)l(X, -) dx + I, fZ(u)(x, t),(x, t) dx dt

+ *(Z(u), )(t)+(Val(u), )(t)

+ fs (G(s, t)Z(u)(s, t)-VG3(s, t, d(u)(s, t)))rl(s, t) ds} dt

fn VG2(x, 4, (u)(x, T))q (x, T) dx,

for any r/ W’1 (Q), where

(14)

and

(15)

*(Z(u), rt)(t)=- = a,jZ(u)x,-bZ(u) rl,
i=1

+ agZ(u),-cZ(u)q] dx,
i-1

(VGI(u), rt)(t) Ia VGI(x, t, 4)(u)(x, t))q(x, t) dx.

LEMMA 3.3. Consider the adfoint problem (10). Suppose that Assumptions (A1) to

(A4) and (A9) are satisfied. Then, for each u , the adfoint problem admits a unique
weak solution Z (u which satisfies the estimate

IIZ(u)llo Kz{IIVGI(’, ", 6(u)(.,.

+ [IVG2(., (u)(., T))II2, + iIVG(’, ", 4 (u)(.,.

where the constant K2 depends only on n, al, 012, Ma, M:, Tand the quantities ql, q2, rl
and r2.

Proof. Letting t’ T and then setting Z (u)(x, T t’) --- (u)(x, t’), the adjoint
system (10) can be reduced to the one involving the function (u)(x, t’). This reduced
system is in the form of the system (2). Furthermore, it can be verified that all the
assumptions required by Lemma 3.1 and Lemma 3.2 are satisfied. Thus, from the
same lemmas and the definition of (u)(x, t’), we obtain the conclusion of the lemma.
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In our later analysis, we need to smooth the coefficients and data of the adjoint
system (10) so that it admits classical solutions. For this, we shall adopt the following
convention"

aii(x, t)- 1,

aij(x, t) =- O,

ai(x,t)=-bi(x,t)---O,

for all (x, t) R + O;

VGa(x, t, b (u)(x, t))---0

for all u 6 0-// and for all (x, t) R+I\Q, and

VG2(x, c (u)(x, T)) 0

for all u 6 0//and for all x R "\f.
For each u 0?/, let TGI(U) and TG2(u) denote, respectively, 7G1(’, ’, q(u)(", ))

and ’G2(’, b(u)(., T)), and let a denote any of the coefficients a0 (i, f 1,..., n),
ai, bg (i 1, , n) and c. Furthermore, let TG1 (u) and a be, respectively, the integral
averages of Tax(u) and a with a kernel whose support lies in {(x, t) R n+l" in_- (Xi)2 -[-

(t)2_-< 1/(k)2}. Similarly, let VG2(u) be the integral average of 7G2(u) with a kernel
whose support lies in {x R "" ’=1 (xi)2-< 1/(k)2}.

Remark 3.2. By the well-known properties of integral averages, we conclude that
k (i,j=l n),ai,b (i=1,.. ,n) c k,Vax(u) andVG2(u)converge,respec-aii

tively, to agi (i, f 1, , n), ag, b (i 1,. ., n), c, 7Gl(u) and ’G2(u) in the norms
of the spaces to which they belong.

Remark 3.3. Since l) has uniform C3-regularity property, it follows that S nl+2

for 0 < < 1. (For the definition of Ht/2, see [8, p. 10].) Thus, there exists a sequence
of functions {VG3(u)} cHt+l’(l+l)/2 (ST). (For the definition of HI+1’(1+1)/2 (ST), see [8,
Chap. II, (3.19), p. 82].) and a sequence of function {o"k} cHt+1’(I+1)/2 (ST) such that,
as kc, VG3(u)VG3(u)(=-VG3(.,.,$(u)(.,.)))in the norm of Lq4.r4(ST) and

k
cr cr in the norm of Lq2.r (ST).

Let {fk} be a sequence of open connected sets with sufficiently smooth boundaries
fk=l-l. For eachsuch that f---c fk+l =fk+l 1" for all integers k >_-1 and

k _>- 1, let dk be an element in C () so that dk (x) 1 on k and 0 -<_
Again, let {ik} be a sequence of open intervals such that Ik Ik+l Ik+l c (0, T) for
all integers k _-> 1 and limk_,Ik= (0, T). For each k _-> 1, let ak be an element in
C ([0, T]) so that dk (t) 1 on Ik and 0 -< dk (t) _-< 1 on [0, T]\Ik.

We now consider the following sequence of second boundary value problems

(16a) L*’kZk(x,t)=VG(u)(x,t),
(16b) Zk(x, T)l=VG2(u)(x)dk(x),

(16c) [ 0 Zk+rk(s,t)Zk] =G(u)(s,t)k(t),
O1]L*’t ST

where, for each k, the operators L*’k and 0/0t,.. are as defined by L* and 0/0u., in
(11) and (12), with aii, ag, bi, c replaced, respectively, by the corresponding integral
averages.

It is clear that the system (16) satisfies all the assumptions as required in [8,
Thm. 5.3, pp. 320-321]. Thus, it follows from the same theorem that the system (16)
admits, for each k, a unique classical solution Zk (u), that is, there exists a unique
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function Z k (u) which fulfills the following conditions"
(i) Zk(u) satisfies (16a) everywhere in Q, (16b) everywhere in f and (16c)

everywhere in St, and
(ii) Z (u) and Z (U)xi (i 1, , n) are continuous on (, while Z k (u), and

Z (U)xm (i,/" 1, , n) are continuous on Q.
Remark 3.4. Note that, for each k, the classical solution of the system (16) is also

a weak solution of the same system.
In the next theorem, we shall show that the sequence of the classical solutions

{Zk(u)} converges, in the norm of V" (Q), to the weak solution Z(u) of the system
(10).

LEMMA.3.4. Suppose that the assumptions (A1) to (A4) and (A9) are satisfied.
Then, for each u ll, Z(u)Z(u) in the norm of V’(Q) as k

Proof. In view of Remark 3.4, the classical solutions Zg(u) of the system (16) are
also weak solutions. Thus, it follows from Definition 3.2 that, for each - e [0, T],

T

InZk(u)(x, r)n(x, z)dx+ f. IaZk(u)(x, t)’Ot(x t)dx dt

T

+ I.
(17)

fa VG2(u)(x) dk (x)rt(x, T) dx

for any rt 6 W’a (Q), where *’k(zk(u), rl) is as defined by *(Z(u), n)(t), in (14),

withk aiJ,k.kai’ b], c and.Z (u) replaced, respectively, by the corresponding integral averages
a , a i, o , c and.Z k(u), while

(va(u), n)(t)=-- va(u)(x, t)n(x, t)dx.

Note that Z(u) is the weak solution of the system (10). Hence it must satisfy (13).
Thus, by subtracting (17) from (13) and then setting Z:(u)-Z(u)=’(u), we obtain

T

fa 2k(u)(x’ r)n(x, r)dx+ I, Ia 2k(U)(X’ t)Tqt(x, t)dx dt

T

(18)

In (7G2(u)dk-7G2(u))rl(x, T) dx,

where *’(2(u), rt)(t) is as defined by *’k(Z(u), n)(t) with Z(u) replaced by
(u), while

(19)

((u), r/)(t)--= I {i=1 /k (X’ t)rb,,(x, t)-[(x, t) + (VGI (U )(X, t)

-VGI(U)(X, t))]r/(x, t)} dx,
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with

(20)

and

(21)

,i (x, t)=-- (a kij(X, t)--aii(x, t))Z(u)x(x, t)-(bi (x, t)-bi(x, t))Z(u)(x, t),
i=1

g(x, t) =- ’. (ai (x, t)-ai(x, t))Z(u)x,(x, t)-(ck(x, t)-c(x, t))Z(u)(x, t).
i=1

By setting t’---T-t, (18) can be reduced to the form of (7). Thus, from Lemma
3.1 and Remark 3.1, we have

112 k (U)IIQ <_-g{ (f fo. [i=1 (ff/k (X, t))2] dx dt)1/2
/ IIg" I1 ,,,o / lira (u) VG(u

(22)
+ [IVG (u)d VGz(u)II2, / I1( -)z(u

+llVGg(u)-VG3(u)llq4,r4,sr]
where h 2qi/(qi + 1), i 2rg/(ri + 1) (i 1, 2).

To complete the proof, it remains to show that

II (u)llo 0 as k ,
From Minkowski’s inequality and (20), we obtain

(23) (I IO i1 (g(X, t))2dx dt)
1/2

I1( bi)Z (.
i=1=1 i=1

Using Cauchy’s inequality, it follows that

i,i i,i
(24)

=< : {lla, a,ll,ollZ(u
i,]=

From H61der’s inequality and [8, (3.8), p. 77], we get

II(b/ -bi)Z(u)llz,o <- {(ll(b, -bi)llql,,,o)a/llZ(u)llXl,al,O}
i=1 i=1

(25)

i=1

where the constant is as defined for [8, (3.8), p. 77], and 1 =--2qx/(ql-1), I.Z1
2r1/(rx-1).

Combining (23) to (25) and then using Assumptions (A2) and (A3) and Remark
3.1, we obtain

(IO I [i= [l(ff/k (1, t))21 dx dt)
1/2

(26)

as k c.

k<

i,i=

+ : {(ll(z, -bi)llol,,,,o)/=((llZ(u)lle)}-* 0
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For gk, it follows from (21) that

(27)

where hl=-2ql/(qa+ 1) and tXl--2ra/(ra+ 1).
Now, we are required to show that the right-hand side of the above inequality

tends to zero as k oo. From H61der’s inequality and Assumption (A3), we have

y. II(a-a,)z(.),ll,.,.,,.,,o-<
i=1

(28)

--< (ll(a-ai)Zl[q,,r,,e)’/Zllz(u)l[o0 as k 0.
i-=1

On the other hand, it follows from H61der’s inequality, [8, (3.8), p. 77] and (A3) that

II(c c )z (.) II,,,,,_,.,,o --< IIc ’ c II,,,rl,0[[Z (u)11 .1,i., 1,0
(29)

_-< Ilc ’ c II,,,,.,,o(d z (u)llo) 0

where ha - 2ql/(qa 1) and/2 2ra(rl 1).
Combining (27) to (29), we obtain

(30)

(31)

as k oo.

Similarly, we have

I1(o- o-)z (u)ll ,,,=,s_-< IIo- o-II,,,,,s-IIz (u

where hz=2q2/(q2+ 1), tzg.=2rz/(r2+ 1). hg. 2q2/(q2-- 1) and/.2 2r2/(r2-1). Note
that ,2 together with -2 satisfies the conditions:

1 n-1 n

/-Z2 22 4’

-[2(n-l) 2(n 1)][2, oo], 2 E for n > 3
n-2

(2, oo], h [1, oo) for n 2,

X2-- jG, 2 4 for n 1.

Thus, by making use of [8, (3.11), p. 78], we obtain

(32) IIz
where C is a constant as defined for [8, (3.11)-(3.12), p. 78]. Hence,

(33)

as k-+oo.
The other three terms in the right-hand side of (22) also approach zero as k

by Remarks 3.2 and 3.3 and the properties of the functions d and d. Thus, we
conclude that

112 (.)11o -, o as k + O.

This completes the proof of Lemma 3.4.
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In the sequel, we need to consider another sequence of second boundary value
problems:

Lkqbk(x, t)= 0-----[F.(x, t, ul(x, t))]+f(x, t, Ul(X, t)),
i= Ox

(34) & (x, t)l,=o Oo(X, u=(x)),

+o’S(x, t)4 =O(x, t, u3(x, t)),
19 l;L ST

where, for each k, the operators Lk and 0/0u are as defined, respectively, by L and
0/Su, in system (2), with the coefficients ai, ai, bi, c replaced by the corresponding
integral averages a 0, a/, b/, c respectively.

In view of Lemma 3.2, we observe that, for each k, the system (34) admits a
unique weak solution 4 (u) (in the sense of Definition 3.1). Furthermore, by using
the same approach as that given for Lemma 3.4, we can show that, for each u

(35) (u)-(u)
in the norm of VI’(Q) as k c, where b(u) is the weak solution of the second
boundary problem (2).

4. A basic inequality. In this section, we shall derive a basic inequality which
will then be used to derive a sufficient condition for optimality for the problem (P).

To begin, we need to impose the following additional assumptions on the functions
Gi (i 1, 2, 3) and Hi (i 1, 2, 3). (These functions are given in the definition of the
cost functional J.)

(A10) For each b/ (b/1, b/2, b/a) 0, G(’,’,qb(u)(’,’))LI(Q) and
Hi(’, ", Ul(’, "))eL,(O).

(All) For each u =(Ul, U2, U3)eql, G(., dp(u)(., T))eL(fl) and H2(’, ue(’))e
L(f).

(A12) For each b/ (b/1, b/2, /g3) 0", G3(’,’,qb(u)(’,’))LI(ST) and
H3(’, ", u3(’, "))eLl(ST).

o oLEMMA 4.1. Consider the problem (P). Let u (u , u 2, u) 11 be an admissible
control and let Z(u) be the weak solution of the adfoint system (10) with u replaced
by u o. Then

J(u)-J(u) >- (El(X, t, u,(x, t))-Fi(x, t, u?(x, t)))Z(u?)x,(x, t)

-[-(f(x, t, L/I(X, t))--f(x, t, U(X, t)))Z(u)(x, t)

+ (H1 (x, t, u (x, t)) H1 (x, t, u 0(x, t))) dx dt
(36) J

+ f. {(,o(X, u(x)))-o(x, u(x)))Z(u)(x, o)

+(H(x, Uz(X))-Hz(x, u(x)))} dx

+Is [{((s’ t’ u3(s’ t))-b(s’ t’u(s’ t)))Z(u)(s’ t)

+ (H3(s, t, u3(s, t))-H3(s, t, u(s, t)))} ds dt

for all u
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Proof. Let

z-t(u, u) Io I (Hl(X, t, Ul(X, t))-Hl(X, t, u(x, t))) dx dt

(37) + ff (H2(x, u2(x))-H2(x, u(x))) dx

+ Is I (H3(s, t, u(s, t))-H3(s, t, u(s, t)))ds dt.

By the convexity properties of the functions G (i 1, 2, 3), we obtain

](lt)--J(U O) e IO I VOl(U)(x’ t)((u)(x, t)-&(u)(x, t)) dx dt

(38t + Ia VG(ul(xl(&(u)(x’ Tl-qb(ul(x’ T)) dx

+ Is [ VG3(u)(s’ t)((u)(s, t)-(u)(s, t)) ds dt + AH(u, u).
T

From Remarks 3.2 and 3.3, we recall that VG (u) (i 1, 2, 3) converge, respec-
tively, to VG(u) (i 1, 2, 3) in the norms of the spaces to which they belong. Thus,
by virtue of (35), it follows from inequality (38) that

J(u)-J(u) >- -lim {Iol VG(u)(x’ t)((u)(x’ t)-’(u)(x’ t)) dx dt

(39) + In VG(u)(x)(&k(u)(x’ T)--k(u)(x’ T)) dx dt

+ Is I VG(u)(s’ t)((u)(s’ t)-(u)(s’ t))ds dt}+ AH(u, u)
T

In view of (16), the above inequality can be written as

J(u)-J(u)>= -.lim {Iol L*’Z(u)(x’ t)((u)(x’ t)-(u)(x’ t)) dx dt

(40t + faz(u)(x’ T)( (u)(x, T) (u)(x, T)) dx

Is I( 0 Z(uO)(s t) + o, (s, t)z (uo)(s, t))
T

((u)(s, t)-&(u)(s, t)) ds dt} + AH(u, u).
Since Z(u)e W’(O) and (u) is the weak solution of the system (34),

corresponding to u e a//, it follows from Definition 3.1 that

(u)(x, T)Z (u)(x, T)dx k (u)(x, t)Z (u)t(x, t) dx dt

T

+ Io ’{ ’L’t" (&t, (u), Z t" (u ))(t)+ (ff’(u), Z t" (u ))(t)
(41)

+ Is (cr(s’ t)(u)(s’ t)-O(s, t, Ua(S, t))Z(u)(s, t) ds} dt

Ia o(X, uz(x))Z (u)(x, O) dx,
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where Lk(ck(U),’Zk(u)) (resp. (l(u),Zk(u))) is as defined by (4) (resp. (5)), with
k k k k 0).a0, ai, b, c, b and rt replaced, respectively, by a 0, a , b , c b (u) and Z (u

But, as a result of integration by parts with respect to x in the appropriate terms,
we have

r ( (u), (u))(t) dtZ

a.Z(u),,-bz(u)i=i
(u),-c (u

(42)
=a

i=

Iol (L*’kZk(u)+tZ(u))g)k(u)dx dt

By virtue of (42) and (6), the inequality (41) can be reduced to

O(u)(x, T)Zk(u)(x, T) dx + Io I (L*’Z(u))da(u) dx at

(43)

+ Ja Oo(x, u.(x))Z(u (x, o) dx + O(s, t, u3(s, t))Z(u) ds dt.
T

Using (43), it follows from (40) that

:r(u -r(u)

->limk_ {I Io [ (fi(x’ bll(X’ t))--fi(x’ t’ IgOl (x’ t)))Zk(UO)xi(X’ t)

+ (f(x, t, u (x, t))-f(x, t, u (x, t)))Z (u)(x, t)] dx dt
(44)

+ I, (o(x, u(x))-o(x, u(x)))Z(u)(x, o) x

+Is I (O(s’ t’ u3(s’ t)) -O(s’ t’ u(s’ t)))Z(u)(s’ t) ds dt} + M-t(u’ u)"
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By Cauchy’s inequality, we have

(Z(u),(x, t)-Z(u),(x, t))] dx dt
(45)

--<
i=1

<-- I; IIF,(.,., u(., ))-F(., ., u(., ))ll=.ollZ(u)-Z(u)llo.
i=1

Again from Cauchy’s inequality, it follows that

I,, (o(x, ,,:(x))-,o(x, u(x)))(Z(u)(, o)-z(.)(x, o)),x

(46) --< lie,o(., .:(.))-e,o(.,. # (.))ll%,,llz’ (,, )( o)-z(. )( o)11:.,
--< II,t,o( , ,,, :(. ))- e,o( , ,, (.))11 :,,,,llz ’ (u ) z(, )11o.

By H61der’s inequality and [8, (3.8), p. 77], we obtain

fo I (f(x, t,/,/l(X, t))-f(x, t, u(x, t)))(Z(u)(x, t)-Z(u)(x, t)) dx dt

(47) -<-Ill(.,.,

--< Ill(’, ’,/1 (’,’))--f(’, ",

where q3q3/(q3 1) and f3r3/(r3 1).
Again, by Holder’s inequality and [8, (3.11), p. 78], we have

Is [ (g/(s’ t’ u3(s’ t))-g/(s’ t’ u(s’ t)))(Z(u)(s’ t)-Z(u)(s’ t)) ds dtl
(48) --< lie,(,, ", u3(’,’ ))-(’,’, u’.,. ))llq4,r4,slZ(u)-Z(u)llc4,4,s

--< lie,(.,., ,, (.,. ))- ,(.,., ,,, (.,.))llo4,r4,s(dllZ (u ) Z (, )11o
where c4 q4/(q4-1) and ?4 r4/(r4-1).

Combining (45) to (48), and then using Lemma 3.4, we see that the limit of the
right-hand side of the inequality (44) exists and is equal to the right-hand side of the
inequality (36). This completes the proof.

Remark 4.1. In fact, we showed, in deriving relationships (38)-(43), that

Io l VGl(u)(x,

+ In VG2(u)(x)(g)(u)(x’ T)-g)(u)(x’ T)) dx

+ f [ VG3(u)(s, t)(d)(u)(s, t)-(u)(s, t)) ds dt
aS

+(f(x, t, Ul(X, t))-f(x, t, u(x, t)))Z(u)(x, t)l dx dt
l
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+ j. (6o(x, u(x))-6o(x, u(x)))z(uO)(x, o) clx

+ f [ (O(s, t, u3(s, t))-O(s, t, u(s, t)))Z(u)(s, t) as dt.
(49) .s

In closing this section, we present a sufficient condition for optimality for the
problem (P) in the following theorem.

TI-IEOREM 4.1. Consider the problem (P). u* =- (u’, u’, u 11 is an optimal
control if the following conditions are satisfied"

Fi(x, t, u(x, t))Z(u*)x,(x, t)+f(x, t, u(x, t))Z(u*)(x, t)+nl(x, t, u(x, t))
i=1

(50)
< Z Fi(x, t, Vl)Z(u :) (x, t)-[--f(x, t, vl)Z(u*)(x, t)+Ha(x, t,/)1)

i=1

for all v U1 and almost all (x, t) Q;

(51) 4o(X, u 2* (x))Z (u *)(x, O) + H2(x, u (x )) <- O0(x, v2)Z (u *)(x, O) + H2(x, v2)

for all v2 U2 and almost all x , and

(s, t, u*3 (s, t))Z(u*)(s, t)+H3(s, t, u (s, t))
(52)

<--O(s, t, v3)Z(u*)(s, t)+H3(s, t,/-)3)

for all v3 [3 and almost all (s, t)
Proof. For any u IL it follows from Lemma 4.1 and the conditions (50) to (52)

that
y(u)-y(u*)_-> 0.

Therefore, u* is an optimal control for the problem (P).
Remark 4.2. In the proof of Theorem 4.1, we note that the convexity property

of H, H2 and H3 in u is not used. This property is required only in proving the
necessary condition for optimality and the existence of optimal controls.

5. An optimal control problem with a linear cost functional. In this section, we
shall consider the problem (P) under certain linearity assumptions. More precisely,
we shall assume that the cost function J takes the following special form"

Ja(u) .o f {01(x, t)4(u)(x, t)+H(x, t, u(x, t))} dx dt

(53) + {G.(x)4)(u)(x, t)+H(x, ua(x))}dx

+ {Ga(s, t)(u)(s, t)+H3(s, t, U3(S, t))} ds dt

The functions Gi (i 1, 2, 3) are assumed, throughout this section, to satisfy the
following conditions:

(A13) G1 Lq3,r3(Q), where q3 and r3 are defined in Assumption (A6).
(A14) G2 L2(Iq).
(A15) G3 Lq4,r4(ST), where q4 and r4 are defined in Assumption (A8).
Remark 5.1. Using the same arguments as those given to obtain the inequalities

(47), (46) and (48), we can show that all the integrals involving the functions
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and G3 in the definition of the cost functional J1 are finite under Assumptions (A13),
(A14) and (A15). Furthermore, Assumption (A9) is also guaranteed by these three
assumptions.

For convenience, the problem (P) with the cost functional J replaced by the cost
functional J1 will be referred as the problem (P1).

The adjoint system for the problem (P1) takes the following form"

L*Z(x, t)= GI(X, t), (x,

(54) Z (x, t) G(x), x f,

+ or(s, t)Z G3(s, t), (S, t) ST,

where L* and OZ/O,c. are as defined, respectively, in (11) and (12).
Note that the adjoint system (54) is independent of the control u ?1. Hence,

the weak solution of the adjoint system, which is guaranteed to exist by Lemma 3.3
and denoted by Z, is also independent of u

LFMMA 5.1 Consider the problem (P1). Then

Jl(U)-Jl(U)

:fOr{ i/=l (fi(x’t’bll(X’t))--fi(x’t’bl(x’t)))Zxi(X’t)

+([(x, t, ua(x, t))-[(x, t, u(x, t)))Z(x, t)

+(Ha(x, t, u(x, t))-Ha(x, t, u (x, t)))} dx dt

(55) + fa {(0o(X, u2(x))-Oo(X, u(x)))Z(x, O)

+ (H2(x, u2(x))-H2(x, u(x)))} dx

+Is [ {(O(s, t, u3(s, t))-gt(s, t, u(s, t)))Z(s, t)

+(H(x, t, u(x, t))-H(x, t, u(x, t)))} dx dt

]:or any u =-(u, uz, u3), u= (u, u, u3)6
Proof. The proof is similar to that given for Lemma 4.1, except with the cost

functional J and the adjoint system (10) being replaced, respectively, by the cost
functional J1 and the adjoint system (54). Furthermore, inequality (38) becomes, in
the present case, an equality.

THFOIZM 5.1. A necessary and sufficient condition [or an admissible control
u * (u , u *2, u ’ to be an optimal control is that

Fi(x, t, u(x, t))Z,(x, t)+[(x, t, u’(x, t))Z(x, t)+H(x, t, u((x, t))
i=1

(56)

<= F(x, t, v)Z,(x, t)+f(x, t, vl)Z(x, t)+Ha(x, t, v)
i=1

for all I) Ul and almost all (x, t) 0;,

(57) qo(X, u (x ))Z (x, O) + Hz(X, u ’ (x )) <- Oo(X, vz)Z (x, O) + Hz(X, v2)
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for all v2 U2 and almost all x l’l, and

(58) (s, t, u*(s, t))Z(s, t) +H3(s, t, u*(s, t))<-(s, t, v3)Z(s, t) +H3(s, t, v3)

for all t) 3 C= U3 and almost all (s, t) ST.
Proof. The sufficient condition follows, as a special case, from Theorem 4.1. It

remains to prove the necessary condition. For this, let u* q/be an optimal control.
Let v U1 and let (Xo, to) be an interior point of (2 such that it is also a regular point
for all those functions appearing on both sides of the inequality (56). Let {S,} c (2 be
a sequence of spheres with (Xo, to) as their center such that IS,]- 0 as n o (where
[Sn[ denotes the Lebesgue measure of S,). Furthermore, let

f 1)1 if (x, t)S.,
U(X, t)- u* (x, t) if (x, t)cS.,

and define

u =(uT, u,u,
Then, it follows from Lemma 5.1 and the optimality of u* that

Jx(un)-Jx(u*)=Is I { (fi(x,t, 1)x)-Fi(x,t,u*(x,t)))Zxi(X,t)
i=1

+(f(x, t, Vl)-f(x, t, U*l (X, t)))Z(x, t)

+(Hi(x, t, 1)1)-HI(X, t, u(x, t)))l dx dt >=0.
J

,lirno [ 1[_,[ Is. I{ (F(x’i=l t, 1))--gi(x t, u*(x, t)))Zx,(x, t)

+(f(x, t, vl)-f(x, t, u(x, t)))Z(x, t)

t. t. u (x.+Hi(x,

(59)
.(Fi(xo, to, 1)l)-Fi’(Xo, to, u’ (Xo, to)))Zx,(Xo, to)

i=1

+(f(xo, to, 1)l)--f(Xo, to, u* (Xo, to)))Z(xo, to)

+ (Hl(xo, to, 1)l)-Hl(Xo, to, u’ (Xo, to)))_-> 0.

Note that, for each vie UI, almost all (x, t) O are regular points, that U1 has
countably dense subsets, and that all functions appearing in the inequality (56) are
continuous with respect to Vl. Thus, we conclude from (59) that the inequality (56)
holds for every 1)1 U1 and for almost all (x, t)e O.

The inequalities (57) and (58) can also be derived similarly. This completes the
proof.

The next theorem deals with the existence of optimal controls for the problem (P1).
THEOREM 5.2. Consider the problem (P1). Then there exists an admissible control

u * =- (u , u *2 u ql such that

Y Fi(x, t, u*x (x, t))Zx,(x, t)+ f(x, t, u* (x, t))Z(x, t)+Hl(x, t, u*x (x, t))
i=1

(60)
inf Fi(x, t, 1)l)Z,(x, t)+f(x, t, 1)l)Z(x, t)+Hl(x, t, 1)1)

IAI gl

Thus, we have
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for all (x, t)s Q;

(61) Oo(X, u 2* (x))Z (x, 0) + Ha(x, u 2* (x)) inf {Oo(X, v.)Z (x, O) + H2(x, v)}
Vl U:

[or all x 12, and

(62) O(s,t,u*3(s,t))Z(s,t)+H3(s,t,u(s,t))= inf {O(s,t, v3)Z(s,t)+H3(s,t, v3)}
v3 U3

[or all. (s, t)
Furthermore, u* is an optimal control.
Pro@ Let

I(x,t) inf
t
[ Fi(x,t, v)Z,(x, ,)+[(x,t, v)Z(x,t)+H(x, t, v)}.

Vl U1 i=l

Since all the functions in the right-hand side of the above expression are continuous
in v U and measurable in (x, t)e O, I is measurable in O. Furthermore, since U
is compact, we have

I(x, t) { Fi(x, t, U1)Z,(x, t)+f(x, t, U1)Z(x, t)+Hl(X, t, U1)}.
i=1

Thus, it follows readily from [6, Thm. 3’] that there exists a measurable function
u (x, t) U such that

I(X, t)= Fi(x, t, u*(x, t))Zx,(x, t)
i=1

+ f(x, t, u (x, t))Z(x, t)+H(x, t, uf (x, t)).

this means that u e 1 and satisfies (60).
Similarly, it can also be shown that there exist measurable functions u e 2 and

U 3 such that they satisfy (61) and (62) respectively.
Finally, since u * (u f, u, u) belongs to and satisfies the sufficient conditions

(56) to (58), it is an optimal control: Thus, the proof is complete.
On the basis of the above theorem, a method for constructing an optimal control

for the problem (P1) can be described as follows’
1. Solve (54) to find the function Z (x, t) and its derivatives Z, (x, t).
2. Find an admissible control u* (u f, u f, u) (whose existence is ensured by

the first part of Theorem 5.2) such that (60) to (62) hold. Then, by virtue of the
second part of Theorem 5.2, u* is an optimal control for the problem (P1).

6. An optimal control problem with a linear system. In this section, we shall
consider the problem (P) under certain linearity assumptions on the forcing terms,
and the initial and boundary data. More precisely, the system (2) shall take the

following special form"

O
L(x, t)=

i=1 [L(X, t)" U(X, t)]+f(X, t). ua(x, t), (x, t) Q,

(63) Ol,=o=O(x) Uz(X), x

+ (s, t) O(s, t)" u3(s, t), (s, t)e Sr,
ST

where denotes the usual inner product in any Euclidean space.
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The vector valued functions Fi (i=l,...,n), f, 0 and 0 are assumed,
throughout this section, to satisfy the following conditions:

(A16) Fi Lz(O, R") for 1,..., n.
(A17) Lq3.r3(Q, R"I), where q3 and r3 are defined in Assumption (A6).
(A18) OoLz(a,R").
(A19) 0 e Lq.r(ST, R -), where q# and r are defined in Assumption (A8).
For convenience, the problem (P) with the system (2) replaced by the system (63)

will be referred to as the problem (P2).
Remark 6.1. Consider the problem (P2). The corresponding version of the

inequality (36) may be written as"

"f(u)-J(u) foI{ i=1
(Pi(X, t) (Ul(X, t)--uOl(x, t)))Z(u)xi(X, t)

+ (f(X, t)" (Ul(X, t)--uOI(x, t)))Z(uO)(x,
+ (Hi(x, t, u(x, t))-Hl(X, t, u(x, t)))} dx dt

(64) + In {(0o(X)" (u 2(x) u (x)))Z (u)(x, O)

+(H2(x, Uz(X))-Hz(x, u(x)))} dx

+

+ (H3(s, t, u3(s, t))-H3(s, t, u (s, t)))} ds dt,

where u--(ul, u2, u3), u=-(u,u,u)ql, and Z(u) is the weak solution of the
adjoint system (10) corresponding to the control u .

For the rest of this section, let 7H(ua)(x, t) denote the gradient of Hi(x, t, .)
evaluated at U l(X, t). Furthermore, Hz(u2)(x) and TH3(u3)($, t) are defined similarly.

THZOREM 6.1. The control problem (P2) has a solution.
Proof. In view of inequality (64) and the assumptions on those functions appearing

on the right-hand side of (64), we note that the cost functional J subject to the system
(63) is bounded below on , that is,

inf J(u)=r >-.(65)

Let {u } q/be a sequence such that

lim J(u ’)(66)
-+

Such a sequence is referred to as a minimizing sequence. Define

-’{U (Ul, U2, /’/3)" Ul(X, t) e U1

u(x)e U
u3(s, t) e U2

for almost all (x, t) Q,

for almost all x 6 and

for almost all (s, t) ST}.

Since U, U2 and U3 are compact and convex subsets of R ml, R ,2 andRm respectively,
is sequentially compact in the weak* topology of Lo((,Rml)Loo(,R2)

Loo(ST, R"*). Thus, there exists a function u* 0 and a subsequence of the sequence
{uk}, again indexed by k, such that u k + tT*, as k + c, in the weak* topology mentioned
above.
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Let

t*(x, t) if t*(x, t) U,U*(X, t)
v* if t*(x, t)_ U,

where v*=-(v*,v,v) is any fixed vector in U=UlxU2xU3. Then u*eag and,
furthermore, the sequence {u k} also converges to u in the same topology as k

We shall show that u* is an optimal control.
In view of Remark 6.1 and the convexity of functions Hi (i 1, 2, 3), we observe

that

J(uk)--J(u*)>-- fO I {
i=1

[Ji(x, t) (Ul (x, t)-tl’ (x, t))]Z(u*)xi(X, t)

+ IV(x, t)" (u (x, t) u 1" (x, t))]Z (u *)(x, t)

+H(u’)(x, t) (ui(x, t)-u(x, t))} dxdt
j. {[6o(x) (u (x) u (x))]z (u,)(x, 0)+

+ VH2(u )(x)" (u (x) u (x))} dx

+
aST

+ VH3(u )(s, t)" (u 3
k (s, t) u 3* (s, t))} ds dt.

Since {u} converges to u* in the weak* topology, the right-hand side of the
above inequality converges to zero as k --> oo. Thus,

lim (J(u)-J(u*)) >-O,

and hence from (65) and (66), we obtain

inf J(u)-J(u*)>=O.
o/.g

This implies that u* is an optimal control. Thus, the proof is complete.
Remark 6.2. By examining the arguments given for Theorem 6.1, we note that’
(i) a//is sequentially compact in the weak* topology;
(ii) If a minimizing sequence converges to u* in the weak* topology, then

u* is an optimal control.
We now present a necessary and sufficient condition for optimality for the problem

(P2) in the next theorem.
THEOREM 6.2. Consider the problem (P2). A necessary and sufficient condition

for u * =- (u ’, u ’, u ’ to be an optimal control is that

(Pi(x, t)" u’(x, t))Z(u*),(x, t)+((x, t)" u(x, t))Z(u*)(x, t)+H(x, t, U*l(X, t))
i=1

(67)
min { (i(x,t)’Vl)Z(u*)x,(X,t)+(;(x,t)’Vl)Z(u*)(x,t)+H(x,t,v)}vU1 i=1

for almost all (x, t) Q;

(68)
(/o(X u ’ (x ))Z (u *)(x, O) +Hz(x, u *(x ))

min {(O0(x)" v2)Z (u *)(x, O) + H2(x,/.)2)}
I)2 U
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for almost all x 1, and

((s, t) u(s, t))Z(u*)(s, t)+H3(s, t, u’(s, t))
(69)

min {(th(s, t). v3)Z (u *)(s, t)+H3(s, t,v3)}
v3 U3

for almost all (s, t)
Proof. The sufficient condition follows readily from the inequality (64).
To prove the necessary condition, let u* q/ be an optimal control. Then, for

any u q/ and 0 < e <-1, we have

(J(u*+e(u-u*))-J(u*))/e >-0,
and hence

(70) lim (J(u* +e(u -u*))-J(u*))/e =Ju.(u)-Ju.(u*)>=O
0

where

Ju*(u)-- Io I (VG(u*)(x, t)qb(u)(x, t)+VH(u’)(x, t) u(x, t)} dx dt

(71) + In {’qGz(u*)(x)c(u)(x, T)+VHz(u)(x)" Uz(X)} dx

(72)

+ Is [{VG3(u*)(s, t)dp(u)(s, t)+VH3(u)(s, t)" u3(s, t)} ds dt.

By virtue of (49) and the convexity of the functions Hi (i 1, 2, 3), we have

(Fi(x, t) (Ul(X, t)--U(X, t)))Z(u*)x,(x, t)

+((x, t) (u(x, t)-u((x, t)))Z(u*)(x, t)

+ (H1(x, t, u (x, t)) H(x, t, u * (x, t))) } dx dt

+ [ {(47o(x) (u(x)-u (x)))Z(u*)(x, o)

+ (H2(x, uz(x))-H2(x, u (x)))} dx

+ [ [ {((s, t)’ (u3(s, t))-u(s, t)))Z (u *)(s, t)
aS

+ (H3(s, t, u3(s, t))-H3(s, t, u (s, t)))} ds dt

>-Ju.(U)-J..(u*)>-o.

Using the same approach as that used in the proof of the necessary condition in
Theorem 5.1, the conditions (67) to (69) follow easily from the inequality (72). Thus,
the proof is complete.

In what follows, we shall devise an algorithm for solving the problem (P2). This
algorithm is an iterative method and can be used to construct a minimizing sequence
of controls {u k } = q/corresponding to any given initial control u a//. For convenience,
this algorithm will be referred to as Algorithm (M). Its detailed statement is now
given as follows:

ALGORITHM (M)
Step 1. Choose an initial control u q/and set k 1.
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Step 2. Choose t k q/by the requirement that

(73)

(/(x, t). t(x, t))Z(u),(x, t)+(f(x, t). t(x, t))Z(a)(x, t)
i=l

for almost all (x, t)e Q;

(74)
(So(x). a[(x))Z(u)(x, O)+VH(u)(x)

inf {(So(X)’ vz)Z(u)(x, O)+VH2(u)(x)" v2}
1)2{5 U2

for almost all x e f, and

((s, t) t(s, t))Z(u)(s, t)+VH(u3)(s, t) a3(s, t)
(75)

inf {((s, t). v3)Z(uk)(s, t)+VH3(u)(s, t). v3}
/93{5 U3

for almost all (s, t)e St, where Z(u k) is the solution of the system (10) corresponding
to the control u .

k kStep 3. Let u k+l u + (t k -u ), where Ck is such that

-u)).](u +a ( -u ))= inf ](u ’ +a(’ ’
Ocl

Step 4. Go to Step 2 with k replaced by k + 1.
Remark 6.3. Consider an optimal control problem which consists of the system

(63) and the following cost functional:

(76) + In {VG(u)(x)(u)(x’ T)+VH2(u)(x)" u2(x)} dx

+ f f{VO3(utC)(s, t)(u)(s, t)+VH3(u)(s, t)" u(s, t)} ds dr.
T’

By applying Theorem 5.1 to the present case, it is easy to verify that t7 (determined
by Step 2 of Algorithm (M)) minimizes the cost functional Juk (U).

For the convergence of the algorithm, we need the following additional assump-
tions:

(A20) Gx(x, t, y), Gz(x, y), G3($, t, y) are twice differentiable with respect to y
such that

IlVeG(., (u)(.,.

IIV2G2( ., (u)(., o))11.,,
IIV2G3(., (u)(.,.))112,s_-< M3

for all u---(u l, u2, u3)e q/, where M4 is a constant independent of u e q/ and V2Hi
the Hessians of G (i 1, 2, 3) with respect to y.
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(A21) Hi(x, t, Ul), H2(x, U2) and Ha(s, t, U3) are twice differentiable with respect
to ul, u2 and u3 respectively such that

IIV H (., u C., M4,

IlVH( u(" ))ll,n _-<M,

IIVH(., u(.,.

for all u m(ua, u2, u)6, where M4 is a constant independent of u and
(i 1, 2, 3) denote the Hessians of H (i 1, 2, 3) with respect to u.

LEMMA 6.1. The sequence {u k} generated by Algorithm (M) is a minimizing
sequence. That is to say,

lim J(uk)=J(u*).
k-oo

where u* is an optimal control.
Proof. Let

C(e)=-J(u +e(a-u))
where e [0, 1] and t7 k is obtained from u k as stated in Step 2 of Algorithm (M).

Then, by Taylor’s theorem in remainder form, it follows that

(77) C(s) C(O) + eC’ (0)+ 1/2(e )C (Oe

for some 0 (0, 1).
Clearly,

(78) Ck(O) J(uk),
(79) C, (0) J. (r7 k) J.k (u k),
where J.k (u) is as defined by (76), and

C (Oe)= fo f {V2G’(x’ t, &(j)(x, t))(t(lk)--C(Uk))2

+ (VHa(x, t, (x, t))(t2 k (x, t)- u (x, t))). (txk (x, t)- u k (x, t))} dx dt

+ [. {VG2(x, ()(x, T))( (tTk)(x, T)-&(uk)(x, T))

(8o)
+ (V2H2(x, 2(x))(t2(x)-2(x))) (k2(X)--U(X))} dx

T"

4-(V2H3(s, t, 3(s, t))(t (s, t)-u 3 (s, t))) ( (s, t)-u (s, t))} ds dt

where
By virtue of Assumptions (A20), (A21) and Lemma 3.1, it follows from (80) that

there exists a positive constant M5 such that

(81) [C (0e)] _-<Ms
where Ms is independent of k and e.

Then, it follows from (77) to (81) that

(82) J(u % (k uk)) <_j (u k) + e (J,k (k) -J,k (uk)) + 1/2(e )2M5.
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(83)

(84)

Let u* be an optimal control. Then, by Remark 6.3, we have

r(7) <_-J (u*).

Thus, it folows from (82) and (83) that

J( +e(a’-a))-j(u *)

J(u k J (u *) + 1/2e (Juk (t k Juk (Uk )) + 1/2e (Juk (u *) Jut (u )) + 1/2(e )2M5.
Let

(85)

(86)

e e *=-min {--s(J,(u)-J(tT)), 1}.
Then, it is clear that e* e [0, 1] and that (84) reduces to

.(v *) -:r(u *) <-J(u ) -(u *) + 1/2e *(.r (u *) -(u)),

where v*= u +e*(t-u).
By virtue of the convexity of the functions Gi and Hi (i 1, 2, 3), we have

(87) J(u*)-Y(u ) >-J,(u*)-J,.(u).
In view of Step 3 of Algorithm (M), we note that

(88) J(u/+1) N J(v*).

Thus, from (86), (87) and (88), it follows that

(89) J(uk+l)-J(u*)<=(1-1/2e*)(J(u)-J(u*)).
From (85), (83) and (87), we have

1-e*=max 1---(L(u)-J(a)),
{ 1 }(90) -<max 1--(J,,,(u’)-Ja,(u*)), 1/2

-<max 1-2Ms(J(u )-J(u*)),

Let a =-(1/2Ms)(J(u)-J(u*)). Then, it follows from (90) that

(91) 1-e* <_- max {1-a , 1/2}.
Combining (89) and (91), we obtain

(92) a/ <_-a max {1-a , }.
This inequality shows that the nonnegative sequence {a k} is monotonically

decreasing. Thus, it follows that a* lim_, a exists and, by (92),

a* <a* max {l-a* 1/2}
This, in turn, implies that a* 0, and hence we have

lim J(u)=J(u*).

Thus the proof is complete.
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Next, we shall present some results concerning the convergence of the sequence
of controls {u k} generated by Algorithm (M).

THEOREM 6.3. The sequence {uk}, generated by Algorithm (M), has a subsequence
which converges to an optimal control in the weak* topology of L(Q,R"I)
L(I), R ") x L(ST., R’). Furthermore, if u* ’ll is an accumulation point of the
sequence {u } (with respect to the weak* topology), then it is an optimal control.

Proof. The proof follows readily from Lemma 6.3 and Remark 6.2.
THZOREM 6.4. Suppose that H(x, t,. ), Hz(x,. and H3(s, t,. are, respectively,

strictly convex in u , uz and u3 lor almost all (x, t) O, x I) and (s, t) ST. Then the
sequence {u}, generated by Algorithm (M), converges to the optimal control in the
weak* topology.

Proof. Since H (i 1, 2, 3) are strictly convex and the system (63) is linear, it is
easy to verify that the functional J(u) is also strictly convex on 0?/. (Here, we identify
all the elements of 0-//which are equal almost everywhere.)

Thus, J(u) has a unique minimum on IL and hence the problem (P2) has a unique
optimal control. Let the optimal control be denoted by u*. Then, by virtue of Remark
6.2(i), it follows that every subsequence of the sequence {u } has a further subsequence
which converges to the unique optimal control u* in the weak* topology. Thus, the
whole sequence {u } converges to u* in the same topology. The proof is complete.

In fact, under the assumptions of Theorem 6.4 we can also show that the sequence
{u k} converges to the optimal control in the almost-everywhere topology. This is a
stronger result than that obtained in Theorem 6.4, because, for the class of admissible
controls considered in this paper, almost-everywhere convergence implies weak*
convergence.

THEOREM 6.5. Under the assumptions of Theorem 6.4, the sequence {u}, gen-
erated by Algorithm (M), converges almost everywhere to the optimal control u*.

Proof. By remark 6.1, we have

+ (/V(x, t). (u (x, t) u * (x, t)))z (u*)

+(H(x, t, u(x))-H(x, t, u’(x, t)))} dx dt

(93) +In{(fo(X) (Uz(X)-U(X)))Z(u*l(x, O

+ (Hz(x, u (x)) Hz(x, u *3 (x)))} dx

+ f f t)
aS

+ (H3(s, t, u(s, t))-H3(s, t, u (s, t)))} ds dt.

According to Theorem 6.2, those integrands on the right-hand side of (93) are
nonnegative almost everywhere in their domains of definition. Since the left-hand
side of (93) tends to zero as k oo, it follows that

E (Fi(x, t). u(x, t))Z(u*)x,(x, t)
i=1

+((x, t) u(x, t))Z(u*)(x, t)+Ha(x, t, u(x, t))
(94)

(Pi(x, t). u(x, t))Z(u*)x,(x, t)
i=1

+((x, t) u* (x, t))Z(u*)(x, t)+Ha(x, t, u* (x, t))
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for almost all (x, t) Q;

o(x). u (x))Z (u*)(x, 0) +(x, u x))
(95)

(Oo(X)" u ’ (x))Z (u *)(x, O) + H2(x, u*2 (x))

for almost all x I), and

((s, t) uk3(s, t))Z(u*)(s, t)+n3(s, t, uk3(s, t))
(96)

((S, t) U (S, t))Z (u *)(s, t) + H3(s, t, u (s, t))

for almost all (s, t) e St.
We are now going to prove that u (x, t) - u (x, t) as k m for almost all (x, t) e Q.
Note that the strict convexity assumption on Ha(x, t,. ensures that the minimum

in (67) is attained at a unique point u (x, t) for almost all (x, t) Q. Let (,/’) be a
point in Q at which (94) and the unique minimum condition (67) hold. Then, we can
show that u(x, t)u(, ). If this were false, we could choose a subsequence
{u ’ (, t")} of the sequence {u (, t")} and a point tl : u * (.f, such that

(97) lim U ki (., ?) / 1.

Thus, it follows from (94) and the continuity of HI(, ,. that

((, ). t)Z(u*),(x, t)+ ((, ). ll)Z(u*)(x t) +H1(, ,/1)
i=1

i=1

Clearly, this contradicts the unique minimum condition at (, t"). Thus, u(,
u * (, ’). Since almost all points in Q can be chosen as (, ’), u k u * almost everywhere
on (o

Similarly, we can prove that u2 - u2* and u3 u3* almost everywhere in their
respective domains of definition. This completes the proof.

Remark 6.4. For some readers, it may be helpful to consider the functional J(u)
given in (3) as the sum of various terms, each of which involves a composition of
several more basic functionals or operators. For example, the term containing G can
be thought of as a composition J G -e, where

;e(ua, u2, u3)= (F1, f, t#o, )

(the data for the initial bounday value problem), 6e is a linear operator which maps
that data to the solution b(u), and G is the convex functional defined in terms of
6e. In this situation, G is linear for problem (P1), while e is linear for problem (P2).
The (necessary and) sufficient conditions for optimality then involve convexity argu-
ments, the chain rule for derivatives and computational of the adjoint of
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SOME PROPERTIES OF A CLASS OF CONTINUOUS
LINEAR PROGRAMS*

E. J. ANDERSON,, P. NASH AND A. F. PEROLD$

Abstract. This paper discusses a class of linear programs posed in a function space; a member of this
class is called a separated continuous linear program (SCLP). Such problems occur, for example, in the
planning of production and inventory. We characterize theL extreme point solutions of SCLP in a manner
analogous to the basic solutions of finite dimensional linear programming and give a sufficient condition
for there to exist optimal extreme point solutions with finitely many constant-basis intervals. SCLP is to
date the most general continuous linear program for which such strong characterizations have been found.

Introduction. A number of authors have considered the problem
T

maximize fo c (t)x (t) dt

subject to Bx(t)+ fo Kx(s) ds b(t),

x (t) _-> O, s [0, T].

This problem, called a continuous linear program (CLP), was studied by Bellman
(195"7) who introduced it in an economic context. Since then Levinson (1966), Tyndall
(1967) and Grinold (1970), amongst others, have investigated this problem. These
authors have been primarily concerned with establishing strong duality theorems when
CLP and an appropriate dual are both posed in L[0, T].

Lehmann (1954), Drews (1974), Hartberger (1974) and Segers (1974) have
investigated the possibility of a solution algorithm for CLP. This would amount to a
generalization of the simplex method to a function space setting. Perold (19"78) has
dealt in detail with the problems involved in the construction of such an algorithm.

In this paper, we consider a subclass of continuous linear programming problems,
a member of which is called a separated continuous linear program (SCLP). The form
of SCLP is

maximize

(1) subject to

T

C(t)Tx(t) dt

GX(s) ds + y(t) a(t),

(2) Hx(t) + z(t) b(t),

(3) x(t), y(t),z(t)>=O, t6[0, T].

Here x, z, b and c are bounded, measurable functions; y and a are absolutely
continuous functions. The dimensions of x, y and z are ha, n2 and n3 respectively.
The description "separated" refers to the fact that the constraints are in two sets, the
integral constraints (1) and the instantaneous constraints (2), (3).

* Received by the editors June 23, 1980, and in revised form September 7, 1982.
t University Engineering Department, Cambridge, England CB2 1RX.
Graduate School of Business Administration, Harvard University, Boston, Massachusetts 02163.
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SCLP has an alternative formulation as a linear optimal control problem, with
state positivity constraints;

T

maximize Jo {cl(t)y(t)+c2(t)Tu(t)} dt

subject to f: (t) h (t) Gu (t),

y(0)- a(0),

u(t) U(t)={u: u >=O, Hu -< b(t)},

y(t)_>- 0, [0, T].

The form of SCLP can be recovered from this by formally integrating the dynamics
and removing the state dependence from the objective by integrating by parts.

Problems of SCLP type arise in considering continuous-time multi-commodity
network flow problems of various kinds, including production and inventory problems,
deterministic reservoir control problems and transportation and storage problems.
The integral constraints (1) represent constraints on storage at nodes of the network,
for example stockpiles or reservoirs, while the instantaneous constraints (2) typically
represent constraints on processing or transportation capacity in the arcs.

The intent of this work is to investigate the nature of the optimal solutions to
SCLP with the hope of furthering the development of algorithms for this and more
general continuous linear programs. To this end we begin, in 1, by defining basic
solutions, and establish, under fairly weak conditions, that the extreme points of the
set of feasible solutions for SCLP can be characterized as basic. Thus optimal basic
solutions exist for SCLP whenever an optimal solution can be found at an extreme
point. This is a stronger property than that obtained by Perold (1981) for the general
CLP. In 2, we make use of this property to show that the optimal solutions for a
subclass of $CLP’s can always be chosen to be piecewise linear.

The results of this paper mirror closely the well-known bang-bang theorems of
optimal control theory. However, the proofs are very different: on one hand SCLP
is harder to solve than the usual linear control problem because of the presence of
inequality constraints on the state variables; on the other SCLP is easier to solve
because there is no feedback allowed in (1), i.e., y does not appear under the integral
sign. CLP is the hardest of all, allowing both state variable inequality constraints and
feedback. Whether as strong results can be obtained for CLP remains an open question.
Perold (1981) has given counter examples for CLP with time varying coefficient B
and K.

1. Basic feasible solutions. Let n =(n+n2+n3) and m (n2+n3). For any x in
L[O, T] define the support of x, denoted by S, to be the set-valued function on
[0, T] such that S(t) is the set of indices of nonzero components of x(t); that is

Sx(t):{k: [x(t)[ > 0}, t6[0, T].

Strictly, of course, this defines an equivalence class of set-valued functions, differing
from each other on sets of measure zero. This has no essential bearing on what follows,
and we shall ignore it for the sake of brevity in the exposition.

Define

Ii(t)1(t) (t)
(t)
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Note that if : is feasible (i.e., if its components x, y and z satisfy (1), (2) and (3))
then it is determined from x alone.

Define the n m matrix K by

H 0

Note that rank (K)= m. Let

!(t)7(t)|.
(t)J

Again, if is feasible then $ is determined from x alone. Clearly $ will also
determine X.

Equation (1) can be differentiated, at least almost everywhere, to give

(4) Gx (t) + (t) d (t).

Thus (1) and (2) are equivalent to

b(t)J’
y(O) a(O).

If 2 is feasible and the columns of K indexed by S(t) are linearly independent
for almost all in [0, T], then is called a basic feasible solution (b.f.s.). Thus if is
a b.f.s., Se(t) contains no more than m elements for almost all in [0, T].

If is feasible and there is no feasible ’ such that S,(t) c S(t) almost everywhere
on [0, T], with strict inclusion on a set of nonzero measure, then is said to have
minimal support.

Let F be the set of feasible solutions. We shall require the following assumptions:
A: F is bounded;
B: a (t) is differentiable everywhere and d (t) is bounded.
The following theorem is straightforward to establish.
THEOREM 1. ff A holds, then F is weak* compact and there is an optimal solution

for SCLP at an extreme point ofF.
This theorem shows that in looking for an optimal solution for SCLP we need

only consider extreme points of F. The next step is to characterize these extreme

points, which is done in the theorem below.
THEOREM 2. Suppose that is feasible for SCLP and B holds. Then the following

statements are equivalent"
(i) : is basic.
(ii) has minimal support.
(iii) is an extreme point ofF.
Proof. This theorem is proved by demonstrating the equivalence of (i) and (ii)

and of (i) and (iii).
(a) Suppose that is feasible with minimal support but is not basic. Then there

is some set P of nonzero measure on which the columns of K indexed by S(t) are
linearly dependent. Choose some subset of P, say P’, also of nonzero measure, on

which S(t) is constant, say equal to S. If S does not contain the index of any y
variable, we can use a standard argument from finite dimensional linear programming
at each P’ to produce a new feasible solution with strictly smaller support than 2
on P’. The difficulty is that when S does contain the index of some y variables, we
have to show that this can be done without any of those variables becoming negative.
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This is done as follows.
By definition, the y variables indexed by S are strictly positive at each in P’.

Since the y’s are continuous functions, we can choose an e (t) > 0 and an open interval
It for each in P’, such that

Let

i(t’) > e (t) for all s S, n < <_- n + n2 for all t’ s L.

J=UL.
tP’

Then P’ c J, and so for at least one of the pairs {(L, e (t))}, say (L e), P"= P’f’I I has
measure greater than zero and

i(t’) > e for all S, n < _-< n + n2 for all t’ L

From the definition of P there is some d R", d # 0 with Kd 0 and di--0 for all
S. If ’ is defined from by

(6) Y.’(t)=$(t)+h(t)d, t[0, T],

where h(t) is any bounded measurable scalar function, then ’ satisfies (5). Hence

’ (defined in the obvious way from ’) is feasible if it is nonnegative. We construct
a function h which is zero outside P" and such that ’ is nonnegative and has strictly
smaller support than .

First define functions f and f2 by

fmin{(t)/d},
f(t) =J’

1,

(min{--k(t)/dk},
f(t)=’

1,

for each P", where

11,

I1 ={k: dk >0, k <-nl or k >nl+n2},

I2 {k: dk <0, k -<_nl or k >nl +n2}.

Then fl and f2 are bounded, measurable functions, nonzero on at least a subset of P"
of nonzero measure; fl(f2) gives the instantaneous largest multiple of d which can be
subtracted from (added to) :g without making any component of x or z negative
(except perhaps on a set of measure zero). Note that I1 and I2 cannot both be empty.
We can now choose disjoint sets P1, P2 in P", each with nonzero measure, and such
that

(7) Ip fl(t) dt Ip f2(t)dt and

(8) di f fi(t) dt < e, n < <- n + n2 /’=1,2.
aP,
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Define :’ from (6) by setting

el,

h(t)=l-f2(t), tP2,

0, otherwise

and define ’ from ’ in the usual way. From the definition of fa and fz, x’ and z’
are nonnegative. Also, by (8), is changed on a set which is small enough for y’ to
remain positive in I and, by (7), outside this interval y’ is the same as y. Thus ’ is
nonnegative and hence feasible. Furthermore, S,(t)cS(t), for almost all [0, T],
with strict inclusion either for almost all in Px or for almost all in P2 (and both if
neither/, is empty). This contradicts the assumption that has minimal support.

(b) Suppose that is feasible and basic but does not have minimal support. Then
there is some feasible ’ with S,(t)c S(t), [0, T], with strict inclusion on a set on
nonzero measure. Define

Then

g(t) (t)-’(t), [0, T].

Kg(t) K(t)-KY,’(t) O, [0, T].

But except possibly on a set of measure zero, gi(t)=0 unless is in $(t), which
contradicts the assumption that is basic.

(a) and (b) together prove the equivalence of (i) and (ii). We now show that (i)
and (iii) are equivalent.

(c) Suppose that is an extreme point of F but is not basic. Construct a feasible

’ in the same manner as was done in part (a) above. Then for 6 chosen small enough,
+6(’-) and -6(’-) are both feasible. This contradicts the assumption that
is an extreme point.

(d) Suppose that is a basic feasible solution but is not an extreme point. Then
there is some ’ and " in F with an interior point of the line segment joining them.
Define.

g(t)=’(t)-Y"(t), [0, T].

Then

Kg(t) K’(t)-K"(t) O, t[O, T].

But

Se(t) S,(t) LJ S,,(t)

so gi(t) is zero if iS(t) and g(t) is nonzero on a set of measure greater than zero.
This contradicts the assumption that is a basic feasible solution.

2. A class of SCLP’s with piecewise linear solutions. A common feature of
SCLP’s which arise in practice is that they have optimal solutions with S piecewise
constant and having only a finite number of changes. An SCLP which has an optimal
solution with this property is called regional. The behavior of an optimal solution
depends on the functions a, b and c, and it appears difficult to find general conditions
on these functions under which an SCLP is regional. However, a class of SCLP’s
which can be shown to be regional is discussed below. Moreover, for this class of
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problems is linear on intervals where S is constant, giving optimal solutions which
are piecewise linear. We assume throughout this section that F is bounded so that
there will always exist an optimal extreme point of F and hence a basic optimal solution.

THEOREM 3. If b is constant, and

a (t) a + a2t, [0, T],

c(t)=cl +Czt, [0, T],

where al, a2, Ca, c2 are constant vectors, then SCLP has an optimal solution with

.Y,(9) 2T.I (t 1) <=c2x(t2),

for all < t2, a, t2 [0, T]N, where N has measure zero and

Pro@ Suppose that is an optimal basic solution. Define q(t) by

J0 f(s) ds.q(t)

The proof proceeds by showing that q is a convex function. Suppose otherwise; then
as q is continuous, there is some interval (ta, t2) such that

q(t) > r(t), (t, t2),

where

Now define x’ by

(t-t1)
r(t)=q(t)+(t2_tx (q(t2)--q(tx)), t(tl,t2).

Define ’ from x’ in the usual way. Then ’ is feasible. Comparing objective functional
values for and ’ gives

g(s)’(s) ds d(s)f(s) ds sc(x’(s)-x(s)) ds

t2 d
Ss(r(s)-q(s))ds

(q(s)-r(s))ds+t2(r(t2)-r(t)-q(t)+q(t))

>0,

since r(tl)=q(tl), r(t2) =q(t2) and r(s)<q(s) on (t, t2). This contradicts the assumed
optimality of x. Hence q(t) is convex and so its derivative is monotonic increasing

(t2- tl) -1 x(s) ds, (t, t2),
x’(t)

x(t) otherwise.
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(see, for example, Rockafellar (1979)). But its derivative is equal to t?(t) almost
everywhere, which establishes the theorem.

THEOREM 4. Under the conditions of Theorem 3, there is an optimal solution for
which x is a piecewise linear function.

Proof. We begin by showing that T"AC2x(t) is a step function. Note firstly that for
a basic solution, $(t) takes on one of finitely many values, say 1) yt)

This is because
(a) there are only finitely many choices of S(t) (at any t, independent of t);
(b) the choice of support for a basic solution uniquely determines (t) from (5);

and
(c) the right-hand side of (5) is assumed constant.

Secondly, the form of c2 implies
aTac 2x (t) $ (t).

T T-(i)Hence cax(t) is finite valued, taking on possible values cax 1,... ,L. That
(t) is a step function now follows from the monotonicity of cx(t) established in

Theorem 3.
Next, assume (by reordering if necessary) that

T-(i) T-(j)(10) c2x 2x i<f.
T-(i)If the cx are all distinct (10) holds with strict inequality, and the result is established

Zsince each step of cx(t) then corresponds to i(t) being held constant at some
over an interval of time.

If (10) does not hold with strict inequality, choose a sequence {c"} approaching
c2 and such that (10) holds with strict inequality if ca is replaced by any c" in the
definition of d2. Let (t)" be an optimal solution to the problem with ca replaced
by c". From the above, (t)" can be chosen to satisfy the conditions of the theorem.
Thus (t)" can be described by a vector p" in R, with

i(t)(=( for almost all p p}
j=O

and n defined from a?n in the usual way. As each component of p" is bounded
by T, we may choose a subsequence from p" converging to p, say. Define $(t) by

, (t) $) pi, pi
/=o

Then it is clear that defined from $ in the usual way is optimal for the original
problem, and the theorem is proved.

Theorems 3 and 4 have extensions to problems in which a and c are piecewise
linear, with a finite number of breakpoints. Suppose that {tl, t2,’’ ", tr-1} is the set
of times at which either a or c has a breakpoint, with to 0, tr T. Then the proofs
of Theorems 3 and 4 hold when applied between ti-1 and ti, 1, 2, , r.

For a basic define a region (tl, t2) to be an interval over which the support of
is constant. It is worth pointing out that Theorem 4 allows the SCLP to be solved

as a quadratic program. This can be done by choosing as variables the lengths of the
regions. The theorem implies that there are only a finite number of regions which
occur in fixed order. The objective function is quadratic in the region lengths and the
constraints are linear. However, the size of this quadratic program grows rapidly with

n2 and n3; the number of variables is approximately factorial (n2 + rt3).
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STABILIZATION AND STRUCTURAL ASSIGNMENT OF
DIRICHLET BOUNDARY FEEDBACK PARABOLIC EQUATIONS*

I. LASIECKAq" AND R. TRIGGIANI

Abstract. A parabolic equation defined on a bounded domain is considered, with input acting on the
boundary through the Dirichlet B.C. expressed as a specified finite dimensional feedback of the solution.
The free system (zero B.C.) is assumed throughout to be unstable. Two main results are established. First,
we provide in 2 a novel proof that fully solves the corresponding boundary feedback stabilization problem
(thereby removing an annoying assumption required by the technique of [Appl. Math. Optim., 6 (1980),
pp. 201-220]: under certain natural algebraic conditions based on the finitely many unstable eigenvalues,
we establish the existence of general boundary vectors, for which the corresponding feedback semigroup
decays exponentially to zero in the La(fl)-operator norm (or, more generally, in the H (fD- operator norm,
0-<_ < 1/2). However, most of the paper is devoted to the second problem, structural or spectral assignment,
which is a natural question relevant to the selfadjoint case. Here, under the same algebraic condition plus
mild extra conditions, we establish the existence of boundary vectors that yield a more refined and stronger
result for the corresponding feedback solutions, in the form of the following desirable structural or spectral
property: for positive times, the feedback solutions can be expressed as an infinite linear combination of
decaying exponentials. A semigroup approach is employed for both problems, but the corresponding
techniques of solution are vastly different.

Key words, stabilization, boundary feedback, parabolic equations

1. Introduction and statement of main results. Let l) be a bounded open domain
in R with boundary F, assumed to be an (- 1)-dimensional variety with locally
on one side of F. Here, F may have finitely many conical points [K4]. Let A(G 0) be
a uniformly strongly elliptic operator of order two in fl of the form

(1.0) A(G O)= Y, ao,(Sc)O’,

with smooth real coefficients as, where the symbol 0, rather than the traditional D,
denotes differentiation. In the present paper, the symbol D will denote the Dirichlet
map, as defined below. We consider a diffusion system based on with input applied
on F; that is,

Ox
(t,(1.1)

(1.2) x(O, )= Xo(’),

(1.3) x(t, ()=f(t, ) in (0, T] F (Dirichlet B.C.).

Here, f(t, ) is the input function or control function (or forcing term) defined on
(0, T] F which influences the solution x(t, ). Let -A be the operator: Le(D,)
@(-A)->LE(iq), defined by (-Ad)()=-A(GO)dp(), for & @(-A), where @(-A)
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consists of the closure in H2() of functions h in C2(fi) that satisfy the boundary
condition h[r=0. (For a C2-boundary F, we have @(-A)=Ho(II)f-IH2(fD.) The
operator -A generates an analytic (holomorphic) semigroup on X L2(Iq) IF1, Ex.,
p. 101], [P1, Thm. 2.9, p. 139], [D3, p. 1740] conveniently denoted by e -At, >= O.

The feedback system. As in IT3], IT4], the distinctive new feature of the present
paper is that we demand that the input function f(t, ) be expressed in a feedback
form (see Fig. 1.1), as a linear operator (of finite-dimensional range) acting on the
solution vector x(t, ). For the present paper, we choose the feedback operator F to
be a continuous operator from L2(f) to a J-dimensional subspace of Lz(F) of the form:

J df
(1.4) f(t, st) Z <x(t,.), w(.l)gi((l=Fx(t, .) on(0, T]xF.

/=1

Here, wi(. and gi(. are fixed vectors in L2() and L2(F), respectively, and the symbol
(.,.) denotes the inner product in L2(). The vectors gi are assumed to be linearly
independent. For J 1, we shall write w and g instead of W and gl.

boundary input

/(t, ’)

parabolic
equation

solution x (t,

ix(t,.),w)g

FIG. 1.1. The feedback system.

Since f is a bounded domain, the resolvent operator R (A,-A) is compact [D3,
p. 1740]. Hence the spectrum r(-A) of -A is only a point spectrum and consists of
a sequence of isolated distinct eigenvalues {,k}, k 1, 2, ’, oo, with correspond-
ing normalized linearly independent eigenvectors {k,n}, k 1, 2,..., M (M being
the geometric multiplicity of I). As is well known, since e -at is analytic, the {,} are
contained in a triangular sector delimited by the rays" a + 0e +/-i, 0
a real, with no finite accumulation point. Thus, at the right of any vertical line in the
complex plane, there are at most finitely many of them. Our standing assumptionmfor
the problems considered in this paper to be significantmis that: there are (K-1)
eigenvalues 1, , AK-1 at the right of the imaginary axis ordered, say, by decreasing
real parts

(1.5) Re , <0=<Re K-1" _--<Re A2-<Re hi.

Thus, the generator -A is unstable, in the sense that there are free solutions (corre-
sponding to f(t, ’)=-0), that blow up in time, in fact exponentially.

With minor technical changes, the results of this paper extend to cover the feedback

J

f(t, 5)= Y’. ((Vx)(t,’), wi(’))rgi(’)
/=1

where y denotes any continuous operator: H’(f)- L2(F) for any r < 1/2, and where now w Lz(F) and
(’, ")r is the L2(F)-inner product. (The limitation on cr is sharp, as since for yx x Iv the feedback problem
is not well posed: see IT3, Remark 2.3].)
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We then pose two problems, the second of which under stronger assumptions
gives a stronger conclusion. A qualitative statement thereof is as follows"

(i) Stabilization or stabilizability (Theorem 1.2 for general A): Find (if possible)
appropriate vectors gL2(F)mas well as their minimum numbermand the least
conditions on the vectors w. L.(II) so as to guarantee that all corresponding feedback
closed-loop solutions x(t, Xo) decay exponentially as oo in the strongest possible
norm.

(ii) Structural or spectral assignment (Theorem 2.3 for selfadjoint A)" Under the
additional condition that the unstable -A is selfadjoint (say, -A (:, 0)= A + c 2, for c
sufficiently large), find, if possible, appropriate vectors g and the least conditions on
the vectors wL2(II), to guarantee that all corresponding feedback closed-loop
solutions x (t, x0), due to initial data in naturally "large" subspaces, are in fact functions
of the special class IDE for t-> 0.

Requirement (ii) means (see Definition 1.2) that such solutions can be expressed
for => 0 as an infinite sum (in the strongest possible space topology) of countably
many decaying exponentials. Thus, afortiori, they decay as in (i). 2

This structural problem is the major object of the present paper.
A solution to the stabilization problem was already presented in IT4], under an

additional annoying assumption on the subspace of L2(iq) from which the vectors w
may be drawn. Here, however, we present a new proof, which, while relying on the
stabilization of the "finite dimensional part" given by IT4, Lemma 2.2], is radically
different in its general conception, and thus manages to eliminate this unnecessary
assumption. This new proof is essentially obtained as a quick consequence of the
following recent resultunavailable at the time of writing of [T4]--on the existence
of a feedback semigroup on L2(D,) for the closed-loop problem (1.1)-(1.4), which we
quote from our paper [L7]. Actually, [L7] treats a technically more difficult case,
while the treatment here is to be found in [L8, 2].

TI-IZORZM 1.1 [L7]. The feedback closed-loop solutions x (t, Xo) can be expressed
simply as: x (t, Xo) SF(t)Xo, Xo L2(), >- 0 where SF(t) defines a (feedback) semigroup
on L2(-), which is analytic and compactfor > 0 and whose generatorAFhas a compact
resolvent on L2([)). Actually, the feedback semigroup extends to an analytic,
compact semigroup SF,o(t) for positive times on each (fixed) interpolation space,

[@(A 1/4-o), [@(A3/4+o)],]o (A1/4-o-0), 0 <_- 0 <_- 1,

between @(A1/4-) =H/2-Eo(fl) and [(A3/4+)] (cf. identifications (2.3), and (2.3’)
in footnote 13, below). The corresponding AF.O has compact resolvent. 3

In order to state our theorems on stabilization and structural assignment, we need to
introduce a few quantities. Henceforth, we shall let Xu be the (unstable) subspace of
L2() corresponding to {Ak}, 1 <_-k <_-K-l, and the (stable) subspace Xs be its

The structural assignment problem amounts to this requirement: should the sought-after vectors gi
exist, then the original system--which is unstable as a free systemwonce operating as a boundary feedback
system with such gi’s in the feedback (1.4), has the same qualitative behavior as that of a free stable system.

In the statement of this theorem, we may assume that the fractional powers A, 0 <= 0 <= 1, are well

defined, for otherwise we simply replace A with a suitable translation, without affecting the local regularity
in time. Moreover, the conventional notation @(A-) [@(AS)]’, >0, is used, along with SF.O(t) SF(t)
and AF, AF for 0 1/4-0, i.e. on L2([)). Finally, fiO(A 1/4-o-0) is topologized by

Ixl(gl/4-o-o) lA /4--xlc2m), 0_<0=<1.

Here and hereafter, 0 is a positive number, introduced in connection with (2.3) ff. that will be kept fixed

throughout. Thus, dependence on 0 is not explicitly indicated.
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orthogonal complement. We shall write xu =Px and xs Qx for the orthogonal
projectors/9 and Q onto Xu and X, respectively (see 2).

First, the following important number:
DEFINITION 1.1.4 Let the integer Ir (1 <=It <-dimX) denote the number of

linearly independent Neumann traces {(Okm/Orl)lr}, k 1,. , K 1, m 1,. , Mr,
of the normalized eigenfunctions associated with the unstable eigenvalues (1.5).

We next introduce the J x Mk matrix Wk defined in terms of wi Pwi X by

(1.6) W k=l,...,K-l,

and associated with each unstable eigenvalue of A, and moreover the J (dim X)
matrix W [W1, W2,"’", Wk-].

As to our results for the stabilization and for the structural assignment problems,
they require, in an essential way, that the domain fl be of dimension v >_-2. The
one-dimensional case (v 1) can be seen a priori to be hopeless in general (see IT4,
Final Remark]). The stabilization result is"

THEOREM 1.2. Let u dim f->_ 2 and let f either have 5 C-boundary F, or else
be a parallelepiped. Let the operator -A have its (necessarily) point spectrum satisfy
the instability condition (1.5). Let the restriction -Au of -A on the unstable subspace
X, generated by the eigenvectors of {h}: be diagonalizable 6 on X,.

Assume that the vectors wi Pwi e X, are chosen so as to satisfy the full rank
conditions

(1.7a) rank W M, k 1, ., K 1,

at the unstable eigenvalues and, moreover,

(1.7b) dimX <= 17: + lw 1

where lw is defined by

rank W lw, (max {Mk, k 1,. , K 1} _-< lw).

Let e > 0 be preassigned.
Then, them exist suitable vectors gi e L:z(F), whose minimal number is discussed in

Remark 2.2, such that the feedback semigroup Sv.o(t), claimed in Theorem 1.1, satisfies
the following exponential decay:

(1.8) ISv.o(t)lo<-Mo.e (rex’+’ t>0

with l" ]o the uniform operator norm from (A 1/4--O--0) H1/2-2o-2o (.) into itself, 0 <= 0 <-_

1/4-p, for all vectors wi in a suitably small sphere ofX, depending on e and the gi’s.
The vectors gi are given by gi gi + g1*, where the gj’s are the solution of [L6, moment

4 When fl is a parallelepiped, 17-= dim Xu, and conditions (1.7) below can always be satisfied. When

f is a sphere, 17- < dim Xu, but conditions (1.7) can still be satisfied: see [L6, Remark 3.3] for more details.

This assumption on F is needed only to invoke IS1, Cor. 2.2] to guarantee [L6, L8, (3B.11), App.].
6The assumption that A, is diagonalizable is retained only for the convenience of having "clean",

easy-to-check tests such as (1.7)(a)-(b), expressed in terms of (not necessarily orthogonal) normalized
eigenvectors. Otherwise, resort to the Jordon canonical form is necessary.
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problem (3B.7), Appendix 3B], unique in the space

(1.9) =sp{0k"l ,k=l,...K-l,m=l,...Mk},
and the g’s are any vectors orthogonal to

The structural assignment problem demands for > 0 a much fuller description
of the feedback solutions with regard to their structure (and not merely to their norm
upper bound, as in the stabilization problem). Thus, a technically and conceptually
more elaborate tour de force is needed for its solution’ this will be aimed at preserving
the form of the closed-loop solution throughout, in order to force it to possess the
desired structural property. All this counts for a major portion of its proof as compared,
say, with IT4] or with 2.

We now state our structural results by first singling out the technically simpler
situation where all eigenvalues have geometric multiplicity equal to one.

DFFNrror 1.2. A (scalar or vector valued) function z (t) of the form

z(t)= E aloe ’t, R +,
I =1

with c negative real numbers, where c --> -o as k --> and where E= la[ < oo, will,
in this paper, be called a function of the special class IDE (infinite linear combinations
of decaying exponentials), where I’ denotes either the absolute value or the appropri-
ate space norm.

For instance, the functions t"e -t, n 1, 2,... although exponentially decaying
as --> +oo, are not of the special class IDE.

TlqrolrM 1.3 (feedback solutions of the special class IDE in a weak topology
when Mk-----1). Let the same assumptions as made in Theorem 1.2 on , A, and
wi through (1.7) still apply, except that now A is specialized to be selfad[oint. For any
p >O, let

(1.10)7 O(wjs,k)<=const/k 1+(2/v(3/4+, k=K,K+I, f=l,...J,

so that the vectors ff’js A 3s/4+W]s Xs defined in the subsequent (4.7) satisfy

(1.10)’ 0(ff.s,k)<--const/k, k=K,K+I,..., f=l,...J,

(as one sees via (4.21)). Then

(1.11) for all such vectors wjs in a sufficiently small sphere ofXs

there exist boundary vectors gj L2(F), whose minimal number is discussed in Remark
2.2, such that the corresponding feedback solution x (t, Xo) of the feedback system (1.1),
(1.2), (1.3) and (1.4), with initial datum 8

(1.12) Xo((cI+A)l/4-)=H1/2-(II) (see (2.3))

has the following property: the scalar function
((CI +A)I/4-x(t, Xo),

is of the special class IDE for any y L2(). Equivalently stated, the feedback solution
x(t, Xo) is of the special class IDE in the weak graph topology of @((cI+A)I/4-),

Therefore, wi((c[+A)3/4+) by (4.2.1).
In the more general case of footnote 1, 0 is a positive number such that o" < 1/2-0. In (1.12), c

makes the fractional powers well defined.



DIRICHLET BOUNDARY FEEDBACK PARABOLIC EQUATIONS 771

equivalent to H1/2-2(’]) (see (2.3)). The vectors gj are given as in the conclusion of
Theorem 1.2.

Actually, the proof will show the following more precise result, which displays a
more subtle structure of the feedback solutions.

COROLLARY 1.4. Under the assumptions of Theorem 1.3, the suitable feedback
9

solutions, which are claimed in the conclusion, can be written for >-0 as"

K -1

(1.13) ((cI+A)l/4-x(t, Xo),Y) E bi ec’t+ E "Yr e%’
i=1 r=l

where 1 the {Ci}/K_- are negative constants, which can be preassigned in any chosen
interval (in particular, at the left of AK), that replace the unstable eigenvalues
A1,." ’, Ac-1; the {at} are a suitable sequence of negative constants having the same
asymptotic behavior as the {A,}" [a,-A]0 as k (see (4.38)). Moreover, the
coefficients {y} are in l and along with the coefficients {bi} are explicitly exhibited in
the proof as dependent on y, the initial datum in H/2-2(Iq), and on the system
parameters, including the sought-after vectors gj L2(F)" see (4.59) and also (4.58’)
which depend on {d}. The sequence {d} is related to the sequence {n,} by (4.46)-(4.47)
which, in turn, is related to the initial point and the system’s parameters via (4.16).

An expansion similar to (1.13) holds, this time in the weak topology of L2(Iq), if
the initial datum is only assumed in L2(f).

A reformulation of expansion (1.13) in terms of spectral properties of the feedback
generator is given next. To appreciate it, one should note that the feedback generator
AF, corresponding to those special vectors wi and g., as in Theorem 1.3, that produce
feedback solutions as in (1.13), cannot be a selfadfoint operator, so that an orthonormal
basis in L2(Iq) of eigenvectors of AF is out of the question (with nonzero feedback).
On the other hand, for any vectors w. and g., the generalized eigenvectors of the
corresponding feedback generator AF always span all of L2(Iq) (cf. subsequent Remark
1.1). With the special vectors wj and g. of Theorem 1.3, the situation achieved for the
corresponding AF falls in between these two cases.

COROLLARY 1.5. The following spectral properties hoM for the feedback generator
AF corresponding to the vectors wi and gi of Theorem 1.3 (or Corollary 1.4)’

(i) The distinct constants {c t-i}i=l and {a}=l are the eigenvalues of such feedback
generator Av.

(ii) The corresponding (normalized) eigenvectors {e’v,i}in_ and {ev’,r}r=l form a
(Schauder) basis in La(12) (nonorthogonal, when the g.’s or the wi’s are not all zero)
so that the following expansions apply"

’(x)e’(1.14) x E rli F.i + E rl(X) el.r, X eL2(Iq),
i=1 r=l

’(x)e’(1.15) Ax
i=1 r=l

Note that the right-hand side of (1.13) is analytic in Re > 0 consistently with Theorem 1.1 for 0 1/2.
10 As the proof shows, the constants {cl}j and {ar}rl are distinct from each other: for definiteness

we preassign the ci’s as in (4.0).
11 Since, in this case, AF would be dissipative, contrary to Appendix 1A. By Green’s second theorem

for all x, y (AF) (and J 1), (AFX, y)--(x, AFy)=(x, w)(g, Oy/Onlr)r-(y, w)(g, Ox/Onlr)r and the iden-

tical vanishing of the right-hand side implies either g 0 or else w 0.
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where the bounded linear functionals {r/r} and the eigenvectors {ev.r} are biorthogonal
sequences"

1, n =m,
r/" (eF") 0, nm,

and, similarly, {rl I} and {e tF, }.
Thus

(x) eC,t %tSv(t)Xo E Ti ev,i-- E r(X) e eF,
i=1 r-1

The general case, where Mk 1, can be treated similarly. However, its detailed
treatment would have considerably overloaded the presentation, particularly at the
notational level. It is therefore analyzed only in the first part of the proof ( 2 and
3), while the more technical part of the proof ( 4) is restricted to the case Mk 1.

Remark 1.1. Let AF denote the generator of the feedback semigroup SF(t) on
Lz(f), claimed by Theorem 1.1. Thus, for J 1:

(Av) {x L2(f): Avx L2(f) and Xlr (x, w)g}.

On the other hand, on the basis of the differential version (cf. [L8, Eq. (2.7)]) of the
boundary feedback equation, one readily deduces that Av can be characterized more
explicitly as"

(i)
(1.16)

(ii)

Av =-A(I-Dg(., w)),

flO(Av)={x 6L2(1))" x-Dg(x, w) 5O(A)}.

One important consequence of the explicit factorization of AF in (1.4)(i) is the
following:

CLAIM. For all vectors g LE(F) and all vectors w L2(I,), the operator AF in
(1.16) has the following spectral property

s- {generalized eigenvectors OLAF} L2(fl)

(the closure of the span is in the L2(f)-topology ).
The above claim simply follows from [D3, Vol III, general Theorem, p. 2374],

which is applicable to the operator Av in (1.14) since"
(i) A is selfadjoint in L2().
(ii)12 A-m is of Hilbert-Schmidt type for sufficiently large positive integer m, as

follows from the known asymptotic estimates of the eigenvalues {An} of A (cf. (4.21)):
1 1I[A-’ll2n-s Y’. -5--m" Y 4,,/ < oo (for 4m > u).

n=l n=l /’[

(iii) The perturbation Dg(., w) is compact in L2([),).
The enlightening fact, that the feedback semigroup which arises in the stabilization

and structural assignment problems is generally not a contraction, is illustrated in
Appendix 1A.

2. Preliminaries and proof of the stabilization Theorem 1.2.
2.1. Preliminaries. The starting point of the approach taken in this paper, in

studying the boundary feedback closed-loop system (1.1)-(1.3), (1.4), is based on a
recently, developed operator theoretic model that aims at describing, through a vari-
ation of parameter type formulas, nonsmooth boundary input open-loop systems like

Without loss of generality, we assume here that A-1 is well defined as a bounded operator on L2().
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(1.1)-(1.3). Such a model is a semigroup rooted abstract version of (1.1)-(1.3), which
takes the following input-solution integral form:

(2.1) X (t, XO) e-Atxo+ Ae-A(t-)Df(’)dr.

Here f is given in a certain "time-space" function space and determines x as an
element of another function space (say f L2(0, T; L2(F))- x L2(O, T; Ha/([l)) (see
the original account in [B1], [B2], [W1] and the very general treatment in ILl]). Here
the operator D is the "Dirichlet map", that is (see [N1, Thm. 1.2, p. 250]), the
continuous linear map: La(F)- Ha/2(f) which solves the homogeneous elliptic prob-
lem corresponding to (1.1)-(1.3). It is defined by y =Dg, where -A(:, 0)y =0 in ;
yr g. Thus, in case of the feedback input (1.4), the abstract semigroup version of
the closed loop system (1.1)-(1.4) under study becomes the following integral equation:

0(2.2) x(t) e-a%o+ A e-a(t-’)D 2 (x(r), wi)g dr.
/=1

As a consequence of the statement: Df(-A), fL2(F) unless f=0, any attempt
to provide a differential version of (2.1), or (2.2), in the form 2 (-A + II1)x in the
space L2(fl) is bound to fail. For a differential version in factor form 2 -A (I + Ha)x,
see Remark 1.1. What is needed is an extension of (2.2) to a space larger than La(f),
which we will identify below. To do this in our present context, we find it expedient
first to decompose the space L2(f). Following a procedure introduced in [T2], we let
X La(l-l) be decomposed into two orthogonal subspaces Xu and Xs corresponding,
respectively, to the subsets {A1,’’ ", A:-I} and {AK, k _>-K} of the spectrum of -A
that satisfies assumption (1.5). (The subscripts u and s stand for "stable" and
"unstable", respectively.) Here, we appeal to the standard decomposition theorem as
in [K1, Thm. 6.17, p. 178]. With P denoting the orthogonal projection of L2(i) onto
X, and O I P, then O(-A) @ (-A), X and Xs are invariant under -A and
hence under the semigroup e -At. As for the spectra, we have o(-Au) {h 1, , h:-l},
o’(-As) {hk, k ->K}, where -A. is the restriction of -A on X., -Au is bounded, in
fact, finite-dimensional. Finally, P and Q commute with -A, hence with the semigroup
--Ate We shall henceforth use the notation x =Px and xs Qx. Notice that the

fractional powers of As are well defined. As observed above, for g 0, we always
have QDg: (-As). However, the following relations, which we shall apply crucially,
hold: 13

(2.3) (ml/4-)=QH1/2-2(n)s 0<p --<1/4,

the identification being set theoretical and topological, with norm

Relations (2.3) are contained in the literature of fractional powers [F2], [L5], ILl,
App. B], [M2, p. 189]. Now, elliptic theory [L4, pp. 187-188, N1] shows that:

(2.4) range of D c H1/2(),

13 Moreover, one also has

(2.3’) )(A3s/4-0) OHio/a-a
while of course H (fl) H (1), 0 _-< -< 1/2[L4].

0<0=<k, 0 {
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and from (2.3) we then obtain

(2.5) O[range of D]c QH1/2-9() @(A 1/4--0), 0<0--<41-
2.2. Proof of the stabilization Theorem 1.2. Having introduced the relevant

machinery, we project (2.2) onto Xu and Xs. By virtue of (2.5), the projections of the
solution x (t) in (2.2) onto Xu and Xs are, respectively,

(2.6)
J

xu(t)=e-a"tXou + e -a"(t-,) E AuPDgi[(Xu(’), wiu)+(Xs(’), wjs)]dr,
/’=1

(2.7)

xs(t) e-ax0s + Io A3s/4+ e
J

-a(,-,) Z Asl/4-O-Ogi[(Xs(T), Wis) + (Xu (’), w/u)] dr.
/=1

Remark 2.1. These projections are generally coupled. They become decoupled
if the vectors w. are chosen in Xu, so that w. wiu and w.s 0. This is the case that
corresponds to the simplest solution of the problems under study and presumes
unlimited freedom in choosing the vectors w.. Throughout this paper, we shall,
however, consider only the more challenging situation where the projections xu and
xs are coupled with no further mention of the decoupled situation, where in fact proofs
simplify considerably.

We"can now provide the anticipated differential version of (2.7). It is known [P1,
Thm. 2, 5, p. 135] that -As generates a contraction (analytic) semigroup and thus,
by Lumer-Phillips’s theorem, both -As and -A* are maximal dissipative. It follows
(see e.g. [L7] for details) that As and A* can be extended via isomorphism techniques.
Thus, As extends as an isomorphism from @(A) onto [@ (A 1-)], for all c" 0 <c < 1
Let henceforth c be frozen as c =z-O (cf. (2.3)) and let As denote the extension of
As acting as an isomorphism from @(A/4-) onto [(A3s/4+)] and viewed as an
unbounded operator on the basic space [@ (A 3/4+o)],. Similarly, 3/4+o is an isomorphism
from Xs OL2(iq) onto [7(A3s/4+)]’. The relevant topologies are’

(2.8) IXlj(als/4-o) IA/4-xlc=(a, IXlC(A3s/4+o)] IA-3/4-XIL2(O).
Similarly, one can extend the semigroup e -At originally defined as an analytic,
contraction semigroup on Xs, to an analytic, contraction semigroup on [@(A-)]’,
0-<a-<_ 1. Since the resolvent R(A, As) is compact as an operator on L2(lq), the
resolvent R(A,/[s) is compact as an operator on all of [(A3s/4+)]’’ see [L7]. The
conclusion of all this that matters here is that: the differential version of the infinite
dimensional projection of (2.7) is:

(2.9)

J

)s --tsXs nt-/x3/4+0 2 A 1/4-lDgi[(Xs, Wis + (X Wiu)
=1

Xs(O) XsOE [(A3s/4+)]
1/4-pwith XsE(A/4-), 2sE[(A3s/4+)]’, Z-s ILgiEXs. As we are seeking suitable

boundary vectors g. La(F), which produce the desired behavior of the closed-loop
solutions, we find it convenient to consider the projections (2.6) and (2.9) after setting

1/4-O.Do.(2.10) pi=AuPDgiXu, gi=-As ,, EXs, ]= 1,... J,

and to think of the vectors p. and qi as, for the time being, just vectors in Xu and X,
respectively, without any connection with the vectors gi which generate them. The
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question of synthesizing Pi and q/through an appropriate gi will be taken up later on.
We set further

(2.11)

J J

(a) PlXu =- Y’, pi(x,, W/u), P2x =- Y’, pi(x, wi),
j=l j=l

where Pi, 1, 2, are linear bounded operators from X,, respectively Xs, into X,
and Oi, 1, 2, are linear bounded operators from X,, respectively Xs, into
[(A3s/4+)]’. By means of (2.10)-(2.11), we thus combine the projections (2.6), (2.9)
into the following differential operator equation’

(2.12)
dt Xs 0 --s Xs 01 02 Xs

with (xu, Xs)EXu(Als/4-) and (2u,.s)EXu[(A3s/4+)]’, and finally into the
differential equation

d x,=v(2.13) d x Xs

where we have introduced the (feedback) operator

(2.14) Xv P2
O, -X +O.

generating an analytic semigroup on Xu x[(A3s/4+)]’. (Essentially (see [L7] for
details) this is so since the operator Ig)11 g)] is bounded with respect to I-0au -s] with
relative bound equal to zero, for the entries Pi, Qi have finite dimensional range.
Thus, the standard perturbation result as in [K1, p. 497] applies.) Tedious but
straightforward computations then yield the resolvent operator R (A, F) as given by

where, with

(2.16) 1-Ix (h.[u +Au -P1)-Pz(AI +’ O9.)-101,

which is a bounded operator X - itself, the entries are

(2.17)

(= I-I-I.xu xu,
)= H71p2(A/ +Xs- O2)-1 "[(A3/4+)] Xu,
()= (A[s +Xs Oz)-lOlII-dl Xu -> [(A3s/4+) ’,

(R)= (L+-o)-l{z + olrIle(Xts +X-o)-} [(a/4+)]’-, itself.

Thus, R (h, Av) exists as a well-defined bounded operator on all of Xu x [(A3s/4+)]
for those h and only for those h for which its four entries (), , @ are simultaneously
well defined; i.e., by (2.17), for which

(2.18) [II-1 and (h/ + -12)-1 are simultaneously well defined].
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Our analysis of II-1 will be based, by (2.16), on the study of the inverse (hi, +A, -P1)-1

combined with a perturbation argument when P2 is "small" (i.e. wis is small). The
next lemma describes the situation for (hI +A,-P1) in a form that will also be used
later on in 4.

LEMMA 2.1. With the generator -A satisfying the instability condition (1.5), let
the restriction -A of -A on the unstable subspaceX be diagonalizable on X,. Assume
that the vectors wi satisfy the algebraic conditions (1.7) (a)-(b) at the unstable eigen-
values. Then

(i) There exist vectors pi, f 1,..., J, in X, such that the corresponding matrix 14

A, =--A, + PI, with PI given by (2.11) (a), has a set of eigenvalues arbitrarily close to
any preassigned set of (dim X,) complex numbers (appearing in complex conjugate
pairs, ifA, and Pi are all real).

In particular, these eigenvalues ofA may be preassigned to be all distinct and equal
to negative constants ci, 1, ., dim X, strictly on the left of the vertical line through
Re h:, in which case the solution to the unperturbed part of (2.6), i.e.,

J

(2.19) 2 =-A,z + APDgi(z, w#,), z eX,, z(0)= Xo,,
=1

or . A,z, is

dim X

(2.20) z(t)=ea"Xo,
i=1

Here, is the normalized eigenvector ofA corresponding to the simple eigenvalue c
and the {4i}, 1,..., dim X,, form a basis on X,.

(ii) Moreover, when dim l)= u _->2, each vector Pi, [ 1,..., J, can indeed be
synthesized, as required by the left equality of (2.10), by any of the infinitely many
vectors gi L2(F), that satisfy [L6, App. 3B, moment problem (3B.7)]. The minimal
number J required is discussed in Remark 2.2 below. The case dim f u 1 is also
included, provided dimX -<_ 3.

Proof ofLemma 2.1. See [L6, App. 3B] or IT4, App.]15 where the proof is given
in the t-domain.

Remark 2.2. Conditions (1.7) (a) and the definition of lw in particular imply

J>-max{Mk, k=l,...,K-1} and J->lw.

Moreover, the proof given in [L6, App. 3B] shows that the largest multiplicity of the
unstable eigenvalues is indeed the minimum number
required for the conclusion of Lemma 2.1, provided that the traces

I O(km] } k=l,..’,K-1, m l, Mk,(2.21) 0 r’
of the eigenfunctions are linearly independent.6 Otherwise, more vectors g e L(F)
are needed. For instance, if M =- 1, 1 _-< k _-<K 1 and lr < dimX K 1, then J

14 /u is a square matrix of size equal to dim Xu, depending on the vectors A,PDg and wi, (besides
A,), as can be seen by using in X, the (not necessarily orthogonal) basis of normalized eigenvectors k,,,
k 1, , K 1, which makes the matrix corresponding to the operator A diagonal.

15The proof in the Appendix of [T4] tacitly makes use of assumption (1.7b) which, however, was
inadvertently omitted from the text.

16 This is the case when is a parallelepiped.
17 This is the case when 1" is a sphere.
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suitable vectors gj L2(1) that satisfy the moment problem [L6, App. 3B, (3B.7)],
where J _-> dim Xu lT + 1, will suffice. 18 A full analysis of the situation, amounting to
a certain output stabilizability problem in Xu, is contained in the proof of [L6, App.
3B, Lemma 3.1], or of [T4]

The desired answer to (2.18) is now:
PROPOSITION 2.2. Let the assumptions ofLemma 2.1 hold, and let {gj}=l be any

J-tuple among the infinitely many possible guaranteed in the conclusion ofLemma 2.1.
Let e > 0 be preassigned. Then all vectors wis in a suitably dependent small sphere of
Xs have the property that the corresponding bounded operators P2 and Q2 in (2.11) are
suitably small, so that both I-Ix and (A/ +.- Q2) are boundedly invertible for all A in
the right half plane: Re A _-> Re A: + e.

Hence, by (2.18), the resolvent R (A, F) is well defined as a (bounded) operator
on all of [(A3s/4+)] for all A in the right half plane" Re A _->Re A: +e.

Proof. The proof is a standard computation and therefore is omitted.
COROLLARY 2.3. In the situation described by Proposition 2.2, we have

(2.22) Ilea’[l<=Me (ex’+)’, =>0,

where is the uniform operator norm on [(A3s/4+)]’.
Proof. The semigroup ea’ is analytic on [(A3s/4+)] and hence obeys here the

spectrum determined growth condition IT2]. Then the corollary follows from the
conclusion of Proposition.2.2.

We now restrict e Art to L2(), or more generally, to Xu(Y(As/4--)
H1/2-2-2(fl) (see (2.3)), with p fixed by (2.5) and 0<=0-<_1/4-p, the case of interest.
We thus obtain a still-analytic semigroup, whose generator we denote, as in Theorem
1.1, by AF on L2(I’), or more generally by AF.O on H1/2-20-2 (1): el. [L7] for details.

PROPOSITION 2.4. In the conditions described by Proposition 2.2, we have for any
X H1/2-2-2(-), 0<-_0<=1/4-0:

R(A,F)X=R(A, AF,o)XH1/2-2-2(-), Reh >=RehK+e,

i.e., the restriction ofR (h, r) overH1/2-2-20 (-) coincides with R (h, Af,o). Therefore,
R (h, AF,O) is well defined for all h with Re h _-> Re h: + e.

Proof. We write down the proof for 0 =0, the other cases being similar. By
inspection of R (h,-F) in (2.15)-(2.17), we see that we need only examine entry (;
i.e.,

(h/ +-Q2)-1{I + QII]IpE(A/s

or

(2.23) (AL +fls-O2)-ly, y 6X, and (h/ +-O2)-lQlz, z Xu.

Using the identity

(2.24) (AL +s -Q2)-1 [L -R (h, -s)Q2]-IR (h, -),

we are led to study
J

R (h, -)O2x (AL +1-13/4+A 1/4--0

/’=1

18 In the case of one-dimensional fl, where J and IT are at most equal to two, the unstable eigenspace
cannot be of dimensions more than three.
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(from (2.10)-(2.11) (b)) and deduce that

R (A, -A)Q2x2 @(A 1/4--O) OH1/2-2o (1),
since

J

A ls/4-R (A, -s)Q2x (A/s +s)-sA1/4-o QDgi(Xs wis) QL2(a) Xs.
/=1

Thus [L-R(A,X)Q2]’ N(A/4-)itself, and since R(A,-d)y
(A]/4-) (see above (2.8)), we conclude from (2.24) that

(AL+ O)-y e (A/4-0) OHX/2-2o(fl),
as desired. As to the right-hand term in (2.23), we use again identity (2.24) and
(2.10)-(2.11) (b) to deduce similarly

J

(AL +-Q2)-Qz [L-R(A,-X,)Q]-R (A,-s)X2/4+A/4-
/=1

e (A]/4-0) OH1/2-20 (),

and thus, as desired,

range of [entry @lx] (m/4-) 0H/2-2().

As a consequence of Propositions 2.2 and 2.4, we then obtain
CoaOAaY 2.5. In the conditions described by Proposition 2.2, one has

[Sv,o(t)]o =]ea.’loMo,e(x+)’, t>O,

where ]’o is the uniform operator norm on H1/2-2-2(), 0 0
Proof. Theorem 1.1 guarantees that e a’ is analytic on H/--() and thus

obeys the spectrum determined growth condition IT2]. Corollary 2.5 then follows
from Proposition 2.4.

To conclude the proof of Theorem 1.2, it remains to tackle the synthesis problem
of the vectors Pi and qi in the case where dim u 2.

First, Lemma 2.1 (ii) provides vectors gi, uniquely in the space (see (1.9)).
Then with

(2.25) gi gi + g, g L,
we compute, as in [L6, App. 3B above Eq. (3B.3)]:

K-1

k=l

K-1

k=l

=--k=l g’
O r

=0.

Thus, any such selection as in (2.25) produces vectors Pi APDgi APDg which
stabilize on X, as well as vectors qi Xs according to (2.10). With e > 0 preassigned,
then Corollary 2.3 guarantees the desired exponential decay for all vectors Wis in a
suitably small sphere in X, with radius depending, among other things, on e and the
gi’s. The proof of Theorem 1.2 is now complete.
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3. Structural assignment problem when -A is selfadjoint. In this and the follow-
ing section, we are concerned with Theorem 1.3 (and its generalizations) when
the generator -A is selfadjoint. This assumption is automatically guaranteed when
the double-index coefficients as in (1.0) are real and symmetric [D3]. In this case, the
point spectrum o-(-A) of -A consists of a sequence of real isolated eigenvalues
with no finite accumulation point: Ak --eo and corresponding orthonormal eigenvec-
tors {,,}, k 1, , m 1, ., M,M being the geometric multiplicity of A, that
form a basis on L2(iq). The semigroup e -At is then explicitly given by

M

(3.1) e-Atx e xkt (x, km)m, x EL2(), =0.
k=l m=l

When all the {A} are negative, then the free (that is, f(t, r) =_ 0) open loop solutions
x(t, Xo) =e-Atxo are functions of class IDE in the weak topology of L2(fl); i.e., the
function (x(t, Xo), y), tEN+, x0L2(i2) is of the class IDE for all y in L2(fl). This
remark motivated the structural assignment problem formulated in the introduction.
In the spirit of Remark 2.1, we attack directly the more general situation where the
projections (2.6)-(2.7) are coupled and leave off the decoupled case, which is obtained
when all wi can be constrained initially to be in Xu (simplest solution).

We collect below facts,to be used in the sequel.
Remark 3.1. With reference to Lemma 2.1, a vector in Xu will always be referred

to the basis {4i}dixu. On the other hand, a vector in Xs will always be referred to the
basis {,,}=K. We shall also adopt, henceforth, the following short notation:

ifvXu,

ifvsXs,

we set (v)i (V, ///i), 1,. ., dim X,,

weset[v]km=(V,m), k K, K + I,

Remark 3.2. For handy reference below, we collect here the following results
and observations. Let Ak ci. Then,

Akt
(3.2a) e xk(t-r) e c’’ dr

e -e

Ci

and
Ci(t--) Ak (t--or)

(3.2b) ex- e’- dr =e -e

Ci --Ak

In other words, convolving two different exponentials preserves the exponential
character. By contrast, we have

e (t--’r) e dr e ct.

Thus, convolving the same exponentials destroys its exponential character. These
remarks will play a crucial role in the development given below in proving the desired
structural properties of the feedback solutions.

4. Continuation of proof of Theorem 1.3 when Ms: 1. The proof of Theorem
1.3 proceeds through a lengthy sequence of intermediate results. To simplify the
technical exposition, we shall streamline the notation at the outset. As the geometric
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multiplicity Mk of all eigenvalues is assumed identically one" Mk----1, we then con-
sistently write k for k throughout. With the constant p in (2.5) fixed once and for

19all, we also set

(4.1) AI/’*-’QDg =q ={qk}k.._-:eX =QL:z()

for the sought-after vector in X and

(4.2) APDg p {pi}= e Xu PL2(a)

for the corresponding vector in X, provided by Lemma 2.1. Here, according to the
convention of Remark 3.2, we mean explicitly:

(4.3) q=(q,k), k>_-K, but Pi=(P,i), i=l,...,K-1.

We first consider the projections (2.6), (2.7) for J 1, thinking at first of p and
q in (4.1), (4.2) as, for the time being, just vectors in X, and Xs, respectively, without
any connection with the vector g e L2(F) which generates them. The question of
synthesizing p and q through an appropriate g e L2(F) is then handled as at the end
of the proof of Theorem 1.2, the stabilization theorem. Finally, throughout this section,
the initial point x0s is assumed to lie in (A/4-), with no further explicit mention
made; see (1.12).

4.1. Reduction to a Volterra integral equation in d(t) = (xs(t), ws). Our starting
point is the pair of projections (2.6), (2.7), with the notation of (4.1), (4.2), but now
we rewrite the unperturbed part (2.19) of (2.6) in a more convenient form, as provided
by (2.20)"

(4.4) x,(t) e’’tXo, + Io e(t-)P(Xs(’r)’ ws) d’r,

(4.5) Xs(t) eaXos + As/4+ ea(-’q[(xs(r), ws)+(x,(z), w,}]d’.

Now define a vector # e (A .-/4-o) Xs by

In other words, we use assumption (1.10) on w, which implies ws (A*/4+), and
we write

--3/4-0(4.7a) ws =As ws
or

(4.7b) s A.3/4+"

We then introduce the unknown function d(t)"

(4.8)

ApplyingA-3/4-0 to (4.5) and taking the inner product with ff yields, by virtue of (4.8),

19 TO avoid unnecessary notational complications, we assume henceforth that Lemma 2.1 holds with
only one vector, i.e., with J 1. Moreover, for definiteness, and for the technical necessity to avoid

C
K-1"resonance" (cf. Remark 3.2), we shall henceforth assume that the constants i}i--1 provided by Lemma

2.1 are preassigned to lie in the interval (hr+l, hr):

(4.0) hK+l <CK-1 <" "<C2 <Cl <hK <0.

2We would have (A) =(A*) even in the nonselfadjoint case [L4], and hence by interpolation
((cI +A)) ((cI +A*)), 0 -<_ 0 -<_ 1, since -(cI + A) is maximal dissipative.
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A -3/4-0 A(t-’)q,(4.9) d(t)=e x0, )+ (e )[d(r)+(x(z), w,.,)]d’r.

We next compute, by means of (4.4) and a change in the order of integration,

o eA(t-r)q(Xu(7), Wu) dr eA(t-r)q(eo,, w,) dr

+ eA+t-’)q(e"’-)p, w,) d() dd.

By (3.1), (2.22) and the notational convention in Remark 3.2,

I0 1 { I0teA{’-’)q(X,(Z), W,) d 2 e x{t-+) e’+(Xo,)i(w,)id
k=K i=1

e c’(’-) (Wu)iid(o") d dr} qk Pt,

_, -e
(Xou)i(Wu) by (3.2)

k=K i= Ci Ak

q- fOt eCi(t-) e xt,(t-o)

ci --Ak
Hence, (4.9) becomes

(4.10) d(t) (t) + (t-r)(r) dr,

where, in the notational convention of Remark 3.2,
K-l Ct

(t) (eAtA23/4-Xos, s) + 2
k=g i= Ci Ak

(4.11) =- eCit(Xou)i(Wu)i
[s]kqk

i= = A ci

d(cr) dcr(w.)ipi} qkk.

O<--t

(Xou )i (Wu )i[l’s ]kqk

{ l(XOu)i(Wu)i}+ , eXkt[ffes]k [a-3/4-OXOs]k +qk
k=K i=1 Ak --Ci

(4.12)

781

K- e c,t e h,,t

(t) =(eAt’q, )+ E E
k =K i= Ci hk

pi(wu)iq[ff,’s]k

E " q[] lpi(Wu)
e ’p,(w,)i Y’. + eXqk[ff]k 1 + --C-i ,"i=1 k =K Ak Ci k=K i=1

We can rewrite (4.11) and (4.12) in a simplified manner as

(4.13) 13n(t)= E nre
r=l

B(t) E hr e
r=l

O--<__t<,

(4.14)
where
(4.15)

(4.16a)

(4.16b) nr

r’-’Cr, r= 1,... ,K-l, r--lr, r=K,K + 1,...

[]k, r=l ...,K-1nr=_(Xou)r(Wu) ., qk.

k =K Ak Cr

1/4--0. K-1 (XOu)i(Wu)iZ-Is A, Os]r[l’s]r.4_ qr[ls] E r K, K + 1,...
hr i=1 hr --Ci
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(4.17a)

(Here, Xos is written in the largest fractional power of As compatible with the
assumption (1.12).) Furthermore,

h,.=-p,.(w,.,)r Y
=t,: -;----c- r= 1,... ,K-l,

(4.17b) hr qr[ffs]r 1 + r=K,K+I,....
i=1

Notice that the existence of the solution d(t) in (4.10), as an analytic function
for >0, is already known through the existence result of Theorem 1.1. One may
alternatively invoke the standard theory of linear Volterra integral equations [M1].
It should be kept in mind that the functions (t), if(t), and hence d(t), depend
upon q.

The above expressions will play a crucial role in the analysis, given below, of the
Volterra equation (4.10). Notice that each coefficient nr and h, for r =>K, depends
only on the corresponding coordinate q, while for 1 =<t-<K-1 it depends in a
cumulative way on all {qk}k=K This fact will be a source of difficulties. We also remark
that we shall henceforth borrow freely from (4.15), both the notation {/3} in place of
{cr} and {At} and the other way around.

4.2. Existence of admissible vectors q generating Volterra solutions d(t) ot class
IDE with negative exponents {a}rl all distinct from all{/} = 1. In order to establish
that the solution d(t) of (4.10) is of class IDE for a suitable vector q, we find it
convenient to associate with (4.10) the following sequence of auxiliary Volterra
equations’

du(t) zv(t) + [ u(t-z)dv(z) dr,(4.18)
J0

where N 1, 2,. ., and
N

(4.19a) u(t)= E n,.e t3’,
r=l

N

(4.19b) dN(t)= E hr ec3rt,
r=l

0-<t<.

LEMMA 4.1. Let the initial point xosbe in (A /’*-) and also let q QL2(). Then"
(i) The corresponding sequences

df

{Arnr}r=K and {hr}r=K,(-As){nr}=:

defined by (4.16), (4.17), all belong to the space la; moreover,

An<_-const/r and h <-const/r.

(ii) The corresponding functions n(t) and g (t) are functions of class IDE.
(iii) The correspondingfunctions nr(t) and glV(t) in (4.19) converge uniformly over

+ to the functions (t) and (t), respectively, in (4.13) and (4.14).
Proof. Conclusion (i) is immediate from the explicit expressions (4.16) and (4.17)

of the c__oefficients via (1.10’). As a consequence, n(t) and (t) are the uniform limits
over N+ of the decaying exponentials thus establishing conclusion (ii), as required
by Definition 1.2. Conclusion (i) also clearly implies (iii).

We start with a general result which will be refined and complemented below in
Theorem 4.9.
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PROPOSITION 4.2. For any vector q QL2(), the corresponding solutions tiN(t)
to the Volterra equation (4.18) converge uniformly over + to the corresponding solution
d(t) of the Volterra equation (4.10).

Proof. Let/i(s) Y=I hr/(s-r) be the Laplace transform of t(t) of (4.14) for
Re s > 0. By Lemma 4.1(i) on {hr}, we can achieve [1-/(s)] pu > 0 for Re s > u, for
a suitably large u. Then the (one-sided) Laplace transform tiN(S) of N(t) exists here
by

;,N(s)
N K, K / 1,. ,’S (S)

1 _/iN (S’)
and the uniqueness ot the solution d’N(t) to (4.18). Then, Lemma 4.1(iii) and the
definition o the (one-sided) Laplace transform imply th.at, as N-+ oo, the {unctions

N(S) and (s) are uniformly convergent to $,(s) and a(s), respectively, over Re s
suitably large. Again, by the uniqueness property o the solution d’(t) to (4.10), the
unctions gN(S) also converge uniformly over Re s suitably large to the function g(s).
But then, the inverse Laplace integral (see [D.2, Thm. 24.4, p. 157) implies that, as
N--> oo, tiN(t) converges uniformly to d(t) over [0, m). 71

We next establish some properties enjoyed by the Laplace transform of solu-
tions d(t).

PROPOSITION 4.3. For any vector q QL2(12), the Laplace transform (s) of the
corresponding solution d(t), extended over the entire complex plane C in a natural way
by the right-hand side of (4.20) below, is a meromorphic function over C.

Moreover, if, for a suitable q, the corresponding (continuous over +) solution
d(t) of (4.10) is of class IDE, then (s) has countably.many simple poles {Cr}, C real
and negative, which are simple zeros for [1-/(s)]:/(a)=-l. Such poles are either
finitely many or else, ifinfinitely many, have moduli tending to infinity"

Proof. As in the preceding proof, we have explicitly, from (4.13), (4.14),

(S 2r=1 nr/(S
(4.20) d(s) 1-,’(s) 1-El hr/(S
which is the Laplace transform of ’(t) for Re s >0 and is extended to C by the
expression on the right-hand side. As the ratio of two meromorphic functions over
C (with common poles {flr}r_l, in fact), (s) is meromorphic and hence its poles are
either finitely many or else their moduli tend to infinity [K3]. In addition, Q(s) admits
an expansion as the sum of its principal parts plus an entire function [K3, Mittag-Leffler
theorem]; [L3]. The poles of d(s) are zeros of the denominator [1-/(s)]. If the real
So is such a zero with multiplicity m, then the term t’-e s’ occurs in the antitransform
of the Mittag-Leflter expansion of ’(s). Hence, the statement on the {at} is a
consequence of the assumed IDE character of d(t).

Remark 4.1. The poles {at} cannot in general be finitely many.
With the above remark in mind, we proceed now to characterize the admissible

vectors q (recall (4.1)) whose corresponding solutions d’(t) are functions of the class
IDE with the additional requirement that the exponents be all different from the set
{fl} in (4.15) (recall Remark 3.2).

Remark 4.2. We refer here to a basic known result on the asymptotic behavior
of the eigenvalues of second-order elliptic selfadjoint differential operators, which
will play a crucial role below. If u denotes, as in the Introduction, the dimension of
the euclidean space containing the domain 11, then (see [T1, pp. 392-395], [C1, Ch.
VI. 3.3-3.4]) the estimate

(4.21) {3k Ak k 2/v, k K, K + I,
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holds. Here, and hereafter, the symbol means that the left-hand side can be estimated
by the right-hand side from below and from above with the aid of constants independent
of the variable in question (k, in this case) going to infinity.

We now let m be the smallest (nonnegative) integer strictly greater than ((v/2)- 1).
Then, (4.21) implies

(4.22)
k=lk

2 2(m+l)/v 00.

Therefore, by virtue of the Weistrass factorization theorem [L3, p. 390], the function
(s), defined by

(4.23)

where

(S)--
kI-I=1 1-

s
E(s,/3g, m)

(4.24) E(s’k’rn)af (s 1()2/kZ

1 (-) )=exp ---+ +...+--
m

is an entire function with zeros of multiplicity one precisely at the points {flk}--1 and
no other zero (the integer m is the genus of Y3(s)). Then, the meromorphic function
] (s) in (4.20) can be rewritten as the ratio of two entire functions, in fact,

;,(s) (s
(s)=

(s)
where

(4.25) @ (s) (1 g (s)) (s),

while @ (s) and (1 ff (s)) have precisely the same zeros. To motivate our further
analysis, let us now assume, in the light of Proposition 4.3, that there exists a vector
q ILz(D,) (this assumption will be shown later to be nonvoid) such that the corre-
sponding function (1-(s)), obtained through (4.17), has countably many negative

}oozeros, all simple of the form {ak}= 1, any a being different from all the . i=1, but
with a similar asymptotic behavior: a /3. Then, the function

Y=I 1-
s

E(s, flk, m)

is well defined and vanishes precisely at {a}=. By standard complex analysis theory
[K3, p. 6], such a function differs from @(s) at most by a factor e (), where z(s) is
an entire function; that is,

(s) =e(S) =l (1--) E(s, [3,, m).

As a matter of fact, e () must be a constant, and in fact equal to Aoo Hk__x (Ol.k/k),
provided this infinite product is well defined, i.e. provided (a,--[3k)/[3, 11. To see
this, one writes

( k hk)( fi a_)Hk=l (1--/3t/s)
e () 1-

S k=l 1-Ik=1 (1-a/s)
from which one obtains the limit valueA by letting s go to infinity in any way except
along the negative real axis; this leads to e z(s) as being O(1) and hence, by Liouville’s
theorem, as being the constant A. We have thus proved the first part of the following
claim, whose assumption, as already remarked, will be shown later to be nonvoid.
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PROPOSITION 4.4. Let them exist a vector q {qk}k-_K QL2(’) whose correspond-
ing function ,(t) in (4.14) obtained through the constants {hk}=l of (4.17) satisfies

(ak) 1, k=l,2,"’,

with multiplicity one, ]:or a negative sequence {Ok}k_-I with

(4.26) ak 7 [j, Olk "’[k and (Olk --[k)/k 11, k =j 1, 2,"

Then, the following identity over C holds"

(4.27) (1 -, (s))3 (s) (s),

where (s) is defined by (4.23) and

(4.28) @(s)=AookI-I--1 1--
S

E(s, flk, m),

where

A-[I=1
Moreover, the corresponding sequence h is expressed by

Aoflr rI=a (1--r/ak)E(, k, m)
(4.29) h= k=l,k(l_B/k)E(,flk, m

r 1 2,

Proof. The entire proposition was proved above, following (4.25), except for the
expressions (4.29), which we now derive as a consequence of (4.27). For the assumed
q, rewrite (4.27) explicitly as

s- s’
In other words, by (4.23), for r 1, 2,. .,

1 hi (s) + 1 E (s, fig, m (s).
j#r k#r

We now set s in the above expression. Using ()= 0 and (4.28), we obtain the
sired formulas (4.29).

The following lemma will be needed.
LEMMA 4.5. For ak k, we have

(i) =1,k (1 --r/a)E(#, ilk, m) 1,
Hk=l.kr (1 -B/flk)E(B, Ok, m)

(ii) H#= 1,k (1 a/#k)E(a, ilk, m)
1.H,r( -#,)E(, B, m)

Proof ofLemma 4.5. We have, for r, k 1, 2,...,

(4.30) fir and also a,
and the conclusion follows.

COROLLARY 4.6. Under the assumptions of Proposifon 4.4, the following
asymptotic estimate hoMs for the sequence h in (4.29) generated by the assumed vector
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q as r -> o0

(4.31) h or q[ff; ] - O as r o.

Proof. The first on the left stems from (4.29) via Lemma 4.5(i). The second
on the right then follows from (4.17b), as the term in { } in that equation is

obviously
Remark 4.3. The proof of Proposition 4.4 and Corollary 4.6 actually refines the

initial estimate ck---/3k of (4.26) by leading to conclusion (4.31), which is stronger. In
fact, (4.31) yields c-fl 0 as k m and hence, by virtue also of (4.21) we have, as
k --> ,

ak q[]g
(4.32)

Bk k/
+1 1

and the estimate at the left of (4.26) follows. Note that estimate (4.31) relates the
assumed q and {ak}= x. Reference to Fig. 4.1 below will greatly help in following the
rest of the proof.

OK+3 OK+2 OK+

AK+3 AK+2 AK+I CK-1

K+3 K+2 flK+l ilK-1

cx AK

r+l r r-1
FIG. 4.1. Asymptotic behavior of the constants {at} with respect to the constants {/3r} (see (4.31)).

We now tackle the problem of the existence of vectors q, as postulated in
Proposition 4.4 and Corollary 4.6. To this end, it is convenient to introduce the
following definition which is motivated b,y (4.17) and the paragraph below (4.17).

DEFINITION 4.1. An ll-sequence {h}=l will be said to satisfy the realizability
conditions for the problem under study if it satisfies the conditions, for r 1, .., K 1,

/ { lpi(wu)il(4.33) h’ =Pr(Wu)r
=K
y /k (A,-cr) 1 +

i=1 - Z,’which are crucial for the realizability of such {/k}= through a vector q as demanded
by (4.17).

Reversing the procedure of Proposition 4.4 and Corollary 4.6, we now first assign
a sequence {ak}=a, with appropriate asymptotic behavior as suggested by (4.31), and
then solve (4.27) for a suitable sequence {/k}=a (see Proposition 4.7). We then study
in Theorem 4.8 how to force such a solution {/}= to satisfy the realizability conditions
as well. Actually, even more is accomplished by the following two results:

PROPOSITION 4.7. Fix an arbitrary vector v {V}-_K Iv, with v # O.
Next, assign a negative sequence {a}k-_l, which satisfies

(4.34) c #/3., k =/" 1, 2,. .,
and the asymptotic estimate

(4.35) a -/3 [s]v,

which implies (4.26) (see Remark 4.3 and (1.10’)).
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Then, there exists a sequence {/i}=1 such that

(4.36) 1-.=
with (s) and @(s) as in (4.23) and (4.28), respectively. Identity (4.36) then implies

df j
h(ak)=2 =--1, k=l,2,...,

i=1 Ct

and, moreover, uniquely determines the {hi}j=1, according to formula (4.29) written

&r h.
Proof. See our detailed report [L8, Appendix 4B] or the analogous [L6, II,

Proposition 4.7].
What follows is a main result that affirms the existence of admissible vectors q

as postulated in Proposition 4.4 and Corollary 4.6.
/4-OODTI-IEOREM 4.8. Let a vector q e Xs as in (4.1) be given; i.e. q =As g

{q}=:forsome g L2(F), where now all its coordinates 21 q (-h)-3/4-(g, Ok/O,rl Ir)r
will be required 22 to be different from zero. Then, for all vectors ws Ow, with
sufficiently small, which satisfy (1.10), one can construct"

(i) a vector 5 {O}=Ke 12, with

(4.37) 0 [J[<_-C, k =K,K +1,...,

where C is sufficiently small so that the corresponding sequence {c7,},=: defined by

(4.38) cTk -/3k []k5, k K, K + 1, ,
has its terms negative, distinct, and satisfying

(4.39) c/3i, k=K,K+I,..., j=1,2,...;
K-1(ii) a sequence {ai}i=l of negative, distinct constants with

(4.40) c7ic7 and [3, l, K -1, k K, K + I, j=1,2,...,

such that the corresponding sequence {h}=a e ll, defined according to proposition 4.7,
by

[3rAool-[t_=_ (1-/S)E(,k,m)(4.41) hr I-I l,k e 1------;;_, ?[-, --k i r 1 2,’’’

where the exponential function E(.,., m) is defined in (4.24) and A is specified
following (4.28), satisfies the realizability condition (4.33);

df

(iii) moreover, thefunction/(s) ,-=1 /(s -), corresponding to such a sequence
{h,.}r=l- satisfies 1 /(c7)= 0, k 1, 2, with multiplicity one, while l(s) 1 for

Therefore, according to Proposition 4.4, the function (s) defined above satisfies
(4.27).

Proof. Conclusions (i) and (ii) are proved in Appendices 4A and 4B. These
appendices construct, ultimately by means of a fixed point technique, the sequence
{c7}_-] for which the realizability conditions hold, as well as the claimed vector 5 and
the sequence {CT}k=K. Moreover, the continuity of the map {Vg}=K{Ol.i}iK_l’lm
Nz-a, needed in Appendix 4A, is proved in Appendix 4B.

21 See Appendix 4A below (4A.4).
22 This is possible since 0k/0rt v 0 for C-boundaries F IS1, Cor. 2.2] as well as for parallelepipeds.
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To show that such {hr}r_-I is in 11, we need only invoke part (i) of Lemma 4.5 to
obtain the on

(4.42)

while the equality on the right stems from (4.38). The Schwarz inequality applied to
(4.42) ensures that {h-r}r_-i e l.

As to the claim for the corresponding function (s), this stems from (4.27), which
holds by virtue of Proposition 4.7.

The next result establishes that any admissible vector q that fulfils (4.27) also
furnishes the desired solution to (4.10)" ’(t), of the special class IDE, with exponents
cr all different from the constants

THEOREM 4.9. Let q be an admissible vector with corresponding function (s),
obtained through (4.17), that satisfies (4.27) for negative constants {ak} obeying the
estimate (4.31). (Such vectors q are provided by the proof of Theorem 4.8.)

Then, the following properties hoMfor the corresponding solution /(t) to the Volterra
equation (4.10).

(i) The solution /(t) has the form

(4.43) . (t) dr ’ +e r, ten
r=l

that is,

(4.44) (s)= dr
r=l S--Olr

(For Re s > 0, (s) is the one-sided Laplace transform of (t) and is extended over C
through the right-hand side of (4.44).)

(ii) The coefficients {dr} satisfy the condition

(4.45) ’. [dr[ < and d,ar <= const/r,
r=l

analogous to the property of {nr/r} ofLemma 4.1(i).
(iii) The coefficients dr are the residues, res (ar), of (s) at

(4.46) /r res

Consequently, /(t) is a function of the special class IDE.
Proof. To prove (4.44), we apply the Mittag-Leffler expansion to (s). To this

end, the following proposition is crucial.
PROPOSITION 4.10. Under the hypothesis of Theorem 4.9, the residues res

of the function /(s at the points r satisfy the estimate

res ’(cr) O(( +12r /v as r -->

ProofofProposition 4.10. With (s) and (s) the entire functions given by (4.23)
and (4.28), we have from (4.20) and (4.27)

;,(s) (s
res (cr) lim (s, (s)

(Cr)r(/3r--Cr) rI,_-,,, (1 c,//3,)E(cr,/3,, m)
(4.47)

Aflr rlk= 1,k #r (1 Olr/Olk )E ((Tr, ilk, m)



DIRICHLET BOUNDARY FEEDBACK PARABOLIC EQUATIONS 789

(4.48)

by Lemma 4.5(ii), and O 3r, where

(4.49) (ar) 2 ni

i=10r--’3i

AS {ni[i}i=l belongs to ll, according to Lemma 4.1(i), we now need to invoke part
(i) of the following lemma. Part (ii) will be needed later on in Lemma 4.12 and
Theorem 4.14.

LEMMA 4.11. For any vector b {bj}il such that bi <= const//’, the following esti-
def

mates hoM for Ol 3i ii

(1)
(/i _Or)

0 2"
i=r+l /i

(2) E1 0
i= ii(li--Olr)

where e is an arbitrary positive number. In addition, by symmetry with the above,

(ii)

Proof. The proof is relegated to our report [L8, App. 4E]. See also the analogous
[L6, II, Lemma 4.11]. [3

Continuing with the proof of Proposition 4.10, we apply Lemma 4.11(i) to the
sum in (4.49) (in this last case after multiplying the numerator and denominator by
A as allowed by Lemma 4.1(i)), to obtain

(4.50) (Or) O(rr) nr
Or

Inserting (4.50) into (4.48) yields

(4.51) res Q(a)O(Or-r) +O(nr).
\ O

The desired conclusion of Proposition 4.10 then follows from (4.51) via

which is the result of (4.37), (4.38) with [vG], -< const/r (see (1.10’)) and of a, 3 r2/,
from (4.21). lq

Returning to the proof of Theorem 4.9, we see from Proposition 4.10 and Lemma
4.10) that we can apply the Mittag-Leftter theorem [L3, p. 394], [K3, p. 37ff.] to obtain

(4.53) (s)= E
res 2(at)

+ e(s),
r=l S --Or

where e(s) is an entire function. But from (4.20), we see that (s) goes to zero for
s in any way except along the negative real axis and this leads to e (s) O (1) and
hence, by Liouville’s theorem, to e(s)=O. We can then rewrite (4.53) as in (4.44),
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from which relations (4.46) follow immediately. We now prove (4.45). To this end,
we it,poke (4.48) and (4.50) to obtain

(4.54) dro Og [3 -" l Ol h + n Ol

where the right-hand side estimate makes use of (4.42). Then (4.45) follows from
Theorem 4.8(ii) and Lemma 4.1(i). The proof of Theorem 4.9 is thus complete.

4.3. For d’(t) as in 4.2, the projections xu(t) and xs(t) are of the special
class IDE. With the existence of representation (4.43) for some admissible vector q
guaranteed by Theorems 4.8 and 4.9, the following Lemma will be useful in later
arguments. The proof of this lemrna, however, takes place in the t-domain.

LEMMA 4.12. The solution /(t) of the integral equation (4.10) has the form (4.43)
as a function of class IDE, where

ar /3i, r,/’= 1,2,. .,
if and only if the following conditions are satisfied:

hi(4.55) Z = 1, r 1, 2,...
i=1 Cr--[i

di(4.56a) nr=-hr , r=K,K+I,.’.,
i=1 tSgi

(4.56b)
(Xo,)r

2 r=l,-..,K-1.
Pr i=10li--Cr

Proof. Let (t) be given by (4.43). Then, inserting (4.43), (4.13) and (4.14) into
(4.10) and equating to zero, by linear independence argument, all the coefficients of
exponentials result, after straightforward computations, in (4.55), as well as in

di(4.57) t/r -hr Y’, r 1, 2,
i=10giw[r

Relation (4.55) means, of course, that the {ar}rl are zeros of the denominator
(1-(s)) of (s). For r=K,K+I,..., (4.57) leads to (4.56a) via (4.15). For
r 1,... ,K-1, however, the ratios nr/hr in (4.57) are computed via (4.16a) and
(4.17a), thus leading to (4.56b).

Reversing the steps of the above procedure proves the opposite direction.
A final lemma is needed.
LEMMA 4.13. For any admissible vector q provided by Theorems 4.8 and 4.9, the

corresponding solution d(t) of the form (4.43) to equation (4.10) satisfies the following
asymptotic estimates"

1/4-o..

(sdr =O
[A ] 1

4-0

Proof. By (4.56a), we can write for r K, K + 1, ,

Next, by virtue of (4.45) and Lemma 4.11 part (ii), we have

(z)d =O
1

j=l r--r
]r
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Finally, (4.16b) and (4.17b) provide

fir=O([als/4-xs]r) (r)h--r +0

and the lemma is proved. ]
We are finally ready now to draw the desired conclusions to the solution x(t).
THEOREM 4.14. For any admissible vector q provided by Theorems 4.8 and 4.9,

the projection xu(t) of the solution x(t) is an Xu-function of the special class IDE.23

Proof. In view of (2.20), it is enough to show the desired conclusion for the
integral term of (4.4). By (2.20), (4.8) and (4.43), this term can be rewritten for -> 0
as

(4.58)

(4.58’)

(by (3.2))

(by (4.56b) and (2.20)).
But, since the {c} and the {Cr} are chosen, by (4.0), so that

inf ]a-ci] , >0
r=l,2,-..,

i=1,...,K-1,

(see Fig. 4.1), relations (4.45) in Theorem 4.9 imply afortiori that the infinite sum
in r in (4.58’) is a function of the special class IDE. The desired conclusion is then
contained in (4.58’).

The proof for the relevant result for x(t) on Xs passes through the following
theorem.

TrtEOIEM 4.15. For any admissible vector q provided by Theorems 4.8 and 4.9,
the function --1/4-0.,) is of the special class IDE in the Xs-weak topology. More
precisely, we have for y

__
[ l(wu)iPiq[Akqkyk](4.59) ((-A) /4-Xs(t), y rE e%’d, +

Proof. We have from (4.5), (4.4):

<A /4-Xs(t),

(4.60) + Ae-a’-)q(eA"o,, w,) dr, y

23 Since X is finite-dimensional and A an operator on it, then Ax(t) for any power is also of the
special class IDE.
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with d(.) and L(’) defined by (4.8) and (4.58), respectively. Since by (4.58’) and (4.43),

(4.61) (.fu(7"), Wu)+a((r)=--(eAdxou, Wu)+ E dr 1 + e
r=l i=1 Olr Ci J

we see that the first term in (4.61), once inserted in (4.60), cancels the second term
in (4.60). Hence, substituting (4.61) into (4.60) and using the convolution relations
(3.2) yields

To ascertain that all the infinite sums in (4.62) are well defined, we observe preliminarily
that

(4.63a) rZ dr kil drolr drolr
r=k+l Ogr(Ol.r--lk)

-["

(4.63b) O(-k) ([A]/4-XOs]k)+ 0 --q
which follows when Lemma 4.11(ii) is applied to the first two sums in (4.63a) (a valid
procedure when (4.45) is invoked) and Lemma 4.13 is applied to the last term in
(4.63a). Hence, (4.63b) gives

(4.64)

],qY
k =K 1, Or _A

_<-const k=:E [q,ygJ+[(A1/4-Xos)Yk[s
-< const (Iql + IA/4-X0l)lyl.

Therefore, the following interchange of order of summation is allowed

(4.65) 2 ]Aq.yl 2 dr E [drl E Aqgy____
k =K Or ik k =K Olr --/k

showing by (4.64) that, as [ar[-- (30, the following sequence in r is in 11"

(4.66) dr 1-]- rZ//’] O ai=1 k=K r=l

Since the term i=1 goes to zero as r eo, we conclude from (4.65) and (4.66) that
(4.62) is well defined as a function of class IDE. To complete the proof of Theorem
4.15, it remains to show that the first sum k--K in (4.62) is, in fact, identically zero.
To this end, we recall the definition of d(t) (Eq. (4.8.)). and its expansion (4.43) for
q admissible as assumed. We then deduce that for y = 37 with

; A-l/4+Ows Xs
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the first sum =K in (4.62) vanishes identically. This implies24 that all its coefficients
are identically zero,

K-1

k [lkqk ( = dr(1-t’Ei=l (Wu)iPi/(Ogr--Ci)))-’l/4--O[XOs]]’O, k g,g-Jwl
lk--Ogr

We then divide by the nonzero coefficient 37k [see (1.10’): [Os]k # 0] and obtain the
desired conclusion. Theorem 4.15 is fully proved.

To finish off the proof of Theorem 1.3, we need to tackle the synthesis problem
of the vectors p Xu and q Xs by a suitable boundary vector g L2(F), as dictated
by (4.1) and (4.2). This is done exactly as at the end of Theorem 1.2 in 2 ((2.25) ft.)

Proof of Corollary 1.4. The claimed expansion (1.13) is obtained by simply
combining the expansions (2.20), (4.59), (3.1) and (4.58’). I3

Proof of Corollary 1.5. We write more conveniently {y,}=l for the sequences
{A}--K, {Ci}:_-q and {a} As noted in Corollary 1.4, the expansion (1.13) holds
in the weak topology of L2(), when Xo e L2(), in which case, we can write

(4.67) (SF(t)xo, y): Un(Xo, y)e /"t, t>0--
n=l

for the desired feedback semigroup SF(t) on L2(fl); where the un (x0, y)’s are constants
depending on x0 and y, which form an/a-sequence; moreover, uu is a bounded linear
functional on x0 for y fixed, and similarly on y for x0 fixed. Thus, uu (Xo, y) (Buxo, y
for bounded operators Bn on L2(Iq). Application of the Laplace transform to (4.67)
(term-by-term application is legal) yields for the resolvent of AF"

(4.68) (R (ix, Av)xo y) E (Buxo, y)
u=l ix

after extension by analytic continuation. The constants {yu} are then simple poles of
the resolvent and thus simple eigenvalues of Au ITS, Thm. 5.8-A, p. 306]. Next
compute around a small circle Fu, centered at a fixed y, and containing no other point
of the sequence {’u}

Iv Iv B"xR (ix, Av)xo dix dix 2"n’iBuxo

by the Cauchy theorem. Thus, B. is the projection from L2(fl) onto the one-
dimensional eigenspace of Av spanned by the normalized eigenvector ev.., along
(I-Bu)L2(i)): Bux n.(x)ev,., ft.(x)=scalar. Then, n.(ev,.)= 1 and n.(ev,,.)=0, n
m. From (4.67) with 0,

(4.69) x Y B,,x n,, (x )eF,., x Lz(fl)
n=l n=l

so that {ev,,,},,= is a basis on Lz(I)). Since Bu commutes with Av, we also obtain

(4.70) AFX ., BnAFX AFBuX Z Tun,, (X)eF, X (AF)
n=l n=l n=l

as desired. Expansions (4.69)-(4.70) can be written out explicitly as in (1.14)-(1.15)
respectively.

24 If Y=K Zk e xk =0, -->_ 0, with {z} l, then term-by-term Laplace transforming gives zt,/( -At,)+
i=,i#t, zi/(- )----0 for {}=K by analytic continuation. Integrating along a small circle centered
in yields by Cauchy’s theorem z =--0 as desired.
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Appendix 1A. A peculiar property of the feedback semigroup. We close this
section by illustrating a property of considerable interest possessed by the feedback
semigroup arising in boundary feedback parabolic equations, which will cast further
light on the problems here under study. It will suffice to specialize to the canonical
situation where -A (:, 0) A + c2(*).

CLAIM 1A.1. For any choice of the stabilizing vectors {wj} and {gj} guaranteed by
Theorem 1.2, the corresponding feedback semigroup SF(t) is not a contraction on L2(I)),
and thus the constant Mo, in (1.8) of Theorem 1.2 (with 0 1/4-p, i.e. on L2(D,)) cannot
be less than or equal to one.

We are thus exhibiting a not-so-common analytic semigroup that is not a contrac-
tion, and yet decays exponentially to zero in the uniform norm of L2(12) as --> o0.

Proof. To substantiate our claim, we consider the simplest case with K 2, where
there is only one unstable eigenvalue A < A 2 < 0 < A 1, with A and A 2, say, simple
eigenvalues. If {i} are the normalized eigenvectors of -A, we define vectors h and
w as follows:

(i) h=hll+h22, (ii) w= wii,
i=1

where we impose:

(iii) Wl arbitrary, (iv) (h, w)=hlwl+h2w2=O.

In the case with J 1, we obviously have

{x H2(D,): X[r=(X, w)g}c(AF).

Thus, since hit 0 by (i), we deduce from (iv) that: for any w La(f) and for any
g L2(F), the vector h defined above satisfies: h @(AF).

From (i), we then obtain (AFh, h)= ,lh + A2h]. Now, with A1 (positive) and A2
(negative) assigned, we choose hi and h2 so that

(v) (AFh, h) is positive.

Next, with arbitrary nonzero W1 given, we determine W2 from (iv). The other coordin-
ates of w are irrelevant. Then, by (v), we obtain"

(vi) The feedback generator AF corresponding to any vector g L2(F) an’d to any
such w L2(12) is not dissipative.

In particular, specialize w and g to be "stabilizing" vectors, as guaranteed by the
major Theorem 1.2: in doing this, we make use of Wl 0 to satisfy conditions (1.7).
The corresponding feedback semigroup is then not a contraction, by (vi) and the
Lumer-Phillips theorem, yet decays exponentially to zero by (1.8), as claimed. [3

Note that, as a consequence, any attempt to stabilize boundary control systems
via the sufficient condition

(AFX, X) <----/.t 2(X, X ), x e (AF),

is bound to fail. Therefore, a more sophisticated approach is needed.

Appendix 4A. Proof of Theorem 4.8(i)-(ii). (1) If v ={Vk}k_-: is any vector
satisfying

(4A.1) 0# Ivkl_-<C, k =K,K +1,...,

we define a corresponding sequence {ak}oo__: of scalars by setting

(4A.2) a -/3 [s]kVg, k K, K + 1, .
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By (1.10’), and (4A.1),
[s]gvk -<- const/k --> 0 ask

and so ag flk and (ak --fl)/g ll. Thus, we conclude that: if Cv in (4A. 1) is sufficiently
small, then the constants a, k =K, K + 1,..., in (4A.2) are all real and negative,
like the corresponding fig’s, as desired.

(2) If {Cg}=] are the distinct negative constants obtained through Lemma 2.1
and are, e.g., required to be

AK+I<AK <CK-I <" "<C1

K-1 [K-1we consider vectors {ai}i=x in the sphere 9c

(4A.3) 5c {{ai}:--1" lai-cil-< lOc}, 1,..., K 1,

with pc sufficiently small, so that all coordinates a 1, ’, a:-i are negative and distinct.
(3) We now let q be a vector of the form

(4A.4)

Since

1/4-OQDq As g QL2(D) for some g s L2(F)

q E (--/r)1/4--0 < Dg, lff) > lff) 2 (--tr)I/4-O(g, D,r)Fdp
r=K r=K

and D*r (-1/A)(Or/O)lr [L2], [Wl], we deduce that the coordinates q of q are

q={q} (_Z,)-/4-o g,r=K
F F r=K

and therefore, by [$1, Cor. 2.2] for C-boundary F and for parallelepipeds, they can
and will all be required to be different from zero" qr # 0, r K, K + 1,. ".

(4) Next, with q as in (4A.4) fixed, and for each {ai} in the sphere c we
define a nonlinear operator T, depending on the vector y {qr[#s],},from{ai}
{q’,}r, by setting: {q’r}r Ty{ai}f with

K--1H: (1-./)E(,. ,. m)
(4A.5) q’q,[#s] - (fl c) r =K,K + I

Hk=l (1-fl/a)E(B, Bg, m)

which we shall consider as acting from the (closed) sphere in R- into l.
For the operator Ty the following claim is easily verified"
CLAIM 4A.1. With the radius p fixed in advance, and for a given vector q as in

(4A.4) (so that such q is in 12, hence in l,), one can select a suciently small sphere
for the vecwrs Xs in (1.10’)as assumed in (1.11)such that all the corresponding
operators Ty which are defined through (4A.5) map the sphere into an arbitrarily
small neighborhood of the origin in l.

This assertion follows from the definition of Tv in (4A.5) and the fact that for
points {ai} in we have’ infr, {[flr-ail’{ai}}>O, where the inf is taken over
all r =K, K+I, ., and 1, .,K- 1.

(5) Next, motivated by (4.17b) and (4.29), we define a nonlinear operator
F.{v}{(Fv)r}r=={fr}r:KbY

(4A.6) (i) , (Fv)r Yr 1 E(,, m), r K, g + 1,. .,
k=
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where the constants

(4A.6) (ii) yr

depend only on data hk =/3k and on parameters obtained through Lemma 2.1: (w,)i,
Pi and ci. By virtue of (4A.2), (4A.6)(i) gives {(Fv)r}r=K explicitly in terms of {Vk}k=K

(4A.6) (iii) fr--(FO)r--Tr I-I 1--
k=K [k -1- ’-s ]kDk’ t(r, k, m), r=K,K+I,.

We shall consider F as acting from a neighborhood of the origin in loo (see (4A.1)) into
l. Notice that F maps {vk --0}k=t: into {(FV)r --0}r=tc, more generally, if one coordin-
ate v 0, then by (4A.6) (iii) the corresponding coordinate (Fv) 0 as well. Notice
that, because of Lemma 4.5, it follows from (4A.6) that

(4A.7) (Fl))r’[--f’r(ol.r--[r)"Olr--[r--Vr[1/s]r as r,
Or

where, in the last step, we have used (4A.2).
(6) The following proposition, to be proved at the end of the present appendix,

will be paramount in our treatment.
PROPOSITION 4A. 1. The inverse mapping theorem applies to the operatorFdefined

above; i.e. them is a neighborhood aV’v of v 0 in l such that F is one-to-one in
with F-1 continuous in the lo lo topology.

An important consequence of both Claim 4A. 1 and Proposition 4A. 1 is"
CLAIM 4A.2. With the radius pc ofc fixed in advance, and for a given vector q

as in (4A.4), one can select a sufficiently small sphere for the vectors X in
(1.10’)as assumed in (1.11)such that the corresponding composite map F-Ty of Ty
followed by F-1 is well defined and maps the sphere into an arbitrarily small
neighborhood of the origin in l.

(7) It will be shown in Appendix 4B that the map G’{Vk}kr{a} from a
neighborhood of the origin of l into RK-l, which produces the constants a 1, aK-1
for which the realizability conditions (R.C.) (4.33) hold, is in fact continuous:

{ai}l {{i}1 for which the R.C. hold]

l{q’}L {v}=e l.

Notice that, if we apply F-x on the vector {q’r} given by (4A.5) for a preassigned q,
we get a vector {v}, whose corresponding {a}g via (4A.2) are such that

q’= 1- E(, m), r=K,K+I

so that, by (4A.7),

(4A.7’) q’ v[],
while (4A.5) gives q’ q[]. Thus the preassigned vector q and the obtained vector
v F-q ’, withq Ta T -’= {ai}= ,satisfy

(4A.7") q v.
Thus, if q is only in l, so is v.
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(8) As a consequence of the last two statements, we obtain a conclusive result,
which we state formally"

PROPOSITION 4A.2. With a radius pc o{ 5c fixed in advance, and a given vector
q as in (4A.4), one can select a suitably small sphere for the vectors s 6Xs in (1.10’)--as
assumed in (1.11)--such that the corresponding composite map GF-aT of T followed
by F-a and by G is well defined and maps the (closed) sphere 5c into itself.

Since GF-aT is continuous, being the composition of continuous maps, Brower’s
fixed-point theorem applies and produces (at least) a fixed point {ci}=a 5c, with
all coordinates distinct and negative. The corresponding vector {’r }--: T{ci}-a
has all its coordinates different from zero, by (1.10’) and also since all coordinates qr
were taken C0; hence (by the observation above Prop. 4A.1), the corresponding
vector {k}==F-Ty{gi}i_f-1 is ---c and also has all its coordinates different from
zero. As to the sequence {cTi}= in the conclusion (ii) of Theorem 3.8, we then take
a fixed point c g, 1,... K- 1. As to the sequence {cT}_-n in the conclusion
(i) of Theorem 4.8, we take instead

c t +[s],
With this choice,

kfl, k=K,K+I,"’, /=1,2,""
from Appendix 4B. It remains to show that

k =K,K+I,....

and k=l,...K-1, but k-i,

where EF"(v)

Ek

OU 10U3 OV 2 01.) 3 OU (V

In fact, if--say--cia c l, then by (4B.1) in Appendix 4B with ai---di, 1,. K- 1,
we would have that the corresponding l(a)--0. Since {6i}/n makes the realizability
conditions (4.33) hold, it follows that (4.17a-b) apply to the corresponding sequence
{h’r(a) hr}r:a with p and {ci}_ coming from Lemma 2.1 and with q the vector as
in (4A.4), for which Brower’s fixed point theorem holds. But then from (4.17a-b),
we see that the condition hr 0, r 1,..., K- 1, can always be avoided by slightly
changing, if necessary, say, just one ci.

(9) To conclude the proof of Theorem 4.8 it remains to establish Proposition 4A. 1.
Proof of Proposition 4A.1. We need to verify that the operator F defined in

(4A.6) satisfies the following properties [L9, p. 226], [M3, p. 116]:
(a) F admits a well-defined Fr6chet derivative F’(v) in a neighborhood Nv of

the origin in loo, and, moreover, the map v -->F’(v) is continuous in Nv in the topology
of loo - 1(b) The operator F’(v 0) is invertible; i.e. [F’(v 0)]-a exists in lo. The validity
of (a) will follow a fortiori once we show the following:

ASSERTION. The second Frdchet derivative F"(v is well defined as a continuous
operator l l.

In fact, F"(v) is an infinite matrix with the following structure:

OOfr OOfr OOfr

di 7 Ci [3i, 1," ", K- 1.
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for r K, K + 1,.... According to well-known results [T5, p. 220], F"(v) defines a
continuous operator" lo--> loo, provided

(4A.8) sup {/x-normofarow}=sup{sup 02fr 1}<00.
all i=l Or] OVl

From (4A.6) we compute, after setting Zk [’s]k, for f l"

k=K
kl

_@ ’ E(Or, ilk, m)rZlE(r, ill, m
,8 +Z] ( +Z)2

(4A.9) (1

fr2rZjZl
(j r +Zjuj)(l [Jr +ZlUl)(j +Z/uj)(l + ZlVl)

Similarly from (4A.6) we obtain for j l"

Ov E(fl, k, m)
-2ZE(, l, m)

k =K k +ZkVk (l +ZlUl)3

k#l

(4A.10)
-2fiZ

( +Zgvt)(t + ZlVt)

To verify (4A.8), we need, according to (4A.9) and (4A. 10), to check that the following
two quantities E1 and E2 be finite"

(4A.11)

sup Ifr, sup Il r "-t- ZlVll I! + Zzv,[ ---1 Ii r -]-Z*v*I I, +z,v,l

(4A.12)

We first handle "1. In the sequel we shall use with no further mention that Zl [ges ]k <-

const/k -0 as k -+oo (from (1.10’)). In order to show that 1 is finite, it will suffice to
establish that the following quantities and be finite, where E refers to the case
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r and E refers to the case r"

(4A.13)

(4A. 14)

SUrP {

{ ,1 [Z’I } by(4A.7).<_- const sufl It’ll I(t ;

To conclude that E and E, and hence El, are finite, we now need to invoke the
following two estimates:

jr

(see the independent Lemma 4.11),

(4A. 16) sup -< const
r,l [[l(l [r)[

(see the final Remark 4A. 1).

We now use (4A.15) at the level of the infinite sum term in (4A.13). We then obtain
f,rom (4A.13), since fr--< const and (fr/Vr)<=const (cf. (4A.7’))"

E <__ const sup { sup
from which the finiteness of E follows via (4A.16). The finiteness of E7 follows
directly from (4A.14) via (4A.15). The proof that E < oo is complete. The proof that
E2 < oe is simpler. From (4B.12), we compute

(4A. 17)
E2----< const SUrP {Ifr[3rl sup IZI }

+constsup { [frflrz2r }
Since fi _<- const, (fi/Vr)<-const and (Zl/fll)O, we easily conclude from (4A.17) that
--2 < (X3 as desired. The proof that the second Fr6chet derivative F"(v) is a bounded
operator I, l is thus complete.

To finish the proof of Proposition 4A.1, it remains to show statement (b) on the
invertibility of F’(v 0). This is quickly done as follows. The Fr6chet derivative F’(v)
is an infinite matrix with entries

F’(v)
\Ovi]

]=r=K,K+I,....
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Starting from (4A.5) (ii), we compute directly, again with Zk

(4A.18)

Setting v 0, i.e. v 0, ] K, K + 1,..., implies, as we know (see below (4A.7)),
B0, r =K, K+I,.... Thus from (4A.18) we get

Of,
=0 forref,

=o8Vi v=0 Vr"
Thus, F’(v 0) is an infinite matrix whose off-diagonal terms all vanish, and whose
main diagonal terms are --fr/Vr, r K, K + 1,. ". Since fr/Vr 1 by (4A.7), we can
conclude that F’(v 0) is invertible as an operator" 1 l.

Remark 4A.1. To prove estimate (4A.16), rewrite

IrZ, IZll(4A.19) sup =sup

and sinceZ/ 0 as m, we only have to worry if [(B/) 1] becomes unbounded.
Thus, taking r l- 1 we estimate (4A.19) by using Z [#] where [#] Nconst//
(cf. (1.10’)) and / (cf. (4.21)). It is left to the reader to check that the sup is

bounded. Proposition 4A.1 is thus fully proved.

e4B. eea la} eme
(4.33) la; efiy Let a=
{a,..., a_} be a set of distinct, negative numbers in the sphere defined by
(4A.3), each different from all . Motivated by (4.29), we define a sequence {h(a)}=,
depending on a, by

(4B.0) h(a)" A=- (1-/a)N(,,m)=(1-/)E(,,m)
H=.(1-/,)E(.. m)

We then try to determine the parameters {a 1,"’, aK-1} in such a way that the
sequence {h,(a)},=l satisfies the realizability condition (4.33).

The sequence/,(a) in (4B.0) can be more conveniently rewritten as

(4B.1) h;(a) e, 1- r 1, 2,...
k=l

where the coefficients er are defined by

,AooI-I=K(1-,/c)E(,,k,m) 1-[= E(/3.,/3, m)(4B.2) e. H=.. (1 .lfl)E(/3.,/k, m)
r 1, 2

where c =/k +[#]kv by (4.38) or (4A.2). We then determine the negative para-
meters a,..., aK- in such a way that the realizability conditions (4.33), rewritten
now as

(4B.3)
--Ci}’

i=1,...,K-l,
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are satisfied. To this end, we use the identity

)1-[ (fl a,) fl a, K-2 + aia
k=l tl

ii

aaa f-4+...+(_l)- a,=distinct
on the right and, for r i, on the left of (4B.3) and apply the sum on each power
of in the previous identity separately. Then, by setting

ef-A_=p(w) 2 (at c){1 -= -2= p(w)Ja-c}
(4B.4)

and

/=I,...,K, i=I,...,K-1

Ai,K-I (--1)l-lXi,K K-l,
_
+ (- 1)lei l=l,...,K, i=I,...,K-1,

the realizability conditions (4B.3) can be rewritten as a multilinear algebraic system
(see also (4.15))"

ni,K -Jr"A i,K 2 a +Ai,a 3 aiai +Ai.K --4 aiaiak
k=l i,j=l =1i]

distinct(4B.5)

+’"+"’Ai,0 a =0,

of (K- 1) in (K- 1) unknowns, for which we seek a negative solution" a 1," , as:-1
(that is, all ai negative).

Notice that the infinite series defining each coefficient Aj.tc- through (4B.4) is

"rLKerflrK-l-1. Therefore, the following claim is relevant.
CLAIM 4B.1. Through (4B.2), define a nonlinear map" {ldk}k%K-’){er[rK--l--1}rCK

that we view from lo- ll. Then this map is continuous.
In fact, by simply comparing (4B.2) and (4A.6) (i) in Appendix 4A, with Yr

defined by (4A.6) (ii), we see that

(Fv)r
er K-1

Hk=l (1- flr/fl,)

Proof. It suffices to consider the case 1. Here we get

(4B.6) flrK-2er.(FV)r/flrVr[ffs]r= o( Vr )/----- r +2/u as r - o0,

by (1.10’) and also (4.21). Thus, the desired claim follows from (4B.6). We conclude
that" the map v {v}=:Ai,K-I is continuous from l R 1.

We next want to show that when the l-norm of v is sufficiently small, the system
(4B.5) does admit a negative solution. To establish this, we make use of an observation
plus a continuity argument.

The observation is that, when

(4B.7) ck =/3, k K, K + 1, .,
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When a solution of distinct roots for the system (4B.5) is given by

df

(4B.8) ai [i Ci < O, 1, , K 1,

with the ci < 0 coming from Lemma 2.1 (see (4.15)). In fact, under assumption (4B.7),
it follows from (4B.2) that

er=O, r=K,K+I,. .,
and hence from the right-hand side of (4B.3) we deduce that system (4B.5) reduces to

(4B.9) ei 1 0, 1, ., K 1.
k=l

In other words, Ai,K-I 0 in this case (see (4B.5)).
Referring to (4.15), however, since

ci =/3i ak(-----/3k), i=I,’’’,K-1, k=K,K+I,’",

it follows from (4B.2) that ei 0, 1,... ,K-1. Hence, the desired conclusion
(4B.8) is a consequence of (4B.9). This proves the observation.

For convenience of language, we shall call the situation under assumption (4B.7)
the original situation. We now use a continuity argument. First, we argue that the
roots of a multilinear system like (4B.6) depend continuously on the real coefficients
of the system. Second, we argue that these coefficients, as shown above, depend
continuously on the sequence {vk}_- l. Therefore, if the vector v is sufficiently
small in the/-norm, the new coefficients Ai.:-t are a slight perturbation of the original
ones. Since the roots of the original situation (4B.9) are distinct and negative, as
described in (4B.8), so will the new roots {c}/_-q be.

Thus the map G (needed in Appendix 4A), {v}={ai}ff=] defined from
l Rc-a is continuous. 7]
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NESTED BASES OF INVARIANTS FOR MINIMAL REALIZATIONS OF
FINITE MATRIX SEQUENCES*

YUVAL BISTRITZ+

Abstract. The problem of finding minimal realizations of linear constant systems from finite order
input-output Markov matrix sequences is considered. The paper identifies from the sequences sets of
independent structural and numerical quantities which are invariants of equivalent state space representa-
tions and completely characterize any minimal realization of the sequence. These sets, termed bases of
invariants, acquire a "nesting" property by which a subsequent basis of a higher order finite sequence is
obtained from the previous basis by addition of some new invariants. Two canonical state space representa-
tions of special forms that reflect the input and output structural properties of the underlying systems are
presented and readily derived from these bases by a simple algorithm which is provided. Necessary and
sufficient conditions for the existence of a unique minimal partial realization to a given finite Markov
sequence are given in terms of the invariants of its nested basis. The set of all minimal partial realizations

Sr that, in the case of existence of more than one solution, corresponds to many distinct systems, is
thoroughly investigated. A minimal set of undetermined quantities that parametrize Sr is obtained. These
parameters are used to characterize Sr either in the form of bases of invariants or in the form of the
canonical representations, and it is also shown that an arbitrary assignment of values to these parameters
leads to a minimal realization of the given finite sequence. Additional properties of these parameters that
may be desirable in certain identification problems are also discussed.

Key words, minimal partial realization, system invariants, canonical forms

1. Introduction. The problem of minimal realization of a finite sequence of
Markov matrices of a multivariable linear constant system has been considered by
various authors [1]-[8]. The early results of Kalman and Tether [1]-[3] showed that
a minimal realization, or equivalently, a minimal extension sequence for a finite
Markov sequence, always exists but may not be unique. Necessary and sufficient
conditions on the incomplete Hankel matrix for the existence of a unique extension
sequence as well as the derivation of a corresponding realization have also been
described in these papers. The approach of Dickinson, Kailath and Morf in 1-4] is
different in that they derive a matrix fraction representation by direct operation on
the matrices of the sequence. References [5]-[8] also consider the incomplete Hankel
matrix. Roman and Bullock [7] represent an invariant approach to the problem which
is further developed by Candy, Warren and Bullock in [8] by deriving the partial
realization from a set of Popov invariants [9].

The present paper provides a comprehensive treatment of the minimal partial
realization (m.p.r.) problem of a finite sequence of r Markov matrices, using an
invariant description. It puts a special emphasis on the common situation where a
unique solution to the problem does not exist. It obtains a characterization of the set

Sr of all partial realizations of minimal dimension nr for the sequence of r Markov
matrices.

We show the existence of bases of invariants [10] for the description of equivalent
classes of m.p.r.’s which have the property that a basis for a Markov sequence of a
subsequent order is obtained from the basis of the former order by the addition of a
few new invariants without altering the previous set of invariants. A basis acquiring
this property is termed a nested basis. The nested bases are constructed from a set
of entries of specified locations in the Markov sequence that were recently suggested

* Received on January 14, 1981 revised on April 20, 1982.
5- School of Engineering, Tel-Aviv University, Tel-Aviv, Israel.
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by Bosgra and Van der Weiden [11] and from a modified set of integer invariants
that describe the structure of the underlying system. An important feature of the
present approach is that the invariants that compose these bases are not dependent
on the choice of some specific canonical representation. This differs from the system
descriptions by canonical invariants suggested by Popov and refined and studied by
Rissanen [10] and Denham [12]. Instead of the nonuniform descriptions of the set of
all m.p.r.’s obtained by methods which adopt canonical invariants [7], [8], we obtain
an intrinsic set of parameters r which completely characterizes S,r. By applying
additional properties of the nested bases of invariants, it is also shown that ,r is a
minimal set of independent parameters for a complete characterization of S,r and
that the mapping from the set of equivalent realizations in S, to is one-to-one
and onto.

Descriptions for m.p.r.’s other than the nested bases are also presented. In fact,
any equivalent canonical representation can be derived from a nested basis. Two
canonical state space representations of a special form that reflects the input and
output invariant structure of the underlying system are presented and a simple
algorithm for their derivation from a nested basis is provided. The two canonical
forms tie together, in the special case of an infinite order Markov sequence, the
realizations of Rissanen [10] and Silverman [14]. They also supply a simplified
algorithm for the derivation of the invariants of Rissanen and provide a system
invariant description for the realizations of Silverman.

It is desirable in general, to have a system description by a minimal set of
parameters [9], [11], [5] and [7]. This is advantageous, for example, in solving the
problem of system identification from statistical data which is possibly the most
important practical implication of the present study. The stochastic interpretation of
a deterministic partial realization is discussed by Akaike 15]. The problem of selection
of free parameters for the description of all possible minimal realizations of a finite
Markov sequence, which Ledwich and Fortman [6] recognized as a difficult one, is
solved by the above-mentioned set . The set is not only a minimal set of
independent parameters but is composed of entries of specified locations of the
input-output data, which become available in further measurements.

The paper is written in continuous-time formulation but all the results apply also
to discrete-time systems with some obvious redefinition of concepts. Section 2 contains
the necessary definitions for the representation of the results, including the definition
of a nested basis of system invariants. Section 3 represents bases of system invariants
and suggests the above two canonical representations. Section 4 deals with the partial
realization problem. The background of 2 and 3 is used to derive nested bases of
invariants for the descriptions of m.p.r.’s. The existence of a unique m.p.r, can be
tested by its invariants. In the case where there exists more than one solution, the set
of all m.p.r.’s is described by nested bases of invariants. These bases are expressed
in terms of the minimal set of independent parameters . The m.p.r.’s can also be
presented in the canonical forms described in 3. These results are illustrated by a
demonstrative example taken from [2]. This example appears also in [5], [7], [8] and
allows a convenient comparison with former results.

2. System invariants of equivalent realizations. Let En (A, B, C) denote the set
of all matrix triples A,B, C, ARnn, BR"’, CR" with (A,B) controllable
and (A, C) observable. The elements (A, B, C) E, are state space representations
of a linear system and each defines a transfer function matrix

(2.1) G(s)=C(sI-A)-IB.
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The transfer function matrix can be expressed in a Laurent series about infinity

(2.2) G(s) Gls -1 + G2s -2 +.. ,
where Gi R" are called the Markov matrices of the system represented by (A, B, C)
and are related to the representation by

(2.3) Gi CAi-IB, 1, 2,

Let En denote the equivalence of state space coordinate transformations, defined on
elements of Zn, (A, B, C), (,/, ) e Zn, by

(2.4) (A, B, C)E, (A,/, d) CAi-XB (A’-x/, 1, 2,....

The relation E, partitions En into equivalence classes

(2.5)

The set of all such equivalence classes is called the quotient set and is denoted by
E,/E,. Given an infinite sequence of Markov matrices Gi, 1, 2, , a representation
(A, B, C) E, is called a minimal realization if (2.3) is satisfied. Given a finite sequence
of only r Markov matrices {G, G2, , Gr} the representation (A, B, C) is called an
rth order partial realization if

(2.6) CAi-lB Gi, 1, 2, , r

and it is called a minimal partial realization (m.p.r.) of r if n is the minimal dimension
of a system which satisfies (2.6).

An rth order m.p.r, is said to be unique if there exists only one infinite extension
sequence Gr/i, 1, 2,... such that a m.p.r, is also a (.complete) minimal realization
of the infinite sequence {G1, G2,"" ", G,., Gr+l, Gr+2," "}. If it is not unique, other
triples of matrices exist that also minimally realize the rth order sequence but determine
different extension sequences.

Let S, be the set of all representations of m.p.r.’s of {Ga, G2," ", Gr}

(2.7) S={(A,B,C) CAi-IB=G,,i=I, .,r,E,,(A,B,C)cEn}.
The m.p.r, of {G, G2, ’, G} is called unique if S consists of a single equivalence
class. If it is not unique, the equivalence relation En partitions S, into distinct classes
that represent different systems whose first r Markov matrices are {Ga, G2," , Gr}.
The set of all these classes is denoted by S/E,, and is a subset of Z,/E,. The set of
all m.p.r.’s S, is discussed in 4, the main section of this paper. The characterization
and derivation of S uses system invariant descriptions and canonical representations.
The required concepts are defined below and elaborated in 3. Many of the following
definitions can be found elsewhere [16], [10]-[12].

DEFINITION 2.1. An invariant of the equivalence relation E, is a function f" Z,
R for which (A, B, C)En(, t, ) implies f(A, B, C)=f(, 1, ’).

DEFINITION 2.2. An invariant f’E,R is a complete invariant of En if
f(A, B, C)= f(/[, 1i, )implies (A, B, C)E,(, J, ’).

A set of invariants ,..., fN is called complete if Definition 2.2 is satisfied for
F (/1, ", fN)’., R N.

DEFINITION 2.3. The set of invariants fi’Z,-R 1,... ,N is said to be
independent if the complement of the range of F (’1,""", fN) in its codomain is a
finite union of sets V;
(2.8) Vi={x[xeRN, Pi(x)=O,f=I, , L; finite L},
where Pii are polynomials.
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Definition 2.3 implies that F is surjective on its codomain except possibly on a
subset of "measure zero" and that no fi can be expressed as a function of any f., f i.
This definition is a refinement due to [10] of the definition in [9] for independence
of invariants. A complete set of invariants for the equivalence relation E, of (2.4)
may be divided into two sets F (F; F) whereF is a set of integers called arithmetic
invariants that correspond to the structure of En (A, B, C) and F is a complementary
set of numerical values called algebraic invariants for the description of E, (A, B, C)
11], 10]. We adopt the term basis of invariants 10] for the following intuitive notion
of a complete set of independent invariants.

DEFINITION 2.4. A set of invariants F is called a basis of invariants for the
equivalence class E, (A, B, C) ifF (F; F) is complete, the set of arithmetic invariants
F =(o’1,"’, trN1) is surjective and the complementary set of algebraic invariants
F, (a 1, ", as) is independent.

A subset Z, is called a canonical form if for each (A, B, C) 6 Z, there exists
one and only one (Ac, B, C)6 Ec for which (A, B, C)E,,(A,B, Cc). A canonical
representation induces a (trivial) complete set of invariants for En (A, B, C) simply by
Fc (A, B, C) (A, B, C) with the arithmetic and algebraic invariants being the loca-
tion and content, respectively, of the entries of the matrices A, Bc, C. It is well
understood that such a set is not in general a basis because the entries in the canonical
representation satisfy certain constraints (e.g., minimal dimensionality) by which they
are dependent. However subsets of independent invariants can be extracted from
(Ac, Bc, Cc) and a complete set of independent invariants determined [7], [8], [10].
We call a basis of invariants whose algebraic invariants are a subset of entries of a
canonical representation a canonical basis. Two canonical bases are presented in 3
of this paper where a different type of basis is introduced. The new basis of invariants
does not depend on any specific canonical form and it is shown later to acquire the
additional "nesting" property which is defined below. Nested bases of invariants play
a major role in our forthcoming investigation of the set of all minimal partial realiz-
ations. Let Gi Rm 1, 2,... be a sequence of matrices and let S be the set of
all rth order partial realizations of minimal dimension nr (2.7). Let F (Fr F) be
a basis of invariants for E, (A, B, C) where (A, B, C) S,.

DEFINITION 2.5. The basis Fr= (F;F) of E, (A, B, C) is said to be a nested
basis of invariants if for/" <r there exist subsets F cFr and F cFr such that
F= (F" F) is a basis of invariants for some equivalence class in S (n. < n) the
set of all m.p.r.’s of the/’th order sequence of the same Markov matrices (/- r-1,
r-2, .>-m,l).

Nested bases of invariants can be considered as a natural elaboration on concepts
of the previous system invariants for the descriptions of partial realizations. Subsets
of nested bases of invariants form bases of invariants for lower order m.p.r.’s in a
manner reminiscent of that by which subspaces of projections of linear spaces are
spanned by subsets of their bases. Thus, the nested bases add, to the previous notion
of independence and completeness of the bases of invariants, an additional notion of
familiarity with bases in linear algebra. These bases provide a useful tool for the
investigation of the partial realization problem and also have important consequences
for efficient sequential realization algorithms of partial realizations of successive orders.

3. Bases of invariants and canonical forms for minimal realizations. Consider
the infinite sequence of Markov matrices G, 1, 2, , and define the infinite Hankl
block matrix H whose (i, j) block is Gi+.-1. Denote by H,. the finite submatrix of the
first block rows and / block columns of H. It is well known that if the infinite Markov
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sequence has a minimal realization (A, B, C) Zn than this realization is completely
determined by a submatrix Hi,j not larger than Hn, where n is the rank of H [1],
[14]. The matrix H,.n satisfies

G Gz G, C

(3.1) Hn, G2 CA
[B AB A 1B HcHB,

where Hc and HB are the observability and controllability matrices for (A, B, C) e En.
The row and column dependencies of Hn,n are equivalent to row dependencies of Hc
and the column dependencies of HB, respectively.

Let In {il, , in} andJn {]x, , ]n} denote the indices of the first independent
rows and columns of H or Hn, A selection of rows In and columns Jn is called a nice
selection [12] if they satisfy

(3.2) l<ikeI-’>ik--leI, m<ikeJn"*jk--meJn.

The choice of the first n independent rows and columns is recognized as a nice selection
by the decomposition of Hn, in (3.1) into Hc and H. The sets of integers In and Jn
thus defined on H are invariants of the equivalence relation En. They are closely
related to the observability and controllability indices

(3.3) v {b’l," ", b’l} and

of the underlying system. The observability index ui u is the highest integer k for
which the row cAk (ci is the ith row of C) still appears in the selection of rows In
in Ho Similarly, the controllability index/x. tz is the highest integer k for which
column Ak-lbi (bi is the fth column of B) is in the selection of columns Jn in H. It
is therefore obvious from the decomposition of Hn, in (3.1) that u and tx are related
to In and Jn by

L <’->l, 12i #In/i,
(3.4)

Jn /x, /x. Yn/], ] m,

where #S denotes the number of elements in the set $, n ={1, 2,. , n} and In/i and
Jn/] denote the subsets of the arithmetic series {i, i+l, i+2l,...} and {],]+m,
] + 2m, } that are included in the sets In and J,, respectively. The relation between
the sets In and J, and the sets u and tx is bijective and an alternative way to derive
them is to use the crate diagram [11], [17], [18]. Assume for example that J6
{1, 2, 3, 4, 5, 7} and m 2 then J6/1 {1, 3, 5, 7} z 4 and J6/2 {2, 4} x: 2
and therefore/x {4, 2}. The integers/3 and a defined on u and z by

max/i, O max
il ]m

are the first integers for which the realizability condition, n =oH,, =pHo+I,,
oHt,,+l, is satisfied [14]. The submatrices of H in the following definition are uniquely
determined by In and Jn and can be recognized as the submatrices defined also by
Silverman for his realization algorithm [14].

DEFNIWOY 3.1. The following submatrices of the Hankel matrix H are defined
for the sets In and

O" The nonsingular n x n matrix formed from Ho. by the intersection of the
columns Jn and the rows In.



NESTED BASES OF INVARIANTS 809

A" The n x n matrix whose entries in He,+l are positioned m columns to the
right of the positions of corresponding entries of O.

/" The n x m matrix formed from He, by the intersection of the columns m
with the rows

(" The x n matrix formed from He, by the intersection of the rows with the
columns

Remark 3.1. is equivalently formed by the n x n matrix whose entries in He+1,

are positioned rows below the position of corresponding entries of O.
Remark 3.2. The columns Jn of [B, A] and the rows In of [], each separately,

form O.
Remark 3.3. The matrix triple (O-1,/, O-1) is a realization of the infinite

sequence Gi, i= 1, 2,... [14].
The first two remarks result from the special structure of the Hankel matrix. The

triple of matrices (,/, ’) involves the following collection of n (m + l) entries of the
infinite Markov sequence 11]

(3.6) c {gii,]k 1, 2,. ., u +/x., 61,/" m},

where giit (Gt)ii. It follows from [11] and the bijective relation between In, Jn and
u and tz that In, Jn and define a complete set of independent invariants in the sense
of Definitions 2.3 and 2.4.

THEOIZM 3.1. =(In, Jn; ) is a basis of invariants ]or E,(A,B, C), the
equivalence class o1 minimal realizations o] the infinite Markov sequence Gg,
1, 2, , with In, Jn the sets o] arithmetic invariants and c the associated set o] algebraic
invariants.

The basis deserves the name of Markov basis to indicate that its set of algebraic
invariants are entries of the Markov matrices. This is in contrast to the canonical
invariants and bases of [9], [10], in which the algebraic invariants form entries of the
canonical representations. It must be noted that other bases whose algebraic invariants
are Markov entries may be defined in association with nice selections other than the
choice In, Jn of first independent rows and columns [11]. The advantage of the above
basis over these other bases for the partial realization problem will be clarified in
the next section.

Example 3.1. We shall illustrate the Markov basis for the following Markov
sequence

11

The Hankel matrix is then

1 1 1 2 3 5
1 1 1 4 7 9
1 2 3 5 7 6
1 4 7 9 11 4

The rank of H is n 3 and the first independent rows and columns are [3 -{1, 2, 3}
and J3 {1, 2, 4}. m systematic elimination procedure to determine these values will
be described later. Thus the observability and controllability indices are , {2, 1} and
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{t, 2} and the Hankel submatrices of Definition 3.1 are

1 2 1 2 5 1 1

O 1 4 X= 4 9 /= 1 d= 1 1

2 5 5 6 1
1 1

The set of algebraic invariants of (3.6) consists of the encircled entries in (3.7). In
the rest of this section we shall present two canonical forms and bases of invariants
of a special structure and derive them from the triple of matrices (A,/, ’) associated
with .

THEOREM 3.2. Given the Markov basis YJ (I,, J,;) for the equivalence class
E, (A, B, C) of minimal realization of Gi, 1, 2,..., two possible canonical realiz-
ations and two corresponding canonical bases of invariants for E,(A, B, C) are the
following:

1 a) The realization (A a, tt a, Ca) E (A, t3, C) where

(3.8) A o-l, B1 Q-l/j, C1 -.
lb) The columns J are the first independent columns of the controllable pair

[Ba, A 1] and they form the n n identity matrix. The entries in the remaining m columns
of [B1, Aa], denoted by Sa, form part of the corresponding canonical basis defined
below.

lc) The canonical basis of invariants for (A a, B a, C1) is a (J, 1) where

(3.9) Se {C,} U SI
Se {Ca} denotes the set of entries in Ca and Sl is defined in statement (lb).

2a) The realization (A 2, B2, C2) E, (A, B, C) where

(3.10) A
C22b) The rows I are the first independent rows of the observable pair [A:] and they
Czform the n x n identity matrix. The set of entries in the remaining rows of [A], denoted

by $2, form part of the corresponding canonical basis 3 defined below.
2c) The canonical basis of invariants for (A 2, B2, C2) is 2 (/,; ) where

(3.11) 2 Se {Be} U $2.

Se {B2} denotes the set of entries of B2, and $2 is defined in statement (2b).
Proof. See Appendix 1.
The two canonical formsand their corresponding canonical bases of invariants

may be derived without explicit calculations involving the matrix O. To achieve this
purpose we define the following restricted elimination procedure.

DEFINITION 3.2. A row (column) reserving elimination operation represented by
the matrix T] of size p xp (T of size q xq), is defined as a restricted Gaussian
elimination procedure that acts only on the rows (columns) of some matrix M of rank
n and size p x q p, q _>-n. The action of T] (Tz) is to change the first n independent
rows (columns) of T]M (MT2) to unity column (row) vectors without interchanging
row (column) positions.

Note that T] brings the first n columns of TIM to n unity vectors that may form
a nonordered arbitrary selection of n columns of the p x p identity matrix. The
procedure that changes the first n independent columns of M to n ordered unity
vectors will be called a complete row elimination and is denoted by Ta. Ta combines
the action of T] followed by a proper row interchange procedure. Similarly for the
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dual case we shall denote by Te the complete column elimination procedure that
changes the first n independent rows of M to the ordered sequence of unity row
vectors of the q x q identity matrix.

Note that Q-1 in (3.8) and (3.10) stands for the operations of T1 and Te,
respectively, so that the canonical forms can be derived from (d,/, ) by a complete
elimination procedure without finding Q-1 explicitly. Definition 3.2 suggests the
following even more simple algorithm.

ALOORITHM 3.1
1. To obtain (A , B, C)
(i) C d;

(ii) T [/, A [/, 1] where/ e R "x,, fi R xn are intermediate matrices
resulting from the implicit action of the row reserving operation T of Definition 3.2;

(iii) [B, A] P[/, d] where P is a permutation of the n x n identity matrix
formed by columns J, of [/, .,{ 1]. Columns J, are identified at stage (ii) as the pivotal
columns of the action of T.

2. To obtain (Aa, Be, Ce)
(i) B2 B

(ii) T;
2

where T; is the column reserving elimination of Definition 3.2 and e R,
R" are the intermediate results of its action;

(iii) [AC] [AC]Pt,

where the permutation P is the matrix formed by rows I of [] which are the pivotal
rows revealed at stage (ii).

Any canonical representation can be derived from its Markov basis of invariants.
The two canonical forms of Theorem 3.2 have been chosen as suitable forms for
system invariant descriptions in having a structure that reflects the output or the input
structural properties of the system and as forms that are easily derived from the basis.
The derivation of the canonical bases of invariants 1 and 2 shows the connection
between the Markov sets of invariants and previous descriptions of canonical
invariants. The significance of canonical forms that reflect some of the invariant
properties has been recognized in [10] and more recently in [11]. In fact the second
canonical form and canonical basis of Theorem 3.2, derived here from the Markov
basis, are identical to the results of Rissanen which are derived in [10] directly from
the Hankel matrix. The first canonical form also coincides with a realization obtained
by the Silverman procedure [14]. Silverman has not considered the invariant structure
of the pair [B1, A 1] or any related invariant aspect of his realization. The main reason
for stating Theorem 3.2 and subsequent algorithms is to provide for the next section
alternative equivalent descriptions for the solution of the minimal partial realization
problem other than the nested bases. However, these results are also significant for
the previous invariant descriptions and derivation of complete minimal realizations.
They show that the realization obtained by Rissanen [10] is a dual form of the earlier
realization derived by Silverman 14]. These results also supply a simplified elimination
procedure for the derivation of the invariants of Rissanen and provide a system
invariant description framework for the realization of Silverman.
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Example 3.2. We illustrate Theorem 3.2 and the subsequent algorithm by con-
tinuation of Example 3.1. To derive from ft.,/}, , the first canonical form we follow
Algorithm 3.1 to obtain"

(i) C1==[1 1 24]1 1

(ii) Perform reserving row elimination on [/}, ]

1 1 4 - 0 0 2 --, 0 0 1

1113 5 1 2 3 2 0

-, 01 0

11 2 0

where the squared entries indicate th.e pi.votal element at each step.
(iii) Rearranging the rows of [B1, A 1] to obtain the identity matrix at columns

J3 --{1, 2, 4} or equivalently extracting P from these columns and performing the row
changes by premultiplication by pt results in

0 --) Pt[i 1, .,z 1]
1 0

2 0 =[B1, A1],
0 1

note that columns J3 {1, 2, 4} of [B1, A 1] form the identity matrix. The first canonical
form is therefore

A1 2 0 B= C=
1

0 1
1

The basis is I (J3; (41) where 1 is formed by the set of entries of C1 and of columns
1 and 3 orAl.

Using the second part of Algorithm 3.1, the dual canonical form (A2, B2, C2) is

[]! 0 ] [I !]A== -1 B2 1 C2
-3 1

0 1

The corresponding canonical basis is I2 --(I3; c2) where 2 is formed by the entries
of B2 and of rows 2 and 3 of A2.

4. Nested bases of invariants and minimal partial realizations. Given a finite
sequence of r Markov matrices {G1," ’’, Gr}. We construct the Hankel matrix

(4.1) H’

-G1

r+l

G2 Gr G*r+l
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where {G* *r/l, Gr/2,"" ’} represents some unknown complementary sequence. This
matrix is closely related to the incomplete Hankel matrix used by Tether [2] with the
slight difference that we explicitly write entries (G)0 gij* for k > r instead of the
common asterisks put, in [2] and [7], [8], in all the locations of the unknown data.
This modification proves to be powerful if the following "asterisk convention" is
adopted: (i) Asterisked entries gk and their combinations are carried along in any
submatrix of H and any operation on such submatrices. (ii) Asterisked entries of
matrices are assumed not to influence the internal dependencies between the rows
and columns that are determined by the numerically specified entries. Consequently
the indices of the first independent rows and columns and the rank of the matrix are
not changed by any specific choice of values for the asterisked entries. The rank of a
matrix that contains asterisked entries is by this convention the minimal rank that is
admissible by its numerically specified parts.

Following the above convention, let nr be the rank of H and denote the indices
of the first nr independent rows and columns of H by I7, and jr,, respectively. Thus,
i jr, (,) are the first r/r rows (columns) in H which, considering for each row (column)
only columns (rows) that correspond to its numerically specified positions, do not
depend linearly on preceding rows (columns).

Let/r denote the smallest integer for which every row of the block row/r + 1 of
H (i.e., [Gt3r+l, G3r+2, ]) depends on the previous rows and similarly let ar denote
the smallest integer for which every column of the block column ar + 1 depends on
the preceding columns. We have the following important result on the existence of
m.p.r.’s [2], [3].

THEOREM 4.1. Given the finite sequence {Gx,. , Gr}: (1) There exists an
extension sequence {G+I, Gr+2,’’ "} for which nr is the dimension of the minimal
realization of the infinite sequence G, 1, 2.... This realization is not, in general
unique. (2) Every extension fixed up to ro ar +r is uniquely determined thereafter.

The invariants description approach developed and discussed in this section will
provide an alternative verification of this well known theorem. The theorem indicates
that values for the g/k exist for which the structure of the Hankel matrix as well as
the row and column dependencies are retained. Later we shall be able to specify the
required g/k values and construct the minimal extension sequences. Let G, 1, 2,
be the infinite Markov sequence associated with some equivalence class in E, and let

(I, J;) be its Markov basis described in Theorem 3.1. The next theorem
establishes as a nested basis of invariants (Definition 2.5).

THEOREM 4.2. Let {Gl, G2,’’ ", Gr} be an rth order subsequence of the infinite
sequence Gi, 1, 2,... whose Markov basis is (I,,J,; ). Let also nr =pH
where H is the incomplete Hankel matrix associated with the finite subsequence.
There exist subsets ofI I,, jr, J, and a subset q of n(m + l) elements of fr q
such that r (I,J; r) forms a Markov basis for a m.p.r, of {G,..., Gr} of
dimension n.

PrroOf. Let I and J be the indices of the first independent rows and columns
n xrn lnof H of (4.1). Let/ll. / r, Br R and Cr R be the submatrices of H of

(3.1) derived in association with I, and J, in accordance with Definition 3.1. Note
that the matrices ,/, r are derived from/-/of (3.1), not from H of (4.1), and
thus all their entries are specified and completely determined by I jr and the infiniter r
sequence G, 1, 2,. .. Clearly nr -< n and as the process of successive replacement
of asterisked entries in H by numerically specified entries Gr/, 1, 2,. may add
new independent rows and columns but cannot cancel former independencies, we
have I, c I, and jr c J. It therefore follows that the following algebraic set of
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invariants defined for I,, and jr
tit

(4.2) r {g,i k 1,. ., f, + fii, 1, j m},

where

jr(4.3) 1) :"I I l, [J :- nr/;

is a subset of c. Construct from (r,/r, -’r) a representation (,/, t) "r (using
Algorithm 3.1 say) clearly 3 (I, J,,; (gr) is a Markov basis for E,(A,B, C). The
Markov entries ti ,-1/ satisfy ti G for (at least) 1,. , r therefore 3r is a
Markov basis for a m.p.r, of {G1, Gr} where we have also shown that
J, and%c. 71

It follows from Theorem 4.2 and Definition 2.5 that all the bases 3r are nested
bases. The set of invariants r is either completely composed of entries that are
selected from {G, , Gr}, in which case r represents a basis for the unique m.p.r.
of the rth order sequence, or it contains also entries from {Gr+, Gr+2," ’}. In the
latter case r represents a basis of an equivalence class in S the one which is induced
by the higher order basis . In this case it is understood that other infinite Markov
sequences of minimal dimensions n*, n*_-> nr that have {G,..., Gr} for their first r
matrices may induce other sub-bases for equivalence classes in S.

The last observation leads to the following condition for the uniqueness of a m.p.r.
PROPOSITION 4.3. The sequence {G,. Gr} yields a unique m.p.r, if and only

jrif it acquires a Markov basis 3r (I, r) ]:or which the set (r, defined in (4.2), is
completely formed by entries of the sequence {Gl, , Gr}.

Define for Pi and/.Z, of (4.3)
(4.4) /r max =7i, ar max/2., uo (r t_ fir.ii

It follows from (4.1) that the condition expressed in Proposition 4.3 is satisfied if and
only if r0 r + Br--< r. It is easy to verify that r and /r of (4.4) are identical to the
integers in Theorem 4.1. This proposition therefore assures the uniqueness conditions
stated in Theorem 4.1.

We now proceed to investigate the case where {G,..., Gr} has more than one
m.p.r Assume that r <r0 and thus that the set S of all m.p.r.’s of {G,...r
consists of distinct equivalence classes to each of which there corresponds a different
extension sequence. Denote a general form of an infinite Markov sequence whose
first r Markov matrices are {G, , Gr} by

(4 5) {G1, G2, Gr, G* G*r+l r+2 }

where G* *Gr/2 are some unknown matrices The sequence (4.5) may have realiz-r+l

ations of any minimal dimension n*-> n,
Applying the derivation of the rth order Markov basis as in the proof of Theorem

4.2, to the sequence (4.5) and following the discussion that preceded this theorem
the Markov bases 3r* (I,r, J,r r*) are obtained where * may be divided into two
disjoint sets C.gr* Cr (.J r. The first set

(4.6) r {g, k 1,. ., min (/i - ..], r), s !, j s m}

with 7i and/2, as defined in (4.3) represents the specified invariants that form a selection
of entries of {G1, ", Gr} while the second set

(4.7) )r {giik k r + 1,..., +/2j > r, !, ] m}
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represents a complementary set of unspecified invariants that form a selection of
entries of the extension segment {G* *r/l G } of positions specified by I and JrO rtr /lr

It follows from the nested property of Markov bases (Theorem 4.2), that the above
set of bases r* represents the set of rth order sub-bases of any general sequence
(4.5). Therefore, any admissible extension sequence of dimension n is represented
by * for some suitable choice of values for . The set r is a complete set of
parameters {g*ijk} for S nr,r labelled by the locations of the required unspecified entries
in the extension sequence. Two m.p.r.’s of {G1, , G} that assign values to r and
are different even in one labelled parameter value represent different equivalence
classes in S The question now arises whether by arbitrarily assigning numericalrtrO

values to the set of parameters r, the resultant set of invariants {Ir,J r C} is
a basis of some m.p.r, of (G1, , Gr}, or in other words, whether the relation between
S/E and is also surjective (onto). Since the set of parameters r is taken from
locations in H whose specification cannot affect the rank condition n pH, we get
the following result:

PROPOSITION 4.4. There exists a one-to-one and onto (a bi]ective) relationship
between S/Enr, the set of equivalent classes in S, and the set of parameters .

It has been noted, in the paragraph following Theorem 3.1, that other bases
which correspond to nice selections of arithmetic invariants other than the choice of
the first set of independent rows and columns may be found. Choice of such bases
for the partial realization would lead to an algebraic set of invariants which would
contain both specified and unspecified invariants. It can be shown that though the
unspecified invariants form alternative candidates for the parametrization of the set

S and satisfy the one-to-one relationship of the last proposition, they do not satisfy
the onto relationship. The set r is the largest set of unspecified Markov entries to
which we may assign values independently and the smallest set of parameters for S
that covers all m.p.r.’s of order r. We restate and prove this claim as Proposition 4.5.

PROPOSITION 4.5. The set r is (i) an independent set, and equivalently, (ii) a
minimal set of parameters for the parametrization of the set of all minimal partial
realizations of {G1, Gr}.

Proof. See Appendix 2.
It is considered important in some fields of system theory, such as certain problems

of adaptive modelling identification to have a description of the set of all m.p.r.’s with
the least possible set of parameters. It follows from the last proposition that only
results in such a description. This useful complete invariant description of the set S
of all minimal partial realization is summarized by the following:

THEOREM 4.6. The set of all minimal partial realizations srr of a finite rth order
sequence is completely determined by the set of nested Markov bases *(I,jr, ;c t.J r) where and are defined in (4.6) and (4.7) respectively. )r is a

minimal set of independent parameters for S and the relation between the set of
equivalence classes in S and the set of parameters r, Sr/En- is one-to-one and
onto.

Remark 4.1. The number of parameters in r is determined by the arithmetic
invariants (implicitly via (4.7)).

Remark 4.2. The equivalence classes in 6’ have the following list of system
invariants in common" The arithmetic invariants I,, J, (and as a consequence, the
controllability and observability indices), the subset of the algebraic invariants d of
(4.6) and #, the minimal number of the above-mentioned parameters. These
equivalence classes in S differ only in the numerical values acquired by the set .
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Remark 4.3. In the special case where the m.p.r, of {G1, G2, Gr} is unique
the theorem implies the following: S reduces to a single equivalence class for which

I c) is the corresponding Markov basis and the minimal set of parameters,r-"( nr, Jnr, is empty.
The description of the minimal partial realizations need not be confined to nested

Markov bases of invariants. It has been mentioned in the preceding section that any
canonical representation can be derived from an ordinary Markov basis. In a similar
manner any canonical representation can be derived from r* for equivalent descrip-
tions of $’r" Let (fi-r,/, ) be the triple of matrices of Definition 3.1, derived from
H in association with. (irr, jr, cr LI r). The first and the second canonical forms
of Theorem 3.2, (AI, B, C), (A2, B2, C2)S, can be derived from (r,Jr, () by
using a method analogous to the method of 3,

(4.8)

and

[B,A]= TI[J; At] and C1-- Cr

(4.9) Be=B and
A2 r

where Ta and T2 represent, respectively, the row and the column elimination oper-
ations, of Algorithm 3.1. Bases of canonical invariants Y3* =(I,; *) and Y32"
(Jr ;2") can also be derived for these canonical representations in accordance with
Theorem 3.2. The difference between the m.p.r, canonical descriptions in the present
case and the minimal (complete) realization description by system invariants of 3
becomes significant in the case of r < r0. In this case, which corresponds to the existence
of more than one solution to the m.p.r, problem, the canonical representations as
well as their corresponding canonical bases of invariants contain undetermined entries
which are expressed by combinations of the minimal set of parameters .

Some other points of significance about the set that make it further useful in
certain problems of system identification are as follows. The set is formed by
assembling parameters in a form that can directly use further data that may be available
under excessive measurements. Furthermore, as the parameters {gk} in the set
are labelled by their position in the extending data set, r contains information that
indicates precisely which output-input pairs of relations (i,/’) require further explor-
ation and in what way can the model be completely specified.

Example 4.1. We shall illustrate the invariant description concepts presented
above for m.p.r.’s by deriving nested bases of invariants and canonical realizations
for sequences of order r 2, 3, 4 for the numerical example of Tether [2].

(4.10) GI’G2’Gs’G’*=[Io 10]’ 01430],[10171]’[322153]"
Fourth order m.p.r.’s for this example were also derived in [5]-[8]. Nested bases of
invariants are suggestive of recursive algorithms of realizations of sequences of success-
ive higher orders. Since an efficient algorithm of this kind requires details which were
not discussed in the present context, we shall derive invariant descriptions of m.p.r.’s
separately for each order. For the sake of brevity we shall derive realizations only in
the second canonical forms.
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(a) Fourth order sequence. Construct for r- 4, H4, the fourth order incomplete
Hankel matrix of (4.1)

10 7

1 1

4 3

(4.11)

10 7

22

22 15 g115

3 3 Ig215

15

g125

g225

10 7 22 15
113 31

[ 22 15 g115 g125

3 3 Ig215 g225

igl15 g125 gl16 g126

Ig215 g225 g216 g226

gl16 g126 g117 g127

g216 g226 g217 g227_

The squared entries in (4.11) represent the pivotal elements determined by the
numerically specified entries. (In a numerical example we may drop the asterisks used
to mark unspecified entries. These can be found, for example, by the row reserving
elimination operation (Definition 3.2). We observe that a m.p.r, of order r 4 is of
dimensionoH4 5. The first independent rows are I54 {1, 2, 3, 4, 6} thus tTi :{1, 3}
2, 72 #{2, 4, 6} 3 by which u4= {2, 3}. Similarly, the first independent columns are

4= {3 2} and a fourth order m.p.r, is determined by entriesJ5 {1, 2, 3, 4, 5} hence/x
of the first r0 3 + 3 6 Markov matrices. The set of Markov bases therefore consists
of I54, J54 as the arithmetic invariants and (4 [,..J 4 as the algebraic invariants, where
(4 and 4 are determined by (4.6) and (4.7), respectively, to be c4=
{(gxxk, g12k, g21k, g22k), k e 4} and 4 {g115, g215, g225, g216}. These invariants are sum-
marized in the upper part of Table 4.1 where the algebraic invariants appear as
encircled entries in the Markov matrices. Associated with the set of bases N4*
{I45, J54’ (4 I,..J 4} are the triple of matrices (,/J, d’) of Definition 3.1,

4 3 10 7 22 1 1
0 0 1 1 3 0 0

A" 0 7 22 15 g115 B 4 3
1 1 3 3 g215 0 0

13 3 g215 g225 g216 1

d=
000

from which the second canonical form (A2, B2, C2) can be obtained by Algorithm 3.1
resulting in BE J and

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

-2 a 3 0 0
0 0 0 0 1
b d 0 c -b+3_
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where a=g115-46, b=g215--gEES, c=gEEs--9, d=gE16--3gE5+6--(gE15--7) X
(g1259215+3). The corresponding canonical invariant basis is ’ =(I54; (2") where
ff* is formed by the entries of BE and of rows 3, 5 of AE.

(b) Third order sequence" {Ga, GE, G3}. The three upper-block diagonals of (4.8)
reveal that H3, the incomplete Hankel matrix required for r 3, is characterized by
//3 4 and that the first four independent rows and columns of H3 are, respectively,

3I] {1, 2, 3, 4}- v
3 {2, 2} and Y] {1, 2, 3, 5}- Ix {3, 1} from which ro 5. The

set of Markov bases are 3" {I], J]; 3 U 3} where 3 and 3 are formed by the
encircled entries in the middle part of Table 4.1. The associated triple of matrices
(,/, ’) for these invariants are,

4 3 10 gl14"

0 0 1 g214

0 7 g114 gl15

1 1 g214 g215_

1 1

c=000

The second canonical form (A2, B2, C2) is readily obtained from these matrices by
Algorithm 3.1; BE B and

1 0 0 0-
0 1 0 0
0 0 1 0
0 0 0 1

-2 c 3 a

1 d 0 b

where a g114-22, b g214-4, c =g115-3914-g214(glx4-20)+20, d
g215-g214(g214-4)-10. The corresponding canonical invariant bases are Y3’
(I43; ff) where ff is composed of the entries of B2 and of rows 3, 4 of A2.

(c) Second order sequence {G, G2}. Repetition of the above procedure for r 2
2 {2,0}, JE={1 2}- 2={1, 1}, by which ro =3 The setyields n2 2 I22={1, 3} v 2 /x

of Markov bases are Y3: {I,J; 2 U2} where c2 and 2 respectively are formed
by the specified and the unspecified encircled entries in the r0 3 Markov matrices
in the lower part of Table 4.1. From the associated triple of matrices (,/, t),

=[ 4 3 ], /=[] 1] C=" [10 ]gl13 g123 3’

the following realization in the second form is found

[0 1] [14 ] [1 10]A2 B2 CE
a b 0

where a --4gl13-39123, b gl13-g123 and the corresponding canonical set of bases
are (I22; fiE*) with fiE* containing the entries of B2 and the second column of AE.

Table 4.1 summarizes the invariants of the realizations of orders r =4, 3, 2 and
exhibits their nested property. Our results can be compared for the r- 4 case, with
the previous realizations in [2], [5]-[8]. Tether [2] suggests a minimal extension
segment {G+I, , Go} ={Gs, G6} that contains only two free parameters which in
comparison with our results corresponds to two unnecessary constraints on 4, namely
g15 =46, g21 g225. The realization in [5] identifies only three free parameters for
$44 and has other weaknesses discussed in [6]. The authors in [7] and [8] correctly
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TABLE 4.1
Nested bases of invariants for 2, 3, 4 realization of (4.10).

r=4, /14=5, I ={1, 2, 3,4, 6}, J ={1, 2, 3,4, 5}, ro=6

I g125 Fgll6 g1261(I’G2’G3’G4’G’’G’--[)) ]’[ ]’[? ]’ [@( ?]’ 1’ LG g226J

4 {g115, g215, g225, g216}

r=3, n3=4, I] ={1, 2, 3,4}cI, J] ={1,2, 3, 5}cJ, ro=5

g1241’ g1251
i3--{gl14, g214, gllS, g215}

r=2, n2=2, I={1,3}cI], J ={1,2}cJ], ro=3

2 {gl13, g123}

identify four independent parameters. Their descriptions use Popov type system
invariants [9] and the representation is admitted in [7] to be nonunique. The realization
there is into arbitrary Luenberger forms [13] by which the unity vectors in [ac] or
[B, A] appear in arbitrary order and in positions that are not related to the system
output or input structure. The computation in [7] requires solutions of sets of linear
equations and the elimination procedure in [8] requires an auxiliary matrix. By
comparison with these former invariant description approaches to m.p.r, our method
is also advantageous computationally.

5. Conclusions. This paper studies the minimal partial realization (m.p.r.) prob-
lem using system invariant descriptions. The concept of nested bases of invariants is
introduced and these bases are derived from entries in specified positions of the
Markov sequences. These bases form invariant descriptions for m.p.r.’s which, in
contrast to previous approaches, do not depend on any particular choice of a canonical
representation. The existence of a unique solution to the m.p.r, problem can be tested
on these invariants and when more than one solution exists the set of all m.p.r.’s for
the given finite sequence can be expressed as a set of bases that contains a subset of
undetermined invariants. The nesting property of these bases is used to prove that
this set of undetermined invariants forms a minimal set of independent parameters
that covers all possible m.p.r.’s of the sequence and that for any arbitrarily assigned
values of these parameters there corresponds some admissible solution.

Two canonical state space representations have been suggested and an efficient
algorithm for their derivation from the nested bases is provided. These canonical
forms reflect the structural properties of the underlying system and also compare
favorably in their numerical aspects with previous approaches to m.p.r.’s.

Any other canonical representation can alternatively be derived from these bases,
and the solution to the m.p.r, problem can be expressed by combinations of the
minimal set of parameters obtained. The complete freedom in assigning values to
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these parameters may be used to search for further properties of the constructed
models. (e.g., to ask for stable models). These parameters form entries of specific
positions in the unknown extension sequence of the Markov matrices which may be
of importance in certain identification problems. The formulation may also be advan-
tageous in building adaptive real time identification models from input-output data.
In this latter case an estimated state space model can be continuously updated by
measuring only specific locations in the input-output map prescribed by the basis of
invariants (where the model may be taken to be valid so long as the arithmetic
invariants remain unchanged).

An obvious property of the suggested nested bases of invariants which has not
been put to use in the present context is that these bases are ideal for recursive m.p.r.
algorithms for sequences of Markov matrices of successive orders. This stems from
the projective property of nested bases, i.e., they present sub-bases not only for all
possible minimal extension sequences but also for arbitrary extension sequences of
higher dimensions. Such a sequential algorithm, whose detailed numerical aspects
have yet to be developed, will have the following features. The dimension of a
realization of a sequence of a given length need not be known in advance. Subsequent
order realizations require the calculation of only a few new invariants which add to
the former set of invariants to form the new basis. The final important feature is that
at each stage either the unique m.p.r, or in the nonunique case, the set of all possible
m.p.r.’s are obtained and in the latter case these m.p.r.’s are described in terms of a
minimal set of parameters.

Appendix 1. Proof of Theorem 3.2. We shall prove only the first part of the
theorem, as the second part follows by an obvious dual reasoning. Statements (la)
and (lb) follow from Remarks 3.2 and 3.3. We have to show that 1 (In; 1) is a
basis of invariants. In represents the arithmetic invariants associated with the observa-
bility indices (3.4) of the underlying system. The elements of the set 1 are entries
in a canonical representation, thus they are canonical invariants. The set (In; 1) is
complete because it completely determines (A 1, B1, C1) via statements (la) and (lb).
The pair (B1, A1) is controllable by statement (lb) by which an arbitrary choice of
fin; 1) fails to give rise to a representation (A 1, B1, C1) -n if and only if it yields
an unobservable pair (A 1, C1). This condition is equivalent to p[] < n and it can be
expressed by suitable sets V/ of (2.8). Consequently the map 1 :En-->R "(’+) is
surjective except possibly on some hypersurfaces of "measure zero" in its codomain,
thus ffl is also an independent set of invariants in the sense of Definition 2.3.

Appendix 2. Proof of Proposition 4.5. Assume that r is not independent and
let r 1132 where 1 and 2 are subsets of independent and dependent para-
meters, respectively. Once has been arbitrarily assigned values the set2 is uniquely
determined in contrast to the surjective relationship between S,/Enr and r stated
in Proposition 4.4. Therefore all the parameters in can be assigned values indepen-
dently. Now we show the equivalence of (i) and (ii). For (ii)-> (i), a minimal set of
parameters has to be independent or else a smaller set can be extracted for the
parametrization of S,r. For the converse, (i)--> (ii), assume there exists another basis

* for S whose set of algebraic invariants r 1,3 is composed of a smaller set of
unspecified values 4 < :r. Then c [,j r could be expressed as a function of cr LI
which implies the contradiction that not all the parameters in can be assigned
values independently.
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IN MEMORIAM

This issue ofSIAMJournal on Control and Optimization is dedicated to Joseph P. LaSalle,
who died on July 7, 1983, at his home in Little Compton, Rhode Island. He had been ill for
several years. Joe’s pioneering work in control theory and differential equations has had tremen-
dous impact on both fields and his leadership in the scientific community is of lasting
importance.

SIAM and this journal in particular were fortunate recipients of his long-time support.
Joe initiated the idea that we publish this journal and served on our editorial board from its
beginning in 1963 until 1981. He was president ofSIAM in 1962-63 and a member of its board
of trustees from 1964 to 1967.

Joe was born on May 28, 1916, in State College, Pennsylvania, the son of Professor Leo
J. LaSalle and Aline Mistric LaSalle. At that time his father taught at Pennsylvania State Col-
lege. Four years later the family moved to Louisiana, where his father joined the faculty of
Louisiana State University.

Joe majored in political science for two years at Louisiana State University. During the
summer of 1935 he took courses in mathematics and logic because the dean ofthe Law School
recommended mathematics as a good prerequisite for the study of law. Mathematics quickly
became his major interest. In 1937 he graduated from Louisiana State University and then
went to the California Institute of Technology to begin his graduate studies in mathematics.
He was a Henry Laws Fellow at Cal Tech from 1939 until he received his Ph.D. in 1941 for
a dissertation, directed by A. D. Michal, on pseudo-normed spaces.

During World War II LaSalle devoted his energies to more applied areas. He obtained
his first academic appointment in 1942 as an instructor in the Department of Applied
Mathematics and Astronomy at the University of Texas. In 1943, he was an instructor at the
Radar School of the Massachusetts Institute of Technology. At Princeton in 1944, he served
with a group of mathematicians as a scientific advisor to the U.S. Army Office of the Chief
of Ordnance. From 1944 to 1946, he worked at Cornell with physicists on the design of a
magnetron for a naval communications system.

In 1946, LaSalle accepted an Assistant Professorship in the Mathematics Department of
the University of Notre Dame. He remained there until 1958, rising to the rank of professor
in 1956. While a visitor at Princeton (1947-48) he became interested in differential equations
through his association with Solomon Lefschetz. Here, also, he met Richard Bellman, and
they became close personal friends. LaSalle taught Bellman to play tennis; in return Bellman
taught LaSalle something about differential equations. This stimulated some of his early
research on nonlinear oscillations, an area in which he continued to make significant
contributions.

In 1958 LaSalle was invited by Lefschetz to join his research group on differential equa-
tions at the Research Institute for Advanced Studies (RIAS) in Baltimore. LaSalle’s research
on stability theory began with his collaboration with Lefschetz on what has become a classic
work on Liapunov’s direct method. It was here that he first published an extension of Liapunov
theory based on what we now call the "invariance principle?’

In 1964 LaSalle, Lefschetz and some ofthe members ofRIAS moved to Brown and formed,
within the Division of Applied Mathematics, what was to become the Lefschetz Center for
Dynamical Systems. LaSalle served as Director ofthe center from 1964 to 1980, and as Chair-
man of the Division of Applied Mathematics at Brown University from 1968 to 1973.

In 1964, Joe founded the Journal ofDifferential Equations, and served as Editor-in-Chief
until 1980. His high standards made this journal one ofthe most important in the field. LaSalle
also played important roles as an editor ofthe Journal ofMathematicalAnalysis andApplica-
tions, and the Springer Applied Mathematical Sciences Series.

vii
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Joe LaSalle’s early work in control theory dealt with the bang-bang principle, initially
a conjecture which he stated as follows: "Ifa control system is being operated from a limited
source of power and if one wishes to have the system change from one state to another in
minimum time, then this can be done by at all times utilizing properly all the power available."
It was typical of Joe to phrase mathematical ideas verbally whenever possible, rather than
to limit his audience via complicated symbolism.

The bang-bang principle was an accepted hypothesis in the important dissertation of
D. Bushaw (Princeton, 1952). LaSalle’s first published contribution to the problemappeared
in 1954 in a Bulletin of the American Mathematical Society abstract entitled "Study of the
basic principle underlying the bang-bang servo." Here he showed that if, for a special form
of a controlled, second order, nonlinear equation, there exists a unique bang-bang control
which is best of all bang-bang controls, then it is also best among all controls.

The proof of a generalized bang-bang principle eluded researchers for the next several
years. In conversation LaSalle confided that during the late 1950’s he finally had the basic
ideas ofa prooffor linear systems, albeit a complicated one. He discussed these with a young
Russian mathematician who informed him ofthe similarity with a 1940 paper by A. Liapunov
dealing with vector measures. Indeed, the Liapunov theorem on the range of a vector measure
provided an elegant method of obtaining the bang-bang principle for linear systems, which
was given in LaSalle’s celebrated paper "The Time Optimal Problem" (Contributions to Diff.
Eqs., 1959).

Here he showed that for an n-dimensional, time varying, linear control system having
an r-dimensional control vector taking admissible values in the closed unit cube of R the
set ofpoints attainable at any time t > 0 from a given initial point by utilizing all admissible
(measurable) controls equals the set attainable at time t utilizing controls taking values in
the set ofvertices ofthe cube (the bang-bang controls). In doing so, he included a characteriza-
tion ofthe form ofa time optimal control (i.e., the maximum principle for time optimal prob-
lems governed by linear systems).

He next introduced the notion of a proper linear control system, i.e., one in which time-
optimal controls are determined (except on set of zero measure) by the maximum principle.
(Today, proper systems would be generalized as systems which exclude singular arcs.) The
paper continues with "Think now ofremoving all ofthe constraints on the admissible control
functions, and consider any two states x and x2 and any two times t and t2. If for each pair
of states and pair of times there is a steering function such that starting at x, at time t, the
system is brought to the statex2 at time t2, then the system is said to be completely controllable?’
His next theorem shows proper control systems are completely controllable; this is followed
by the characterization that the autonomous n-dimensional, linear control system.=Ax+Bu
is proper if and only if rank [B, AB, An-lB] =n. One should reflect, for a moment, on the
influence that these ideas have had on the last twenty years of control theory!

LaSalle’s work focussed more on stability theory than on control. In 1962, his paper
"Stability and Control" appeared in the first issue of this journal. Here he considers an
n-dimensional control systemc=F(x,u) with F(0,0) =0, the problem being to find a feedback
control u=u(x) which "drives the system to zero?’ Restated, if F(x)=f(x,u(x)), then zero is
to be an asymptotically stable solution of.t=F(x). The concept of introducing a Liapunov
function Vand generating a suboptimal (or optimal if l/’is the actual cost function) feedback
control by choosing it to minimize I, appears here.

The number of LaSalle’s publications in control was small but the number ofbasic ideas
these papers contained was substantial, and the influence they have had on the development
of the theory during the last three decades has been monumental.

Although LaSalle’s scientific achievements alone are of major significance, many feel
that perhaps his greatest contributions were made in his role as a leader of mathematicians.
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He provided a chance for many young mathematicians, from all over the country, to get a
start in research. He created an atmosphere in which there was pressure to produce, but it
was a healthy pressure which made the effort fun.

RIAS, under his leadership and the sponsorship of the Martin-Marietta Corporation,
assembled an outstanding group of extremely productive mathematicians, physicists and
engineers. Later, as director of the Lefschetz Center for Dynamical Systems at Brown, Joe
influenced the thinking ofmany young visitors from the U.S. and abroad. Indeed, the authors
ofthis memorial note are among the many indebted to Joe LaSalle for providing a stimulating
atmosphere which was an important factor in their mathematical development.

H. T. Banks
H. G. Hermes
M. Q. Jacobs
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A DIRECT APPROACH TO COMPENSATOR DESIGN
FOR DISTRIBUTED PARAMETER SYSTEMS*

J. M. SCHUMACHER’

Abstract. We present a direct approach to finite-order compensator design for distributed parameter
systems, i.e., one that is not based on reduced order modelling. Instead, we use a parametrization around
an initial compensator which displays both controller order and closed-loop stability in a convenient way.
The main result is an existence theorem which holds for a wide class of linear time-invariant systems
(parabolic, delay, damped hyperbolic). The most important assumptions are: bounded inputs and outputs,
finitely many unstable modes, completeness of eigenvectors. An example is included to illustrate the
feasibility of our method for purposes of design.

1. Introduction. In the context of systems described by linear partial differential
equations or functional differential equations, the problem of stabilization by feedback
gains some challenging features that are not present in the finite-dimensional situation.
For instance, it is no longer easy to establish necessary and sufficient conditions for
the existence of a finite-dimensional compensator that will produce a closed-loop
system with a prescribed stability margin. It is an important practical problem to find
at least sufficient conditions which will hold for a wide class of interesting systems,
since implementation of state feedback [1], [2-1 or of controllers of infinite order
[3], [4], [5] is often not possible. The most popular approach consists of replacing
the infinite-dimensional system by a finite-dimensional "reduced order model" and
applying standard techniques to obtain a finite-dimensional compensator for this
model. The pertinent question is, of course, how we can be sure that the compensator
will also stabilize the original, infinite-dimensional system. It has been shown by
examples that, under unfavorable circumstances, the interaction of the controller with
the unmodelled part of the system (sometimes termed "spillover") may be such as to
destabilize the closed-loop system as a whole [6]. Existence results for finite-
dimensional compensators have been established recently on the basis ot a "zero
spillover" assumption [5], [7], [8], but this assumption is severely restrictive. Also,
existence results can be based on a suitable concept of "closeness" of the reduced-order
model and the actual system. This approach is taken in [9], where the results are still
limited in nature. At this point, it should be emphasized that a concept of "closeness"
is also crucial in any study of parameter uncertainty. This aspect is, as well as order
reduction, inherent in many discussions of modelling. For the sake of theoretical
clarity, we shall keep these two issues apart. In the present paper, we shall assume
that the infinite-dimensional system to be controlled is known precisely, and we shall
construct a finite-dimensional compensator under this assumption. It is expected that
this result can then be used in a further study of what can be done under conditions
of parameter uncertainty.

Our approach is not based on reduced-order modelling, and therefore we call it
a "direct approach". The core of our method is a certain parametrization of com-
pensators for a given system, which displays both the stability properties of the
closed-loop system and the order of the compensator in a convenient way. We shall

* Received by the editors December 15, 1980, and in final revised form August 13, 1982.
t The author was with the Department of Mathematics, Vrije Universiteit, Amsterdam, and with the

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
Massachusetts, where he was supported by the Netherlands Organization for the Advancement of Pure
Scientific Research (ZWO). He is now with the Department of Mathematics, Erasmus Universiteit,
Rotterdam, the Netherlands.
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try to explain the basic idea in 2. In 3, the set-up is described in a more rigorous
fashion. The main result, which establishes the existence of finite dimensional com-
pensators for a wide class of time-invariant linear systems (including parabolic systems,
delay systems and damped hyperbolic systems), will be given in 4. The method of
proof is constructive and can be turned into an actual design method, as will be shown
by an example in 5. Some final remarks follow in 6.

2. Heuristics. The purpose of this section is to describe the main idea behind
the development in the rest of the paper, without entering into technical details. A
rigorous set-up will be described in the next section; here, we just want to give a
heuristic discussion.

So let us consider a linear system in its standard state-space form

x’(t)=Ax(t)+Bu(t),
(2.1)

y (t) Cx (t),

where we assume that the pair (A, B) is stabilizable and the pair (C, A) is detectable.
We can then choose F such that A +BF is stable and G such that A + GC is stable,
and the standard full-order compensator (see, for instance, [10]) is then formed by

’(t) (A +GC)(t)-Gy(t)+Bu(t),
(2.2)

u (t) F(t).

In the finite dimensional situation, it is well known that the closed-loop system obtained
by combining (2.1) and (2.2) is described by a system matrix whose eigenvalues are
those of A +BF and A +GC taken together [10,5.2]. Let us examine the com-
pensator (2.2) a little more closely. We can rewrite the compensator equations as

’(t) (A +BF +GC)(t) Gy (t),
(2.3)

u(t) F(t)

and hence the compensator transfer matrix is

(2.4) 4c (s -F(sI A BF GC)-1G.

Now, there is no reason why (2.3) should represent a minimal realization of this
transfer function. If it is not, then the compensator order can be reduced. Even if the
McMillan degree of bc coincides with the order of the system (2.3), there may be
transfer matrices with considerably lower McMillan degree that are close enough to
b to guarantee that they as well will stabilize (2.1). In order to find such transfer
matrices, one possible strategy would be to take bc and to change it a little bit by
turning near-cancellations into actual cancellations, thereby decreasing the order of
its minimal realization.

The question is, of course, under what conditions we can be sure that such a
procedure will lead to a finite-dimensional compensator, if the original system (2.1)
is infinite-dimensional. To get at least a partial answer to this, let us return to the
state-space setting. The realization (2.3) is nonminimal if the pair (A +BF+GC, G)
is not reachable or the pair (F, A +BF/ GC) is not observable. We shall concentrate
on the reachable set of the pair (A +BF + GC, G), which is of course the same as the
reachable set of the pair (A +BF, G). This set is characterized as the smallest subspace
7/’ such that (A +BF)t/" c 1/" and im G c ’. The basic idea which underlies the present
paper is the observation that, by manipulation of G alone, we can implement a strategy
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of slightly perturbing the compensator transfer matrix to decrease its McMillan degree.
Even if the original im G is not contained in any (A +BF)-invariant subspace of
interesting dimension, it may very well be true that close to G there is a G such that
im t does fit into a low-dimensional (A +BF)-invariant subspace. Then the reachable
set of the pair (A +BF+ rC, r) will also be low-dimensional, say equal to k, and it
will be possible to construct a compensator of order k based on F and G. The stability
of the closed-loop system will then depend on A +BF and A + tC. We didn’t change
A +BF, so there is no problem for that part, and it follows from the theorem on
continuity of eigenvalues that the stability of A +C follows from that of A + GC if
( is close enough to G. (Actually, we shall use another theorem below, which gives
us a ball around G where stability of A + (C is guaranteed: see Lemma 4.3.)

It can also be seen directly from the differential equations (2.2) that a reduction
of compensator order is possible if there is a nontrivial subspace 7/’ with (A +BF)
and im G c 7/’. For this purpose, rewrite (2.2) as

(2.5)
’(t) (A +BF)(t)+G(C(t)-y(t)),

u(t) F(t).

The equation for (t) is seen to be given by the evolution operator A +BF together
with a driving input which enters through G. Since the stabilization action of the
compensator should take place for any initial value of (,. ), we may as well suppose
that (0)= 0. Then it is clear that x(t) will be in 7/" for all time. Consequently, no
larger state space than o//. is necessary for .

As a third possible interpretation, consider the following matrix argument. Again,
if F is a subspace such that (A +BF) 7/" and im G 7/’, then we obviously have
the following matrix representations for A +BF and G, with respect to a suitable basis.

(2.6) A+BF=(All+B1F1 AI2+BxF2 G=(G0)0 A22+B2F21’
As is easily established from (2.1) and (2.2), the equation describing the closed-loop
system is

d ((t) =Ae((t) ( A BF )(2.7) d-- (t)] (t)] Ae -GC A+BF+GC

Using the special forms in (2.6) to describe the compensator dynamics, we see that
the evolution operator Ae in (2.7) can be given as a three-by-three block matrix:

(2.8) A
A BFI BF2
-GC AxI+BF+GC A2+BxF2+GIC2

0 0 A22 "" B2F2
It is evident from this representation that if Ae is stable, then the two-by-two left
upper block inA must also be stable. This means that we are able to build a stabilizing
compensator (of order dim 7/’) based on G, F and A +BIF +GxC. Technically
speaking, this is perhaps the cleanest way to describe the situation, and we shall use
basically this approach in the rigorous development of later sections.

In summary, the proposed method is the following. We start by selecting a
full-order compensator that stabilizes the original system. Then, we parametrize a set
of nearby compensators on the basis of the "injection mapping" G. This parametri-
zation is not necessarily complete, but the stability of the resulting closed-loop systems
is easily monitored, and, in particular, there is a ball around the original injection
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mapping where stability is guaranteed. Moreover, the points in the parameter space
where the compensator order is reduced to a given number k are easily spotted,
because they correspond to the k-dimensional invariant subspaces of A +BF, which
are, at least theoretically speaking, known. So this parametrization allows us to do
an effective search for low-order stabilizing compensators. In the infinite-dimensional
case, we expect that it will be possible to prove the existence of a finite-dimensional
stabilizing compensator if there are finite-dimensional (A + BF)-invariant subspaces
arbitrarily close to any given subspace, i.e., if we have completeness o eigenvectors.
No further essential restrictions will be required. We shall now proceed to make this
precise. It should be emphasized that the procedure we have sketched is meant for
theoretical purposes; several alterations may be made to advantage, when a similar
method is to be used for practical design purposes. This will be illustrated in the
example of 5.

3. Assumptions and preliminaries. We shall consider systems of the form

x’(t) =Ax(t)+Bu(t), x(t),

y (t) Cx (t), y (t) , u (t) e ott,

under the following basic assumptions:
(A1) A is the generator of a strongly continuous semigroup T(.) of bounded

linear operators on the Banach space .
(A2) B is a bounded linear mapping from the finite dimensional input space

into .
(A3) C is a bounded linear mapping from into the finite dimensional output

space .
For the general theory of semigroups, we refer to [11]. The condition (A2)

requires that the control enters the system in a "distributed" way, i.e., as a forcing
term, rather than via the boundary conditions. The condition (A3) excludes, for
instance, taking point observations on an L2-space. The case of unbounded input and
output.operators has been considered in [29], where an approach is used that is similar
to ours.

Following [12, p. 181], we shall say that the spectrum of an operator is discrete
if it consists only of isolated eigenvalues with finite multiplicities. We shall make the
following assumption because it is convenient and also because it covers the commonly
encountered cases.

(A4) The spectrum of A is discrete.
As a measure of stability, we shall use the growth constant. This constant is

obtained for every semigroup T(t) (from now on, we shall use the term "semigroup"
as a synonym for "strongly continuous semigroup of bounded linear operators on a
Banach ,space") by the following formula [11, p. 306]:

(3.2) too := inf 1__ log IIT(t)l[- lim 1__ log IIT(t)ll <.
[o, o) t--,oo

The semigroup is said to be asymptotically stable if its growth constant is negative,
and the absolute value of the growth constant is then also called the stability margin.
Obtaining a reasonable stability margin is a primary purpose of feedback control, and
we shall suppose that a desired minimum degree of stability has been specified by a
growth constant o < 0 which will be fixed from now on. A semigroup will be called
simply stable if its growth constant is smaller than or equal to o. We shall assume
that there are only finitely many unstable or nearly unstable modes.
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(A5) There exists 8 >0 such that the half-plane {h C[Re h > to-8} contains
only finitely many eigenvalues of A.

Under this assumption, we can draw a simple closed curve enclosing precisely
those eigenvalues of A that have real parts larger than to. From this, we obtain a
decomposition of the state space as in [12, p. 178]. We shall write
where , is called the unstable modal subspace and s is the stable modal subspace.
Correspondingly, the following notation will be used with respect to this decompo-
sition"

(3.3) A
As Bs

As in the finite-dimensional case, we shall need assumptions on the stabilizability of
the pair (A, B) and the detectability of the pair (C, A). In the present context, these
are most easily expressed in the following way.

(A6) The pair (A, B,) is controllable.
(A7) The pair (C,, A,) is observable.
Note that both pairs involve only operators between finite-dimensional spaces,

so that we can rely on the familiar finite-dimensional concepts.
Next, we need an assumption of a somewhat more technical nature. Let 8 > 0

satisfy the condition of (A5). Then it is clear that one can also do a decomposition
of with respect to the eigenvalues of A that have real parts larger than to -8 (rather
than to). Let A’-8 denote the operator that is obtained in this way, similarly to
It has been shown in [2, App. 2] that A’-8 generates a semigroup. We shall assume
the following.

(A8) The growth constant of the semigroup generated byA’- is smaller than to.

We know, of course, that the eigenvalues of A’- all have real parts smaller than
or equal to to -8, but counterexamples [11, p. 665], [13] show that this in itself does
not guarantee that the growth constant of the semigroup will be bounded by to- 8 or
by to. One solution, then, is to introduce a "spectrum determined growth assumption"
like (A8). This solution has been proposed in [2], where it .has also been argued that
the assumption holds for various important classes of semigroups.

For an alternative, we should consider our ultimate purposes. To the system (3.1),
we want to add a finite dimensional compensator of the form

w’(t)=Acw(t)+Gcy(t), w(t) V, dim
(3.4)

u(t) =Fcw(t)+Ky(t).

Doing so, we obtain a closed-loop system which looks like

d ()(t)=ae(X)(t),(3.5) aS w

where the closed-loop system mapping Ae is given by

(3.6) Ae=(A+BKC BF
GcC A ]"

This operator generates a semigroup on g/V, since it is a bounded perturbation of

0)
[11, p. 389]. For our purposes, it will be easily sufficient if we know the following.
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(A8)’ For any choice of the matrices K, Fc, Gc andA in (3.6), the growth constant
of the semigroup generated by Ae is equal to sup {Re A ]A tr(Ae)}.

We shall primarily use (A8), because this assumption is probably in most cases
more directly verifiable (see [2]). However, in some instances it may be easy to check
that (A8)’ is true, and then (A8) can be dispensed with. In engineering contexts, (A8)’
is often assumed without mentioning.

For our final assumption, we point out that we shall call any non-zero vector in
the range of the eigenprojection associated with a given eigenvalue [12, p. 181] an
eigenvector, so this includes "generalized eigenvectors". A set of elements of is
called complete (in ) if the finite linear combinations of these elements form a dense
set in . We assume the following.

(A9) The eigenvectors of A form a complete set in .
Completeness of eigenvectors is a common property for diffusion operators, delay

operators and wave operators as well; see, for instance, [14, p. 325], [15, pp. 465-470],
[16, pp. 278-289], [17], [18] and [19, p. 250]. Under the stated assumptions, it will
be shown below (Lemma 4.5) that there exists a feedback mapping F: q/ such
that the spectrum of A +BF is discrete and contained in {A CIRe A =< to} and such
that the eigenvectors of A +BF form a complete set in . We could use this statement
to replace both (A6) and (A9), but since these assumptions are stated directly in terms
of A, we prefer to use them, rather than an indirect (be it weaker) expression.

For easy reference, we shall state here the following lemma, which will be used
repeatedly. The proof presents no basic difficulties and will be omitted.

LEMMA 3.1. Suppose thatA andA22 are generators ofsemigroups on the Banach
spaces and 2, respectively, with growth constants to, and to2. Suppose also that
A21 :a _.> 2 is a bounded linear mapping. Then the operator on 12 defined by

(3.8) A=(AI O)A2 A22
generates a semigroup whose growth constant equals max (to, to2).

4. Existence result. Our aim in this section is to prove the following result.
THEOREM 4.1. Consider the system (3.1) and suppose that the assumptions (A1)-

(A8) hold for some given growth constant to. Then there exists a compensator of finite
order such that the evolution of the controlled system is described by a strongly continuous
semigroup with growth constant smaller than or equal to to.

For convenience, we shall break up the proof of this theorem into four separate
lemmas.

LEMMA 4.2. Consider the system (3.1) under the assumptions (A1)-(A3). Let to

be a given growth constant and suppose that there exist a finite dimensional subspace
7/" cD(A) and linear mappings F 7/" - ll and G qY with the following properties:

(4.1) im G c ,
(4.2) the semigroup generated by A + GC has growth constant to <- to,

(4.3) (A +BF)x Ffor all x F,

the (finite-dimensional) semigroup generated by A +BFI.(4.4) has growth constant to2 <- to.

Then there exists a compensator o] the ]orm (3.4), which has (finite) order equal to
dim and which is such that the evolution of the controlled system is described by a
semigroup with growth constant max (to1, to2) -< to.
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Proof. Introduce a new linear space isomorphic to and let R"’W be
the mapping that provides the isomorphism. Define a compensator of the form (3.4)
by setting K 0, Fc FR-1, Gc -RG and A R(A +BF +GC)R -1. (Note that it
follows from (4.1) and (4.3) that Gc and Ac are well defined, even though R is not
defined on all of .) We can write the following differential equation for the controlled
system:

() (x)d x
(t)=A, (t)(4.5) d-- w w

with the extended system mapping Ae given by

(4.6) ae =( A BFc =( a BFR -1

)GC A ] -RGC R (A +BF + GC)R -1

Consider the following subspace of the extended state space e :=0)/4/’:

x

There is an obvious isomorphism between o//. and /, given by

(4.8) Tx ( x )Rx
x l/"

The space e can also be decomposed as ,’//, rather than as ooW. Written with
respect to this decomposition, Ae will have the form

(4.9) e:=HAeH-1,
where the isomorphism H"W-et/is defined by

(4.0) H
rR-

By straightforward computation, we find that

(4.11)
\-TGC T(A+BF)T-a

Noting that T(A +BF)T-1 is similar to A +BFI, we now immediately get the result
by an application of Lemma 3.1.

LEMMA 4.3. Consider a pair of mappings (C, A) under the assumptions (A1),
(A3), (A4), (A5), (A7) and (A8). Then we can nd a linear mapping G" - and
a constant 1 > 0 such that, ]’or every G" satisfying [IG-11 the semigroup
generated by A + rC is stable.

Proof. We shall use the same modal decomposition that has been used to formulate
(A8), and we shall further decompose the "unstable" parts A’- and C’- (of. (3.3))
in order to display the unobservable subspace of this pair. The final result of these
operations is a decomposition of the form

\0[Al10(4.12) a=| 0 A22 C=(C1 C2 0),
A32 A33

where Re A -<to -6 for A tr(A xx), the pair (C2, A22) is observable, and to -6 < Re A -<
to for A tr(A33)o (The last inequality follows from (A7).) By the observability of the
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pair (C2, A22), there exists a G2 such that all eigenvalues of A22q-G2C2 have real
parts smaller than to. Define G by

(4.13) G z

In general, for G (G d2 G3)t, we get

(4.14) A -" dC d2C1 A22 "- d2C2
G3C1 A32 - G3C2 A33

If ( G, it follows from our construction, from Lemma 3.1 and from assumption
(A8), that the two-by-two left upper block in (4.14) generates a semigroup whose
growth constant is smaller than to. By the general result on bounded perturbation of
semigroups (see, for instance, [20, p. 38]), this entails that the same block will also
generate a stable semigroup if ]]t- GI] is small enough. Since the eigenvalues of A33
all have real parts smaller than or equal to to, this means again by Lemma 3.1, that
the semigroup generated by A + (C is stable as well.

LEMMA 4.4. Consider the system (3.1) under the assumptions (A1)-(A3). Let
G" g by a given infection mapping and suppose that there exists F" ql such
that the eigenvectors of A +BF are complete in . Then, for any rl >0, there exist a

finite dimensional subspace D (A and a mapping " gsuch that

(4.15) IId-GIl<n,
(4.16) (A +BF)x F for all x 7/"

(4.17) im ( c 7/’.

Proof. Pick some orthonormal basis {y 1,’", yp} of and write gi:=Gyi. Let
r/>0 be given. For every 1,...,p, there exists a finite set {xil,’" ,XiN(i)} of
generalized eigenvectors of A +BF such that

(4.18) gi- ixii < rl

for suitable constants cii (i 1,..., p;/" 1,..., N(i)). To every (i,/’) there exist a
,ii e C and an nij e N such that

(4.19) (Ai-(A +BF)) ’xi O.

Now define (’ by tyi ff (i 1,. , p), where
N(i)

(4.20) i := olijxi]
]=1

and let ’ be the subspace defined by

(4.21) :=span {(Aii- (A +BF))kxili 1,..., p;/" 1,..., N(i); k =0,..., nit- 1}.

Then G and satisfy the requirements.
LEMMA 4.5. Consider a pair o]’ operators (A, B) and suppose that the assumptions

(A1), (A2), (A4), (A5), (A6) and (A9) hold. Then there exists a bounded linear mapping
F: 71 such that the spectrum o]’ A +BF is discrete, all eigenvalues o]’ A +BF have
real parts smaller than or equal to to and the eigenvectors ofA +BF are complete in .
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Proof. Doing a modal decomposition with respect to the eigenvalues of A in
{A CIRe A > to }, we obtain a direct sum representation f fu@ and corresponding
block representations for A and B"

0)(4.22) A
A Bs

By (A6), we can choose Fu such that the eigenvalues of Au +BuF are in {A CIRe X =<
to } and such that they are distinct from the eigenvalues of As. Define F by

(4.23) F= (F, 0).

Then the spectrum of A +BF will consist of the eigenvalues of As together with those
of A, +B,F,. Because the two sets are separated, there is a corresponding modal
decomposition, which we shall indicate by s 0)n ("n" for "new"). Hence, every
vector x f can be written as x xs + xn with x s and x, ,. By (A9), x can be
approximated by linear combinations of eigenvectors of A in s, which are, as a
consequence of the special form of F, also eigenvectors of A +BF. Because f, is a
finite dimensional (A +BF)- invariant subspace, x, is equal to some linear combination
of eigenvectors of A +BF. We conclude that x can be approximated by linear
combinations of eigenvectors of A +BF. Thus, the eigenvectors of A +BF are com-
plete in .

Proof of Theorem 4.1. Choose G as in Lemma 4.3 and F as in Lemma 4.5. Let
r/> 0 be the constant from Lemma 4.3 and use Lemma 4.4 to obtain (’ and
7/" c D(A) satisfying (4.15)-(4.17). Finally, apply Lemma 4.2 to the subspace 7/" and
the mappings F and

The proof of the theorem is constructive, and therefore it suggests a design
method. Depending on the particular type of equation one has at hand, one may vary
the actual form of this method in order to avoid unnecessary work. In the next section,
we shall illustrate this by an example.

5. Design example. Consider the following system, which is of the "delay" type:

(5.1) x(t) --xl(t-1)+x2(t), x(t)=u(t),

(5.2) y(t)=x(t).

To write these equations in the standard form (3.1), we use the following set-up (cf.
[21]). Let M2(-1, 0) denote the product space RL2(-1, 0) and let HX(-1, 0) be the
set of functions on [-1, 0] whose distributional derivative is in L2(-1, 0) [22, p. 44].
By Sobolev’s lemma [22, p. 97], the mappings b--b(-1) and ff(0) are well-
defined and continuous functions on HX(-1, 0). For (5.1), the state space will be

(5.3) :=M2(-1,

The elements of this linear space will be written as column vectors with two com-
ponents, where the first component is in M2(-1, 0) and will be written as a row vector
(o, ) with o and Lz(-1, 0) and the second component is in . The operator
A is defined by

(5.4) D(A):={(:) o,H(-1,0),a,(0)=o},
(5.5) A

0
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The input space 0?/ and the output space are both equal to R, and the mappings B
and C are given by

(5.6) Ba =((0, 0)),

We shall also use the complexifications of these spaces and operators, without change
of notation.

It follows from the results of [23] (see also [21]) that the operator A generates
a semigroup on . It is seen immediately that the operators B and C are bounded.
The spectrum of A is discrete, and the eigenvalues are precisely the roots of the
characteristic equation

A +-- e
(5.8) det

0

[18, Prop. 4.2]. The characteristic function

(5.9) A,(A):=A A + e

has roots at 0, +zri/2, and at infinitely many other points in the complex plane which
are given approximately by

(5.10) )tk -log (4k + 1)+- (4k + 1)i (k e 1).

Rules for deriving such formulas are given in [30]. All roots are simple. We see that
there are only finitely many eigenvalues of A to the right of any vertical line in the
complex plane, as is true in general for delay equations [24, p. 114]. The stabilizability
of the pair (A, B) and the detectability of the pair (C, A) can be verified conveniently
using the generalization of the Hautus test [25], [26] that was given in [3]. Because

A+e 1
(5.11) rank

0 h
2 for all h C,

the pair (A, B) is stabilizable no matter how the desired growth constant to is chosen.
Likewise, detectability of the pair (C, A) also holds for any to because

)t +-e 1
(5.12) rank

0 h
2 for all A e C.

1 0

Adding a compensator of the form (3.4) to the system (5.1)-(5.2) will lead to a
closed-loop system which still has the basic form of a delay equation:

(5.13) x’(t)=Alx(t- 1)+Aox(t).

Consequently, the closed-loop semigroup will be compact for > 1 ([31]; see also
[24]), and this is sufficient to guarantee that its growth constant is determined by the
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spectrum of its generator [11, p. 467]. So we can use assumption (A8)’ instead of
(A8). Finally, the completeness of the eigenvectors of A follows from [17, Cor. 5.5].

We have verified that all assumptions of 3 are satisfied for any choice of the
desired growth constant to. Hence, it ollows from Thm. 4.1 that any degree of stability
can be obtained by adding a finite dimensional compensator to the system (3.1). Let
us design such a compensator to obtain a stability margin of 1; so we set to 1.

First step. By the stabilizability of the pair (A, B), there exists an F such that the
eigenvalues of A at 0 and +zri/2 are shifted to new eigenvalues at -1 and -1 + 7ri/2
for A +BF. If/ is an eigenvalue of A +BF, it is easily verified that the corresponding
eigenvector is given by

((5.14) if=
(b b) b(O)=e"bo (0 [-1, 0]), a= /z+e bo.

The eigenvector will be normalized such that CO 1 if we put 4o 1. In that case,
we also have

zr_.)(5.15) FO +- e

Second step. The matrices of Au and Cu with respect to the basis

(5.16)
1, cos-- 0, sin

0 0

of u are given by

(5.17) A,=-r/2 0 C,= 1 0
2

0 0

A straightforward pole placement procedure leads to the conclusion that A + GC will
have new eigenvalues at -(1/2)zr (double) and -Tr if we take

( )2, cos -. 0 + 2 sin - 0 + 1

2

Third step. Although it is possible, in principle, to compute r/ such that
A + IC will be stable for each ( with I1 -GIl< n, it does not seem attractive to
perform the actual computations and, moreover, the bound we obtain may be unne-
cessarily conservative. Rather, we shall proceed in an algorithmic way. Let us select

i( l’e- cs 0)1 0, e- sin 0) (1, e-) /(
(5.19) G =2.08 -9.08 -8.36

-1
"rr (1e2 -1+ "rr_]

which is obtained by orthogonally projecting G into the subspace spanned by the
eigenvectors of A +BF corresponding to the eigenvalues at -1 and -1 +zri/2. A
convenient way to compute the eigenvalues of A + (C is provided by the Weinstein-
Aronszajn theory [12, p. 244], from which it follows that these eigenvalues can be
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found as the zeros of

(5.20) AA+dC(A):=AA(A)(1-C(A -A)-IG)
If G maps into a subspace spanned by finitely many eigenvectors of A +BF, so that

(1, e") t(5.21) G= 2 ’Yk 7/" k]k=l k +e "

then we have the more explicit formula

(5.22)
k=l

Using. this, we can employ a simple Newton method to compute the eigenvalues of
A / GC, where ( is given by (5.19). Initial guesses are provided by (5.10) and by the
assigned values -r/2 and -Tr. The results are given in Table 1. We see that’ this trial
is easily successful, and so we shall base our design on F, ( and the subspace
spanned by the eigenvectors of A +BF associated with the eigenvalues at -1 and

1 + zri/2.

TABLE
Effects of perturbation of G

roots of AA+GC(h) roots of AA+OC(A)

-1.571 (double)
-3.142
-1.604 +/- 7.647
-2.198 + 13.98
-2.567 + 20.29
-2.835+26.60
-3.046+32.89
-3.220+/-39.19
-3.368+-45.48
-3.497+-51.77
-3.612+-58.06

-1.491+0.288
-3.401
-1.609+- 7.854
-2.197 + 14.14
-2.565 +20.42
-2.833+-26.70
-3.045+32.99
-3.219+-39.27
-3.367 + 45.55
-3.497 4- 51.84
-3.611 +58.12

Fourth step. Written in a somewhat sloppy way (with omission of isomorphisms),
our compensator is given by

(5.23) w’(t) (A /BF +rC)w(t)-ry(t),

(5.24) u(t) =Fw(t),

where the state space of w(t) is the three-dimensional subspace of M2(-1, 0)03 that
is spanned by the vectors

1, e- cos

(5.25) W1 W2

-1

0, e sin

rr(1 -e)
2

(1, e -)
w3--

7re

The coordinates of ( with respect to this basis are given by (5.19). The matrices of



COMPENSATOR DESIGN FOR DISTRIBUTED PARAMETER SYSTEMS 835

A +BF and C are easily found to be

)1 r 0
(5.26) A+BF= -1 0 C=(1 0 1).

0 -1

Finally, we can use (5.15) to calculate Fwl 5.24, Fw2 1.13 and Fw3 =-3.27. We
finally arrive at the following compensator equations"

(5.27) w (t) 10.65 1 -9.08 w(t) + (t),
-8.63 0 -9.36 .36

(5.28) u(t) =(5.24 1.13 -3.27)w(t).

The eigenvalues of the closed-loop system are given by -1, -l+zri/2, and the
eigenvalues of A + (C as listed in Table 1. Consequently, the closed-loop growth
constant is exactly equal to -1. The ability to prescribe the location of k closed-loop
poles exactly, when a compensator of order k is used, is a particular feature of the
method we have used, but one should not get the impression that in general it takes
a k th order compensator to stabilize a system with k unstable polesmthis is far from
being true.

In conclusion, we can say that the computational work needed to obtain the
finite-dimensional compensator has been qu.ite moderate’ nothing was needed that
goes beyond the power of hand-held calculators. Also, note that it has not been
necessary to compute the modal projection. The method could be implemented as an
iterative procedure, with the third step as the iteration step. The iteration consists of
projecting G into a series of trial (A +BF)-invariant subspaces of increasing
dimension. In this interpretation, Theorem 4.1 can be viewed as a convergence result,
guaranteeing that the procedure will terminate after a finite number of steps. Finally,
we note that the compensator we obtain is in the standard finite-dimensional form,
unlike the compensators obtained from algebraic methods (see, for instance, [27]),
which in general contain delay elements.

6. Final remarks. Although we have worked an example to show that the method
presented here is in principle feasible as a design procedure, the main emphasis of
this paper has been on establishing the existence result on finite-dimensional com-
pensators for a wide class of infinite-dimensional systems. There are many other design
considerations, besides the stability margin, that have to be taken into account in any
practical situation, such as robustness properties and sensitivity reduction. Fortunately,
the method we have employed leaves a great deal of freedom and in particular the
selection of the initial F and G is expected to be helpful in obtaining good closed-loop
properties. We did not really scrutinize our method to arrive at as low as possible
controller orders; here, too, further research promises to be fruitful. The parameteriz-
ation on the basis of the injection mapping G is particularly suited for situations in
which we have few outputs and many inputs; in the reverse situation, one should
work with a parametrization on the basis of the feedback mappingF and with subspaces
of finite codimension. It has been shown in [28] that ideas very similar to the ones
presented here will lead to finite-dimensional compensators that solve tracking and
regulation problems for distributed parameter systems. It is, of course, of interest to
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extend our results to situations in which we have unbounded control and sensing;
results in this direction have been reported recently in [29].
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OPTIMIZATION AND CONTROLLABILITY
WITHOUT DIFFERENTIABILITY ASSUMPTIONS*

J. WARGA?

Abstract. Let " and @ be real normed vector spaces, K c ,’ convex and compact, C c @ a convex
body, q/ K, and ($, ) K I x @ a function that can be appropriately approximated by functions ($i, i)
whose compositions with linear maps of small finite-dimensional simplices are C a. We derive sufficient
conditions for to be (locally) controllable on q/ subject to the restriction dp(u)C, and obtain, as a
corollary, corresponding necessary conditions for a related restricted minimum. These conditions are
formulated in terms of directional derivate containers which are a type of set-valued "derivatives" of (, ),
and they improve on and extend previously obtained results. They are used elsewhere to obtain new
conditions for controllability and restricted minimum in nonsmooth optimal control problems defined by
differential or functional-integral equations with isoperimetric and unilateral restrictions and involving
either relaxed or original controls.

Key words, nondifferentiable functions, set-valued derivatives, directional derivate containers,
Lagrange multipliers, extremals of an optimization problem

1. Introduction. The Lagrange multiplier rule for restricted minimization prob-
lems of the calculus can be based on the following proposition" let V c I", V be open,
and f= (fl,..., f"*): V" be C near x0; then f(V) contains a ball centered at
f(xo) if f’(xo)V contains a ball centered at f(Xo)Xo. If Xo minimizes .fl(x) subject to
fZ(x) f’(x) =0 then the above conclusion cannot hold and thus dimension
(f’(Xo) V) < m therefore there exists a Lagrange multiplier vector A (A 1,..., A ") # 0
such that A rf(Xo) 0.

For C problems of nonlinear programming and for C problems of relaxed
optimal control with finitely many scalar restrictions, the arguments can be based on
a similar proposition but with V assumed to be a simplex with a vertex at 0. In these
cases, the equality A rf’(X0) =0 is replaced by the inequality A rf’(x0)(x -x0)=>0 for
all x V. In unilateral problems, an additional restriction is introduced of the form
g(x) C, where C is a convex body in a normed vector space . (Typically, C may
be the set of continuous functions with values in the negative "octant.") Then the
corresponding proposition asserts that, for CO& interior of C, the set

(f(x)Ix e v. g(x e c}
covers a ball centered at f(Xo) if g(xo) Co and

(2) {f’(xo)., I.o v. g’(xo),., c- g(xo)}

covers a ball centered at 0.
This approach to C problems (that underlies many of the arguments in [8]) is

thus seen to be based on propositions P such that "P is valid locally for (f-f(Xo), g-
g(xo)) if P is valid for (f’(Xo), g’(Xo))." In dealing with optimization problems defined
by nondifferentiable functions, we have attempted, starting with [9], to describe the
local properties of (f, g) in terms of those that uniformly characterize C functions
(fi, gi) that converge uniformly to (f, g). Typically, we searched for propositions P
such that "P is valid locally for (f-f(xo), g-g(xo)) if P is valid for (f(x), g(x))
uniformly for all x near x0 and large i." This led to the concepts of a derivate container

* Received by the editors November 25, 1981, and in revised form October 19, 1982. This work was
supported in part by the National Science Foundation under grant MCS 8102079.

Department of Mathematics, Northeastern University, Boston, Massachusetts 02115.
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[9], [10], [11] (unbounded derivate container [15]) for Lipschitzian (continuous)
functions from N to I and of a directional derivate container [13] for functions
between normed vector spaces with compact convex domains. All of these concepts
replace a nonexistent derivative at x0 with nested sets of derivatives of approximating
functions (or of their restrictions) at "nearby" points. However, both in finite- and
infinite-dimensional cases, there appear in the literature many other constructions of
set-valued "derivatives" such as those due to Aubin [1] (as quoted in [5]), Clarke
[2], Dolecki and Rolewicz [3], Halkin [4], Ioffe [5], Mordukhovich [6], Rockafellar
[7], and others, most of them classified, studied or compared in Ioffe’s paper [5].

The present paper improves on and extends the results of [13]. Its basic new tool
is Theorem 2.3 which states, crudely speaking, that if (f, g) is C and f’ Lipschitzian
and if all sets defined similarly to (2) with x0 replaced by arbitrary x near x0 cover
the same ball, then all sets similar to (1) cover a common ball when (’, g) is replaced
by arbitrary continuous functions close enough to it.

We apply this tool to an optimization problem defined by (not necessarily
differentiable) functions

a set q/ K, and a convex body C c , where rn {1, 2, .}, T and are real normed
vector spaces, and K is a convex and compact subset of . We study the related
questions of restricted minimization and (local) controllability, both subject to the
"unilateral" inclusion (q) C; specifically, necessary conditions for a point q0 to
yield the minimum of 4 0 on the set

(0//) a_ {q e lb(q)= 0, (q) e C}

respectively on the closure of sg(a//); and, given a function 4:K-R", sufficient
conditions for the existence of some K > 0 such that

SF (4) (qo), c {4) (q)lq ll, (q) + SF (0, C},

where SF (a, r) denotes the closed ball of center a and radius r in the appropriate space.
The optimization problem that we consider is an abstract version of a nonsmooth

optimal control problem. Thus K may represent the collection of relaxed (measure-
valued) controls, // some collection of special controls (in particular, some set of
ordinary, point-valued, controls), 4 the cost functional, the relation b l(q)_ 0 the
"isoperimetric" restrictions, and the relation (q) C the unilateral or other functional
restrictions. We have studied this problem in [13] but only for the special case where
a//_ K and with stronger assumptions; and our present results supersede those of [13].

Our results apply to all sets o-// K that contain continuous images of every
simplex in K that lie arbitrarily close to the simplex. This property (one of two
properties that define "abundant" sets of controls [8, IV.3, pp. 279 ft.]) characterizes
in particular the usual sets a//of ordinary controls embedded in the space K of relaxed
controls.

Our basic result is the local controllability Theorem 2.2. As corollaries, we derive
necessary conditions (based on weaker assumptions than in [13]) for a point qo to
yield the minimum of 4 on the set sf(K); and, with the additional assumptions that
(4, ) is continuous, necessary conditions for qo to minimize 4 o on s() respectively
on its closure N(0-//) when is a proper subset of K. In particular, we show that,
as in the case of smooth problems [8, Thin. V.3.4, p. 314], if qo minimizes 4 on
(0//) but not on s(K) then the problem in abnormal (i.e., there exists an admissible
"extremal" point with a vanishing Lagrange coefficient corresponding to 4 o). We also
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show, subject to some additional assumptions, that if q0 minimizes b 0 on s4(//) then
either q0 yields a local minimum on (K) or q0 itself is an abnormal extremal.

The results of the present paper, together with those of [14], are applied elsewhere
[16] to provide necessary conditions for minimum and sufficient conditions for con-
trollability in nonsmooth optimal control problems defined by hereditary functional-
integral (and, in particular, differential or functional-differential) equations controlled
by ordinary or relaxed controls. When this approach is applied directly in [16] to the
special case of nonsmooth problems defined by ordinary differential equations, it
enables us to obtain improved results with shorter arguments and much simpler
constructions than in [10] and [12, XI.3, XI.4].

2. Assumptions and results. We denote by h IA or h [A the restriction of a function
h to A, by r the simplex

0--(01,...,oN)N 0i20, , OJ<-I
i=1

by (U, V) the collection of linear operators from a real vector space U to a real
vector space V, and by C(K,) the normed vector space of continuous functions
from K to a real normed vector space with the sup norm I" [sup. We write _a_ for
"equal by definition," A(, co A) for the interior (closure, convex hull) of a set A,
d[b, A] for the distance from a point b to a set A, SF(a, r)(S(a, r)) for the closed
(open) ball of center a and radius r, and Sv (A, r) for {b [d[b, A _-< r}. A "convex body"
means "a closed convex set with a nonempty interior." We use the concepts of a
derivative and of differentiability in the sense of "a derivative relative to a convex
set." Thus, let U and V be (real) vector spaces, A a convex subset of U, a0 A, and
h" A V. We define the (one-sided) directional derivative by

Dh(ao; a-ao) lim a [h(ao+a[a-ao])-h(ao)].
0+

We say that Dh (ao) is a Gdteaux derivative of h at ao (relative to A) ifDh (ao) (U, V)
and

Dh (ao)(a ao) Dh (ao; a ao) for all a A.

If U and V are normed, h’(ao)(U, V), h’(ao) is continuous, and

limla-aol-a[h(a)-h(ao)-h’(ao)(a-ao)]=O as a ao, a A---{ao}

then we refer to h’(ao) as a (Fr6chet) derivative of h at ao (relative to A). Such a
derivative is unique ifA [8, Thm. I1.3.1, p. 170].

We denote by * the topological dual of a normed vector space , and identify
(")* with ", writing lz or l(z) for the scalar product of 1 [" with z

DEFINITION 2.1.
Directional derivate container. Let qo K, m {1, 2,...} and (4, )"K

For each choice of N {1, 2, ..}, 6 > 0 and 0 a__ (qx,... qN) KN we write

N

h o(w) a qo + Y’. o (qi qo) (o a (o N
,...,o )-),

i=1

( _a___ h o (3-N) CO {q0, q, qN}, O a___ h o (8-N).

A collection {A (b, )(qo)[e > 0} of nonempty subsets of (, " ), also referred
to as A (4, )(qo), is a directional derivate container for (4, ) at qo if

(1) A (4), (I))(qo) A"(b, (I))(qo) (e’> e ),
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(2) for some eo>0, the set {MIKIMA($,)(qo)} is a bounded and equi-
continuous subset of C(K, R x @),

and there exist functions ($i, i)’K 1" @ (i 1, 2, .) such that, for every choice
ofN {1, 2,...}, O & (q 1,... qr) KN and e > 0, there exist 6(0) > 0 and i*(O, e)
{1, 2,. .} such that

(3) the functions to (, )(h(to))’6(O)N are continuously
differentiable,

(4) for every q’ O,o) and >=i*(O, e) there exists M A (, )(qo) satisfying

D($,, )(q’; q -q’)=M(q -q’) (q O),

(5) limi (4i, i)(h(to)) (4, )(h(to)) uniformly for all to 8(O)v.
Scalar directional derivate container. Let A (, )(qo) define a directional derivate

container for (, ) at qo. We define a corresponding scalar directional derivate
containerA($, , C)(qo) as the collection of all triplets (11, lz, A such that (11, 12)
m ,, # 0, A (, ), A [K is continuous, and there exist sequences (1, l)

" * and (M) with M A/(b, )(qo) such that 12 is a cluster point of the l in
the weak* topology of *,

lim

lim lMq Aq (q K),

/y<-0 if SF(y, 1/i)cC-(qo).

Remark 1. The present definition of a directional derivate container is more
general than the one in [13, Def. 2.1], every directional derivate container in the
sense of [13] being also a directional derivate container as defined above. Since our
present results supersede those of [13], there appeared to be no need to coin a new
expression.

Remark 2. Conditions 2.1(3) and 2.1(5) imply that if (b, ) has a directional
derivate container at qo then (b, b)lQo) is continuous for each Q.

The definition of A(b, , C)(qo) implies that

12(q0) max 12c
cC

because every point c CO satisfies the relation

SF(c --(qo), 1/i) c C-(qo)

for all sufficiently large i. Furthermore, since K is compact, and Me]r equicontinuous
and Milr uniformly bounded, we have

lim IM A uniformly on K.

We can also verify that if (b, ) admits a directional derivate container at q0 then
the corresponding scalar directional derivate container A(d, I,, C)(qo) is nonempty.
Indeed, for 1, 2,. , let M be an arbitrary element of A1/ (d, )(qo), (11,/2)
(lt, 0) R x* with Iltl 1, and g= (l, 12)= fit, 0). Then M[r are equicontinuous
and uniformly bounded and therefore a subsequence (liMi)ij converges uniformly
to some continuous h "K-, R which is linear under convex combinations and can
therefore be extended to an element of (, R). If I (/’1, 2," ") and we replace M
by Mi’ then we conclude that (1, 12, h &A(b, , C)(qo).
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Remark 3. The definition of the directional derivate container was motivated by
the study of nonditterentiable functions ($, ) arising in optimal control in terms of
appropriate "approximations" with the properties of functions ($i, i) of Definition
2.1. For example, such functions ($, ) may be of the form

c(q)=hl(y(q)(tl)), d(q)(t)=h2(t, y (q)(t)),

where h 1. ,_.,m and hZ(t, )" n R,2 are nondifferentiable and y(q) is the solution
of a differential or a functional-integral equation such as

y(t) f(z, y(r), q(z)) dz (t e [to, tl]),

where q is a control function and f(t,., q(t)) nondifferentiable. Then a directional
derivate container for ($, ) can be constructed (see [16]) in terms of C functions
h , h zi (t,.) andf (t, , q (t)) approximating h 1, h 2(t,.) and f(t, , q) and of corresponding
finite-dimensional derivate containers. However, it appears difficult to characterize
the class of functions ($, ) that admit directional derivate containers at q0 by such
simple properties as continuity or Lipschitz continuity. It is easy to show, using, e.g.,
the arguments of [11] or [16], that Lipschitz continuity is sufficient to ensure the
existence of a directional derivate container when K and are finite-dimensional.
It remains for us an open question whether Lipschitz continuity is sufficient in the
general case. On the other hand, not even simple continuity at q0 is necessary, even
if both K and are finite-dimensional. An example of a function ($, ) discontinuous
at q0 which admits a directional derivate container is provided by

K={(x,y)RZlO<=x<-_y<-_xl/2<-l}, q0 (0, 0), q (x, y),

t =, t(X, y)=x-2y4 if X 0, b(0, 0)=0.

(This choice of was obtained by covering K with the segments

{ct (x, x 1/2) 6 [210 <_ a <_-- 1} for 0 <_-- x _--< 1

and setting $ (ax, ax 1/2) 2=a for all x.) We construct a corresponding directional
derivate container A (b, cI))(q0) in 3.10.

THEOREM 2.2. Let qo K, &’A($, , C)(qo) be a scalar directional derivate con-
tainer for (c, , C) at qo and let ell c K have the property that for every choice of
N {1, 2,...},Q A(q 1, ..., qN)KZVandO &(01, ,01v) rthereexistsasequence
(u o, (0)) in ql such that

N

lim u o, (0) qo + . 0 (qJ qo) uniformly for all 0 u
and the [unction 0 --, u o, (0)"r K is continuous for each n 1, 2,.... Let I" denote
an arbitrary norm on " and SF(a, K) be accordingly defined if a ". Then either

(a) there exists (11, 12, A) A(4, , C)(qo) such that

Aqo min Aq
qK

or
(b) there exist n, N {1, 2,. .}, O __a (ql,.. ", qU) K and , 8 > 0 such that

(i) SF (6 (qo), r c (6 (q)lq O, (q) +Sr(0, r )" C}
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and, i] (b, ) is continuous,

(ii) Sv (4, (qo), ) {4’ (u .o (0))[0 ,3-u, (uo (0)) + Sv (0, ) C}

(u)lu e a,(u) + s (0, = c}.

The proof of Theorem 2.2 is largely based on
TIaEOrEM 2.3. Let 0 < y, 6 <--_ 1, N {1, 2,...}, 3- a__. 63"u, and (f, g):-

be C and such that f’ is Lipschitzian, g(O) C and, for each 0

s (0, = I,o = c- g(0)}.

Then there exists a set W cN such that

g(O)+SF(o, 3Tb)=C (Ob W)

and f: W SF (f(O), yb) is a homeomorphism. Furthermore, for every continuous
(F, G) 3- " 3t with

If-Flu_-< ,a, ]g- Glu-<_ 63,,
we have

Sv (F(0), 676) {F(O)[O , G(O)+ Sv (0, 476) C}.

Theorems 2.4 and 2.5 below are essentially corollaries of Theorem 2.2.
THEOREM 2.4. Let qo yield the minimum of4on the setC(K) a---{q KIc a(q) =0,

dp(q) e C}, and let LPA((4 , 4 a), , C)(qo) be a scalar directional derivate container for
((oh o, 4 a), dp, C) at qo. Then there exists ((lo, la), lz, A) A((4 o, 4 a), , C)(qo) such
that

lo _--> 0, Aqo min hq.
qK

TI-IZORZM 2.5. Let ?1 K have the property assumed in Theorem 2.2, (b, ) be
continuous, A((b,qx), , C)(qo) be a scalar directional derivate container for
((c, 4 a), q, C) at qo, and assume that qo minimizes c on the closure s4(ll) of the set

(q/) &{q 6 o7/i6 a(q)=0, (q) C}.

Then there exists ((lo, 11), /2, h ..’A((b o, b a), (I9, C)(qo) such that

lo >_- 0, hqo min hq.
qK

Furthermore, if posC(K), 4(po)<4(qo), and SA((4, 41), , C)(po) is a scalar
directional derivate container for ((qb , ca), do, C) at po then there exists ((io,
lz, ]) A((4,, 4’ a), , C)(po) such that

o 0, po min q.
qK

By analogy with C problems, we shall refer to (, ’a, [z, ) as an extremal (for
given b, , C and A (4, , C)(q)).if

4 (K), (’a, [2, ) A(4, , C)(4), c min q.
qK

The extremal is abnormal if 4 (4, 4 1). K n x n".1, /’1 (1, ) and 0.
The point 4 (K) is extremal (abnormal)if there exists ((, [),/2, ) such that
(4, ([1, l’), l’z, )is an extremal (abnormal extremal). Theorem 2.6 below states that
the set of extremals respectively of abnormal extremals is, in a certain sense, sequen-
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tially compact if the directional derivate containers defined over K have certain upper
semicontinuity properties. Theorem 2.7 describes certain directional derivate contain-
ers with these upper semicontinuity properties. Finally, Theorem 2.8 shows that, with
"upper semicontinuous" directional derivate containers, a point qo is abnormal if qo
minimizes b on (0//) respectively (q/) but not on (K) near qo.

THEOREM 2.6. Let qo limi qi in K and, for each O, 1, 2, , let A (c, )(qi)
be a directional derivate container for (c, cb) at q, with the corresponding scalar
directional derivate container ’A(, , C)(qi). For 1, 2,... let (l il, 12,i 1 i)
.A(, , C)(q) and

A q min A iq.
qK

Finally, assume that p is continuous and separable and for each e > 0 there exist
6 (e) > 0 and p (e) > 0 such that

A()(b, )(q,) A(q, )(qo) ifd(qi, qo)<=O(e).

Then there exist (1, /2, A) 9A(b, , C)(qo) and J (1, 2,...) such that

liml=l,limly=/2y (ys), limAiq=Aq (qK)
iJ iJ iJ

and
Aqo min Aq.

qK

The following theorem is a direct consequence of Definition 2.1.
THEOREM 2.7. Let m {1, 2, .} and (4, ) :K --> ’ . Assume that there exist

functions (4, i):K x (i 1, 2,...) such that
(i) limi (i, )= (, ) uniformly on K,
(ii) for each K and 1, 2,. , the function (i, i) has a Gteaux derivative

D(Oi, )() relative to K and D(Oi, )() restricted to K are equicontinuous and
uniformly bounded,

(iii) for each choice of (, q,..., qS)K+ there exists >0 such that the
[nctions

=( ,..., )(,) + (q-) . x

are continuously dierentiable.
Let A (, )() {D(, )(q’)llq’- 1 e, lie }. Then, [or each e K,

A (, )() determines a directional derivate container or (, ) at and

A" (, )() A (, )(q0) g 0 < n e -I qol.

TaEOREM 2.8. Let K have the property assumed in Theorem 2.2 and (, )
be continuous. Let A (, )(q) be defined as a directional derivate container for (, )
at every q K in such a manner that for every e > 0 there exist 8(e) and p(e) such that

A()(, )(q)A(, )(4) gq,Kandd(q,)p(e).

Assume that qo minimizes o on (). Then either there exists a relatively open
subset G ofK such that qo minimizes o on (K) G or qo is abnormal.

3. Proofs.
LEMMA3.1. AssumethatO<B a,x andSV(x, a)SV(C, ). ThenSV(x, a
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Proof. Let B SF (0, 1)c and let e *. Then

x + aB Sv (x, a) = SF (C, ) C +B
implies

hence

inf (lC +/31B) inf lC-ll]<=inf (Ix

inf tC <= lx (a [3 )IZl inf is (x, a [3).

Since this is true for all *, our conclusion follows from the classical theorem
about the separation of convex bodies. Q.E.D.

LEMMA 3.2. Let be a metric space, [3,... ,[3>0, and Sa-S(s,[3)
(a 1,..., a) a covering o[ . Then there exist Lipschitzian [unctions h" [0, 1]
such that

ha(p) 1 (p ), ha(p) 0 (pc: S(s, 2fl).

Proof. Let RAS(s, 2B). If R= for some i, we set h(p)= 1 (p) and
(p) 0 (a # i, p ). Otherwise, we set

g,,,(p)
d[p,--.R]

d[p,---R]+d[p,S]
(a 1, , a,p ).

Then g,,(p)= 1 (p S), g(p)=0 (pC:R,,,) and each g is Lipschitzian (because p
dip, A] has a Lipschitz constant 1 for all nonempty A c and the denominator of
g,,,(p) is at least/3). We set

ha(p) g(p)/ g,(p) (p )
i=1

(observing that =lg(p)_->l for all p). Thus the ha have the desired
properties. Q.E.D.

We shall require the following additional notation and conventions. We endow
with the norm ]. referred to in Theorem 2.2 and define SF(a, r) accordingly if

A
’’’X )a . We write Ixlx =X =x Ix l if x (x a".

3.3. Proo[ o[ Theorem 2.3.
Step 1. We shall first assume that ([, g)(0) (0, 0). Let A &@ lxl 1} and
x A. For each & (g, a) there exist linearly independent , ..,

such that

va=2m -a X ’.
i-l

Thus there exist ol,. , w. TN such that

ft(g)O)i i, gt(d)i + SF (0, ) C.

The matrix [x, ., ] with columns x, -, is invertible, and we have

f’(g) X b -oi= b’i=ydforb=2m (i=l,...,m).
i=1 i=1

Thus there exists a neighborhood S(, 2) of in such that for all p A(0, a)
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sF(, 2/) the following statements are valid’ the matrices f’(O)[tol,.’’, w,,] have
uniformly bounded inverses;

(1)

the equation

g’(O)toi + SF (0, 3,/2) c C;

f’ O b iogi "ya

has a unique solution/(p) (/l(p),...,/;"(p)); and

(2) m -1 <-i(p)<-4m-1.
Furthermore, p->l(p)’S(, 2/)--> R" is Lipschitzian because f’ is Lipschitzian and
the matrices [f’(O)tox, , f’(O)to,] have uniformly bounded inverses.

The compact .set can be covered by the open sets S(/5,/) and therefore by a
finite subcollection S(p,/3) (a 1,..., ). By Lemma 3.2, there exist Lipschitzian
h" --> [0, 1] such that

&

Y’. h,,(p)= 1 (p ), h(p):0 (p_S(p, 2/3)).
=1

We denote by oi, b,(p) the vectors o3, b(p) corresponding to the neighborhood
S(/5, 2/3) S(p, 2) and the point p (0, a) in that neighborhood, and set

V(O, ce) A V(p) &’y-l,’h(p) Y. b ia (p)toi,,
i=1

Z’ denoting the sum over all c with h(p) 0.
The function 12 --> V(p) is Lipschitzian because each h (.) and b (.) is Lipschitzian.

Furthermore, if p (0, a) S(p, 2fl) then

[’(0) Y b(p)to. ya;
i----1

hence

(3) f’(O)V(O,a)=a.

Finally, in view of inequalities (2), we have

(4) V(p) 4y-lu.

Step 2. Let s(x) denote the unique point in ff that minimizes the euclidean
distance to x Rr. For any fixed a s A, we consider the differential equation

du(t)
t(t) V(s(u(t)), a), u(0) 0.

dt

Since V(p)I --<4y- for all p and since V(. and s(. are both Lipschitzian, there
exists a unique solution tu(t)=u(t;a) for all t->0, and the function (t,a)
u(t; a) :[0, ) xA " is continuous. Furthermore, since the components of V(p)
are all nonnegative, it follows that, for all [0, 1/4y6 ], we have u (t) ff A 85rN; hence
s(u(t)) u(t) and, by (3),

d
rd
--:’f(u(t; a)) f’(u(t))(t) f’(u(t)) V(u(t); a)= a.
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Thus

(5) f(u (t; a )) ta (0 <-_ <- 1/4y6, a A).
A SFLet $1 (0, 1/4y6) c We shall define a mapping U" $1 by

gtx=ulxl;x/Ixl x s--(o}, uo-o.
Since u(. ;.) is continuous, U is continuous at every x 0. Furthermore, since
lu(t; a)l-<4y-lt, we have IU(x)]--<4,-lxl, and thus U is continuous everywhere
on $1. Moreover, U is one-to-one because, by (5), U(x)= U(?) implies

x =f(U(x))= f(u()) .
Thus U is a homeomorphism of Sx onto U(SI) with the inverse fIU(Sx).

Step 3. We next study the behavior of g on U(SI). We first observe that if

y+Sv(O,)C, (t)+Sv(O,),C, ,,, >=0

then

Yi + sF O, Ki = kAC, (r) d" + SF (0, ut) AtC.
i=1 i=1

Let a A be fixed, let 0 =< yS, and let , ff denote h, b evaluated at (u(t) a)
We have

g’(u (t))fi (t) g’(u (t)) V(u (t), a) y-g’(u (t))E’g E b-iai,
i=1

and thus it follows from (1) that

g’(u (t))fi (t) + S 0, E’ff 2 Y-eZ’fi 2 ffC.
i=1 i=l

Since 0 e C and E’h 1, the inequalities (2) imply that

g’(u (t))a (t) + s (o, ) 4v-c;
hence, integrating this inclusion between 0 and ]6, we obtain

(6) g(u(t))+s(o,
Step 4. We now drop the assumption that (f, g)(0)= (0, 0). Applying relation (6)

to (/, g)- (f, g)(0) and C-g(O) yields, for any fixed a eA and Oty6,
g(u(t))-g(O)+S(O, t)=4v-t(C-g(O));

hence

g(u(t))-[i -4r-t]g(O) +S(O,

Let a0 [0, y] be such that

g(0) + s
Since O4y-at3 1, we may multiply the above inclusion by 1-4y-t and add to
the previous one to obtain

-1(7) g(u(t))+s(o,[-4r-t]o+4r-t kr)=4r tc+[-4r-t]c=c;
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hence

(8) g(u (t)) + S (0, Co) C.

Furthermore, relations (4) and (5) applied to f-f(O) yield

(9) f(u(t; a))=f(U(ta))=f(O)+ta, [u(t; a)[ _-<4y-t.
Now let tl a ,/8, a1=(1, 0,... ,0) and 0 a U(tl;al). Then, by (7) (with ao=0)
and (9),

f(Ol)=f(O)+tlai,

8g(O) +S(O,

01

Next we set

(fl, g)(O) a_ (f, g)(O + 0) (0

and verify that (fx, g) has all the properties assumed for (f, g) except that its range
is restricted to 8’N. If we denote by u the function u corresponding to (fx, gx) then
we have

f(0) =/(0) =riO)+ tial,

(10) g(0) + s (0, ,) c,
[ul(t;a)[l<-4y-lt.

We apply relations (8) and (9) with fl, gx, Ul replacing f, g, u and with
This yields, setting 02 __a u(t;-a) and ff&0 + O and taking account of (10),

riO) f () f (0) ta riO),

(1 l) g() + s

Step 5. We shall henceforth assume, without loss of generality, that (f, g)(O)=
(0, 0). We consider the function

0

and the corresponding homeomorphism x U(x of 8a 8 (0, 8) c N onto a subset
Wx of
because 8 is replaced by .) Thus x if+ U(x) is a homeomorphism of $ onto
W W1 + ff c with the inverse fl. By (8) and (11), we have

(12) g(+ U(x))+S(O, 8)=ge(U(x))+8(O, 8)cC
This proves the first assertion of the theorem.

Now let (F, G)’8 N x be continuous and

8

For an arbitrary z e R"* with Izl_-< we consider the continuous function

x (f-F)(ff+ U2(x))+z -(f-F)(O).S(O, rS)-.N

which maps S(0, -yS) into itself. By (9), (11) and Brouwer’s fixed point theorem,
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there exists a fixed point satisfying

hence

=f2(U2())-F(# + U2()) + z -f(0) +F(0)

-F(# + U2()) + z + F(0);

F(O + U()) F(0) + z.

We have g(O + U(2))= g_(U(2)) and therefore, by (12),

G(+ u.()) + s(o, 6) g(+ u2()) +s(o,) c.
Thus, for any z Sv (0, yS) there exists a corresponding 0 (= ff+ U())
such that

F(Oz)=F(O)+z, G(Oz)+Sv(O,y8)=C. Q.E.D.

TzOrM 3.4. Let 0 y, 1, N {1, 2,. .}, 8ff, and (f, g) x
be C and such that g(O) C and, for all ,

s (o, r) {f’(o)I , g’(o) + s (o, v) c g (o)}.

Then for every continuous (F, G)" x with

we have

A AProof. Lt 07 717-e, l-e nd (F,)’x con-
tinuous and such that

Th C function cn approximated y mollified" functions

where () is defined as 0 for, each is C, p() :(, ):0 if either
som or i/i o i/i,o, .

vrify that ch is C nd therefor ch Lipschizin on the compact
st, nd that

(x) f f’(x + y)p (y) dy

and

lim 4,(x jr(x), lim 4 (x) "(x) uniformly for all x 81fiN.

We now observe that there exists/" such that [4j(x)-F(x)l<-3’r181 (x 81’N)
and such that (bj, g) satisfies the conditions imposed on (f, g) in Theorem 2.3 with
8 replaced by yl, 81. It follows, by Theorem 2.3, that

S (F(0), 3/181) {F(O)Io , O(O)+S(o, 68) C}.

Since (F, G) is continuous on the compact set 8N and the above relation holds for
all e (0, ,8), the conclusion of the present theorem follows. Q.E.D.
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An essential part of the proof of Theorem 2.2 is contained in Theorems 2.3 and
3.4. The remaining part of the proof that follows is based on the proof of [13, Thm.
2.2, pp. 809-811]. In particular, the first three steps of the proof below are almost
an exact copy of the corresponding three steps in [13, pp. 809-811].

3.5. Proof of Theorem 2.2.
Step 1. Assume that there exists no (/1, 12, A) as described in the theorem, and

observe that the convex body C contains some ball SF (yo, r) with r > 0. We shall first
prove that there exists/ >0 such that, for every (f, F) Ao(b, )(qo), there exists
K satisfying

(1) f(-qo) 0, F(-qo)+Sr(O, fl)C-dp(qo).

Indeed, assume the contrary, and let eo be as defined in Definition 2.1 (2). Then
there exists a sequence ((fi, Fi))i>__io, with io > max (2/r, l/co) and (fi, Fi) A/i (qb, )(qo),
such that for each >_- io the nonempty closed convex set

S, a--{O} x {Y IY +sF(O, 1/i) C-dP(qo)}l" x 21

has no points in common with the nonempty compact convex set W A (f, F)(K- qo).
Thus there exist (l, l)s " * such that

(2) II (w Wi, s Si).11 /1121-- 1, liw >-lis

Since the set {12 * 11121 <= 1} is compact in the weak* topology of *, the sequence
(1, l) has a cluster point (/, l"2)s"x ay* with respect to that topology. Since
0 s W/, relation (2) yields

(3) lis [i2s2 ---< 0 ($ (0, $2)

and, since i0 > 2/r and S (yo, r) c C, this implies that

l2(yo-(qo)+Z)<=O (z $F(O,r/2)).

Thus

rlll <- 2 ((qo)- y0)

which, together with the first relation of (2), yields

(4) l-2((qo) to) >-- &r( -I -I),

This shows that (l 1, 12) 0.
Since the collections of functions {(f, F,)l, Ii --> io} and {t’li >- io} are equicontinuous

and bounded, there exist J c (1, 2, .) and a linear functional on the linear hull of
K such that

(5) lim lio(,F)(q)= (q) (q K)
iJ

and lc is continuous. We may arbitrarily extend as a linear functional to the entire
vector space and we may assume that the sequence ((fi, F,.)) was chosen so that
J (1, 2, .). Furthermore, since (qo) C and CO , we can select from each set
S a point si so that limi [Si[ O. It follows then from (2) and (5) that

h(q-q0)->0 (q sK).

This relation and (3) show that (’1, 1-2, ) has all the properties of (11, 12, h), thus
contradicting our first assumption.
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Step 2. Let/3 be as defined in Step 1. If there exists no a (0,/3 such that, for
each (f, F) s A (b, )(qo),

(6) SF (0, a) = f(K qo) R"
then there exists a sequence of (fi, F/)6A1/i(4, )(qo) such that each convex and
compact set fi(K-qo) contains a boundary point w with limi wi =0. There exist,
therefore, l 6 R" such that I/[ 1 and

Ifi(q-qo)>=lwi (q 6K).

A simplified version of the argument in Step 1 shows that there exists (/, 0,
&A(4, , C)(qo) such (q-qo)>-0 (q K). Thus (1, 0,) has all the properties of
(/, 12, A), again contrary to assumption. Therefore there exists a (0, fl] satisfying
relation (6).

Step 3. Since K is compact, there exists c’ such that IF(q’-q")l<=c for all
(f, F) A (b, )(q0) and q’, q" K. Let (f, F) be an arbitrary element of A (b, )(qo)
and correspondingly chosen to satisfy relation (1). We set fl’= (c’+c)-la and
observe that if z SF (0, a) " then there exists K such that f( qo) z. We
then let q’ A/’c] + (1 -/’)c and observe that

f(q’ qo) f(fl ’[q qo] + (1 fl’)[q qo]) fl ’f(q qo) fl’z
and, by (1),

F(q’- qo) + SF (0, a/2) F(I qo) + fl’F(q ) + Sv (0, a/2)

= F(4 -qo)+ SF(O, fl’c’ +-)
= F(q -qo) + S (0, a) = C -dP(qo).

This shows that

S (0, fl’a) {f(q qo)]q K, F(q -qo) + S (0, a/2) C (qo)}
(7)

[(f, F) e A (, )(qo)].

Step 4. Let 3’ -3-min (1/2/3’a, a). We can determine a finite collection {b, ,
sF(o, fl’a) and a number of ex >0 such that

sF(o, y)=co {b,... ,b’,}

whenever [b bil --< e (/" 1, ., n). Furthermore, by the definition of the directional
derivate container, all the elements of A (4, )(q0) are equicontinuous when restricted
to K. It follows therefore from (7) that there exists a finite subset {q, , qN} of the
compact set K such that, for every (f, F) e A (4, )(q0) and every/" e {1, , n }, there
exists 4 {qX,..., qU} satisfying

If(4 qo) bi[ <- e 1, F(4 qo) + sF (0, a/4) = C aP(qo).

This implies that

sF (o, ,) co {f(q --qo)l/ {1, N}, F(q -qo) + SF (O, a/4) C cI)(qo)}

and therefore, setting 0 A co {qo, q,..., qN},

SF (0, y) {f(q qo)lq s (, F(q -qo)+ Sr (0, 2y) C (qo)}
(8)

[(f, F) 6 A (4, )(qo)].
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Now let e a and O __a (ql, ", qN), and let (bi, i), 6 6(O), i* i*(O, e) and
(to) be correspondingly defined as in Definition 2.1. We set

(d,, ,)(O)--a (b,, O,)(h(O)),
(, )(0) (, O)(h o (0)),

q’&h(O), q h(to)
and observe that

D(flbi, O,)(q’; q -q’)= (fib,, O,)’(O)(to -0).

Therefore, by 2.1(4), for each 0 8- and i->i* there exists (f,F) A(, )(qo)
satisfying

(, )’(0) (f, F)(q -qo).

It follows then from (8) that
S (0, r) { (0)I f, (O) +S (0, 2T) C O(qo)}

{(o)[ , (o) +s(o,)c-,(o)}
for all 0 8u and all sufficiently large i, say ix i*, for which

1, (0)- O(qo)l [0, (qo)- O(qo)l .
Thus each of the functions (f, g)=(i, Oi) (i i) satisfies the assumptions of

Theorem 3.4 provided we replace C by Ci SF (C, di), where

d, & ]O,(qo)-O(qo)l ],(0)- O(qo)[,
so that (0) C. We choose a positive integer suciently large so that

<’ a I,(o) (0)1 <(9) I(0)(0)l =y
Then Theorem 3.4 and Lemma 3.1 yield, for (F, G)= (, ),

s ( (qo),)=s(g(o),)
={g(o)lo e Yu, (0)+ s (o, h) = G}
{ (q)]q O, (q)+Sv(O, h)=s(G

={(q)lq e O, (q) + s (o,)= c}

which shows that relation (i) of alternative (b) of the theorem is valid with
Finally, assume that (, @) is continuous. Let u, u, and let and n be sufficiently

large so that

We set (F, G)(O) (, @)(u,(O)) (0 6u) and again apply Theorem 3.4 and Lemma
3.1 to obtain the inclusions

6sv( (o),)={(u, (o))1o e Yu, (u, (0)) + s (o,m = c}

={ (u)]u , (u) +sv(o,m = c}.

This completes the proof of the theorem. Q.E.D.
3.6. Proof of Theorem 2.4. We observe that qo minimizes O(q) on the set

{q KI (q) o, (q)e c}
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if and only if (qo, 0) minimizes 4(q)+ a on the set

{(q,a)sg [0, 1][b(q)= 0, (q) C}.

We let

--axR, / a-Kx[0, 1], c a_(q,a), o=a(qo, 0),

(’, )(c) -a-- (b ’, )(q), ()A b(q) + a ( m/,),
and verify that we can define a directional derivate container for ((4, ’), ) at 4o by

A ((4, ’), )(4o)--a {(h , h H)l(h U)(x, a) (g’ G)(x),

h (x, a g(x) + a (x , a ),

((gO, g,), O)m A" ((b, 4 ’), )(qo)}.
We may apply Theorem 2.2 to the problem in which b, , K and qo are replaced by
(4,41), , / and 40, respectively. Then alternative (b) of Theorem 2.2 is
invalid because 4o minimizes bo on the set

{4 14; 1(4) o, c}.

Therefore there exists ((lo, l), 12, A ’A((b o, 4 ), , C)(qo) such that

Aqo=minAq and 0= min loa<=lo. Q.E.D.
qK a[0,1]

3.7. Proof of Theorem 2.5. The proof of the first part of the theorem is identical
with that of Theorem 2.4 except that we also set a___ oR [0, 1] and observe that 4o
cannot satisfy the corresponding relations (ii) of alternative (b) of Theorem 2.2 because
it minimizes 4 on the closure of the set

To prove the second part of the theorem, we proceed again as in the proof of Theorem
2.4 except that we set

/3 A -[6 (qo) b (po)], / AK x [-/,/3 ], =a o//x [-fl,/3 ], ,80 A (po, 0)

and apply Theorem 2.2 to (o, 1), , C at Po. Then relation (ii)of alternative (b)
cannot apply, and there exists ((l-o, 1), l-2, )A((o, b 1), , C)(po) such that

po min q and 0 min l-oa <= min {l-o/3, 1-o/3}.
a K a[-10,/3]

Thus lo= 0. O.E.D.
3.8. Proof of Theorem 2.6. Since is assumed separable, the weak* topology

of * is metric. Therefore, by the definition of LtA(&, , C)(qi), for each there exist
sequences (li’J)j=(liii, l)) in "x* and (Mi’)j with Mi’i A1/i(&, &)(qi)such that

lim l’i
1, lim l’y 12y (y ), [l’il+l/[ 1,

lim lidMi’iq A iq (q K),

liy <_- 0 if SF (y, 1/]) C fJ(qi ).

For the same reason, there exists [8, Thm. 1.3.12, p. 41] a norm I" [w (weak norm) on

* such that the strong unit ball 0//, in * is I’lw-sequentially compact and, for
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f, f’ o?/*, we have

lim fiy fy (y 0y) if and only if li/m [fi-flw O.

Thus for each {1, 2,...} we can determine ]1 such that

We set

h > 2i, ilk,j,- li 1
<- I@-Z21w--<-=i’ t’

Ili’i’Mi’i’q A iq[ <= _1 (q K).

’, E lE ’, l"l’M

and observe that [lri[+[lri 1 and the functions Xi’K--> I are uniformly bounded
and equicontinuous. Thus there exist J c (1, 2,...) and ll e R", lee * and A’K
such that

-i(1) lim 11 ll,
iJ

Next we observe that

lim I- lElw O, lim Xi A uniformly on K.
iJ iJ

(2) y _-<0 if SV(y, 1//,)cC-dp(q,)

For each n e {1, 2,...} we determine i, eJ such that

set

IdP(qi.)-dP(qo)[< ]i.>-2i,>-2n, d(q,.,qo)<-_p ,],. >=2i,>--1/6(1/n),=2n’

1A_.. fi, 2 A.._ ii., n A -i.__t n,

and replace by i, in (2). We obtain

lzy-<O if SV(y +@(qi.)-(qo), 1/ji.)=C-(qo)

and, a fortiori,

if SF(y, ) C-CP(qo).

Furthermore, we observe that, by (1),

lim " lira ]i- A

Finally, we recall that

Mi"’i’.
_
A1/i’.(, dp)(qi.),

and therefore, for /’" _a_ Mi. j.., we have

Ar, e A1/" (, P)(q0).

uniformly on K.

d (qi., qo) <-- P(-)

This shows that the sequences f" =a (f,, 1"2") and (/17/") correspond to (11,/2, A) as in the
definition of &A(b, , C)(qo). Q.E.D.
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3.9. Proof of Theorem 2.8. If the first alternative of the theorem (concerning the
existence Of G) is not valid then there exists a sequence (qi) in (K) converging to
q0 and such that 4(qi)<4.(q0). Then, by Theorem 2.5, each qi is abnormal and
therefore, by Theorem 2.6, q0 is itself abnormal. Q.E.D.

3.10. A discontinuous function with a directional derivate container. Let K and
(b, O):K R2 be defined as in Remark 3 following Definition 2.1. We set

4 3)m(b, O)(qo) ={(z T, zT)IzT=t(--2-Srl 4-Zn Izl x, (, )g}{(0, 0)},

where z T denotes a row vector viewed as an element of ()*, (z z T) is the 2 x2
matrix with rows z z and superscripts of , n (and below ) denote powers. To
show that A (, O)(qo) satisfies Definition 2.1 we set i and observe that, for

qJ (xi, yj) # (O, 0), ()= ( wJ(xj, yj)) (w , N),Q= qN),
/

N N

ca=tO, wheret= Y’. cai, 0J=l,
i=l

N

((; q) - Y. O(x, y), x -(x, ,x.), y___a (ya,.. ", y,,),

we have

,(oa)=twT(XT, yT), where wT-- (--2(-3r]-4, 4(-2r]-3) =b’((,
and (XT, yT) is the matrix with rows XT and yT. Since

:_>-minx.>0, =>min yi>0, 0<x.-<l, 0<yi_<-l,

it follows that w T are bounded for any fixed O and we can choose 6 6(0) positive
Tand small enough so that tlw [<_- 1 when 0-< t =< 6 i.e. when ca

Since A (4, )(q0) is independent of e and contains elements whose norms are
at most 1 and since bi= =b, conditions 2.1(1), 2.1(2) and 2.1(5) are satisfied.
Condition 2.1(3) is satisfied because ca ’(ca) is continuous. If q’ 8(O)N and qK
then q’ is of the form t(sc, ) for O<-_t<-_6(O) and

Dqb(q’; q-q)-M(q -q’), where M= t(-2-34, 4-3).
Thus D(b, )(q’; q q’) (M, M)(q q’), with (M, M) A (q, @)(q0), and condition
2.1 (4) holds.

Acknowledgment. I am indebted to A. D. Ioffe for pointing out that my original
assumption of separability of was not needed in the proof of Theorem 2.2.
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LOCAL OPTIMALITY CONDmONS AND LIPSCHITZIAN
SOLUTIONS TO THE HAMILTON-JACOBI EQUATION*

FRANK H. CLARKES AND RICHARD B. VINTER

Abstract. We consider an optimal control problem with end-constraints formulated in terms of a
differential inclusion. A sufficient condition for local optimality of a trajectory is given, involving a
Lipschitzian function 4 which is a generalized solution to the Hamilton-Jacobi equation. It is shown that
the weakest hypothesis under which the condition is also necessary is that the problem be locally calm. It
is further proved that local calmness is implied by strong normality. We thereby establish that the
Carath6odory approach, modified to permit Lipschitzian functions b, is applicable in principle when the
first order optimality conditions yield nontrivial information.

Key words, calculus of variations and optimal control, necessary and sufficient conditions for optimality,
Hamilton-Jacobi equation, nonsmooth analysis

1. Preliminaries. The definitions of generalized gradient, generalized directional
derivative and normal cone used in this paper are those of [2].

Let (7 be an open subset of I" and suppose that g (.) (7 R is a locally Lipschitzian
function. The generalized gradient of g(.) at a point x is written Og(x), and the
generalized directional derivative of g (.) at a point x in a direction v Rn is written
g(x; v).

For C a closed subset of In, the normal cone to C at a point x C is written Nc (x).
Euclidean distance is written I. I.
We denote by dist (A 1, Az) the Hausdortt distance between two sets A 1, A2 ".

The modulus sup {Ix I: x A} of a set A " is written IA I, and the Euclidean distance
between a point x " and a set A is written dA (’).

The only measure we shall consider is Lebesgue measure. "a.e." signifies "almost
everywhere with respect to Lebesgue measure".

2. Introduction. We study the optimal control problem

(2.1)

(2.2)

(2.3)

expressed in terms of"

(P)

Minimize f(x (1))

subject to

(t)F(t,x(t))a.e.,

x(O) =Xo, x(1) C

a nonempty subset
a function F(., with domain f which takes as values subsets of ",
a point x0 n and a nonempty subset C1 = " and
a function f(. {x (1, x
An absolutely continuous function x (.) ! [" (where ! is a sub-interval of [0, 1])

which satisfies (2.2) and has its graph in I) is called a trafectory. If furthermore ! [0, 1
and x (.) satisfies (2.3), it is called an admissible trajectory.

A tube about some function x (.) :I I is a set of the form

(2.4) {(t, y): tel [y-x(t)l<e}
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for some e > 0. More specifically, we refer to (2.4) as the e-tube about x (.).
A function x (.) is said to be interior if some tube about x (.) is contained in f.
An admissible trajectory z(.) will be termed locally optimal if it achieves the

minimum of the functional (2.1) over admissible trajectories x (.) having graphs in
some tube about z (.).

Let z(.) be an admissible, interior trajectory. A result customarily associated
with the name of Carath6odory, but which has appeared in a variety of guises virtually
from the inception of the calculus of variations (see [18, Chapt. 1] or [10, Chapt. 7]),
provides a sufficient condition that z (.) be locally optimal, expressed in terms of a
solution to the Hamilton-Jacobi equation

,(t,x)+ min {x(t,x)’e}=0
eF(t,x)

with boundary condition

(2.6) (1, x)= f(x).

The sufficient condition (which applies under suitable conditions on F(.,.)) is that
there exist a continuously ditterentiable function &(.,.) which satisfies (2.5) for all
(t, x) in the interior of a tube about z (.) and (2.6) for all x in the intersection of C
and a neighbourhood of z (1), and is such that

(O, xo)=f(z(1)).

The question arises" how widely applicable is the Carath6odory condition? If we
consider the condition essentially as stated above then the answer is disappointing. It
is easy to construct counter-examples of problems in modern control theory, of a
nature such as we would not like to exclude from consideration, whose solutions
cannot be characterized in this way. These observations have prompted a number of
authors to search for modifications of the condition which are, in principle, more
widely applicable. We refer to [1], [9], [14], [15], [16] and [17]. Such a quest is implicit
also in [11]. All these papers, in one way or another, deal with the main stumbling
block in application of the original condition, namely the requirement that it involve
a continuously differential function (., is excessively stringent.

The results presented here are in the tradition of such modifications. We show
that the Carath6odory condition can be modified to supply an optimality condition
involving a Lipschitzian function (.,.) which is a generalized solution to the Hamil-
ton-Jacobi equation (2.5), and that the modified condition is applicable under a
reasonable hypothesis.

As a first step it is necessary to interpret Lipschitzian functions (., which are
"generalized solutions" of (2.5). We shall follow Offin [12] and replace (2.5), when
(.,.) is Lipschitzian, by

min {a+ min {e./}}=0(2.7)
,)0,.x) v,.

in which 0 denotes the generalized gradient of . (Notice that, when (.,.) is
continuously differentiable, (c,/3) 0(t, x) implies (c,/3) (04/Ot(t, x), 04/Ox(t, x))
and so, in this case, we recover (2.5) from (2.7)). We mention that generalized gradients
and their properties play an important part, not merely in our interpretation of
generalized solutions to (2.5), but in the arguments employed throughout this paper.

What is the "reasonable hypothesis" under which the modified Carath6odory
condition applies? It is that the first order conditions for local optimality, applied at



858 FRANK H. CLARKE AND RICHARD B. VINTER

the locally optimal trajectory z(.) of interest, are nontrivial in the sense that they
must take a form in which the multipler associated with the cost is nonzero. Experience
shows that, typically, the first order conditions are nontrivial (in the above sense) or
they can be made so by elimination of redundant constraints. Indeed the hypothesis
is implicit in many of the algorithms found in the optimal control literature where it
is judged sufficient to prove that sequences of trajectories generated by algorithms
converge to a trajectory satisfying merely first order conditions. To this extent then
our hypothesis is reasonable.

Our results may be seen as confirming a conjecture of Young [18, p. 264] that
nontriviality of the first order conditions is the weakest condition under which we can
expect to derive sufficient conditions for local optimality.

Actually rather more is proved in this paper than the foregoing remarks suggest.
Firstly, as an intermediate result, a weakest hypothesis is identified under which the
modified Carath6odory condition applies. This hypothesis is local calmness. Local
calmness concerns the stability of the minimum cost under data perturbations. Secondly
it is shown that local calmness is implied by nontriviality of the first order optimality
conditions.

The intermediate result is interesting in its own right as relating two desirable
properties, namely applicability of the modified Carath6odory condition and stability
of the minimum cost under data perturbations; the result is also significant because
it is easy to deduce from it that, if the modified Carath6odory condition fails to apply,
then it can be made to do so by an arbitrarily small perturbation of the endpoint
data.

The main difficulty in proving our results is the presence of the terminal constraint
x (1) C1. When this is absent it is easy to show that local optimality implies existence
of a suitable function b (.,.); we construct it as the "value function" of the problem
(P) (see [12] or, for such results in the setting of differential equations with control
term, [8]). In the constrained case (under the local calmness hypothesis) we can still
prove the result by construction; 4(’, ") is now, not the value function for (P) which
may be discontinuous, but that of some auxiliary problem involving no terminal
constraint.

The present paper appears to be the first which connects sufficient conditions
involving Lipschitzian functions b(., .) and local calmness in a differential inclusions
setting, and which connects calmness and nontriviality of the first order conditions,
for fully nonlinear problems, in any setting.

Our methods can be readily adapted to apply in the framework of differential
equations with control term. We thereby obtain a direct proof of results similar to
those in [15], where it is also shown that local calmness is the weakest hypothesis
under which a modified Carath6odory condition involving Lipschitzian b(., .)’s
applies, but by use of a very different, nonconstructive approach. By adapting our
methods we can also show that nontriviality of the first order conditions, in the form
of the Pontryagin maximum principle, implies local calmness in the framework of
differential equations with control term. The result however takes a more natural
form in the differential inclusions context of this paper, for reasons connected with
the "intrinsic" nature of the first order optimality conditions which are appropriate
here (see [5, 5]).

A proof, along somewhat different lines to the self-contained proof presented in
this paper of the result "nontriviality of the first order conditions implies that the
modified Carath6odory condition applies", will appear in [7] as part of a general
development of optimality conditions.
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3. The hypotheses. We hypothesize:
(a) f(. is locally Lipschitzian;
(b) F(.,.) takes as values nonempty compact convex subsets of R and is con-

tinuous in the sense that

dist (F(t’, x’),F(t, x))-> 0 if (t’, x’)-> (t, x) in fl;

(c) there exists a constant k such that for any t, x, x’

(3.1) dist (F(t,x’),F(t,x))<=klx’-xl

whenever the left-hand side is defined;
(d) there exists a constant r such that

(3.2) IF(t, x)l <- r for all (t, x) ;
(e) Ca is closed.

In fact the values of the functions f(. and F(., on only some fixed bounded subsets
of their domains will be relevant to what follows. We can assume therefore without
loss of generality (and this we do for convenience) that fl is a bounded set. f(.) is
thereby rendered a Lipschitzian function taking values in some fixed bounded set.

4. Normality and calmness. We define the Hamiltonian function H(.,., .):fl

(4.1) H(t, x, p) max {p v: v F(t, x)}.

Under our hypotheses (x, p) -H(t, x, p) is locally Lipschitzian, for each t, on its domain
of definition.

In order to motivate the definitions to follow, we state here the conditions of
local optimality in [5, Thm. 2] as they bear on problem (P):

THEOREM 4.1. Letz (.) be an interior, admissible trajectory which is locally optimal.
Then there exists an absolutely continuous function p(.):[O, liar and a number A
equal to 0 or 1, such that

(4.2)
(-p(t),2(t))eOH(t,z(t),p(t)) a.e.,

-p(1)eNc(Z(1))+hOf(z(1)), +lp(1)l is nonzero,

where OH refers to the generalized gradient of (x, p)--> H(t, x, p) for each fixed t.
While the theorem provides merely necessary conditions for local optimality, its

significance resides in the fact that, under favourable circumstances, a trajectory z (.)
satisfying (4.2) for some h, p(.) is a likely candidate as a local solution to (P). z(.)
is certainly not a likely candidate when h may be taken as zero, for then all trace of
the cost functional f(. vanishes from (4.2). The condition which excludes this property
(the "triviality of the first order conditions" referred to in 2) is strong normality.

DEFINITION 4.1. Let z (.) be an interior, admissible trajectory which is locally
optimal. We say (P) is strongly normal at z (.) if the only absolutely continuous function
p(. which satisfies

(-O(t), . (t)) OH(t, z(t), p(t)), -p(1)eNc,(Z(1))

is the zero function.
We remark that (P) is automatically strongly normal at z (.) if z (1) int {C1}.
A weaker condition merely requires that the multipliers p(. ), h can be chosen

with h 1. This is "normality".
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DEFINITION 4.2. Let z (.) be an interior, admissible trajectory which is locally
optimal. We say (P) is normal at z (.) if there exists an absolutely continuous function
p(.) such that

(-[(t),2(t))OH(t,z(t),p(t)), -p(1)ENcl(Z(1))+Of(z(1)).

Let z (.)’[0, 1]- n be an interior trajectory and e a positive number. We define the
function qz.), ("): " t.J {o}

qz.),(u)=inf {f(x(1))}, u,
where the infimum is taken over trajectories x(.)’[0, 1]- " which have graphs in
the e-tube about z (.) and which satisfy

x(0) =xo, x(1)C+{u}.

If no such trajectories exist then the infimum is interpreted as +oo. The definition of
local calmness, which we now give, involves the function qz(.), (.).

DEFINITION 4.3. Let z (.) be an interior, admissible trajectory which is locally
optimal. We say (P) is locally calm at z(. if there exists positive numbers K and
such that

qz(.),(u)-f(z(1))>=-Klu[, allu

The significance of such a condition was apparently first noted by Clarke. In
earlier literature local calmness (often called simply "calmness") has appeared as a
hypothesis assuring normality in a variety of settings (see, e.g., [4]). In the present
setting too, if z (.) is an interior, locally optimal trajectory, then local calmness at z (.)
implies normality at z (.).

In this paper, the traditional roles of local calmness and normality (in the
strengthened form of strong normality) are reversed. Local calmness is the property
of primary interest here since, as we shall show, it is the weakest condition under
which our modified Carath6odory conditions apply. Strong normality will be presented
then as a sufficient condition for local calmness.

5. Main results.
THEOREM 5.1. Let z (’) be an admissible, interior trafectory.
(a) Suppose that there exists some 8 > 0 and a Lipschitzian function ck (’. defined

on the 8-tube about z (.) such that

(5.1) min {o-H(t,x,-13)}=O forall (t,x){O-,):o<<l,l-z(’,-)l<},
(,/)o4,(t, x)

(5.2) (1, x) f(x) for all x e{::

and

(5.3) (0, Xo)=/(z(1)).

Then z (.) is locally optimal, and (P) is locally calm at z (.). Conversely:
(b) Suppose that z (.) is locally optimal and that (P) is locally calm at z (.). Then

there exists 8 > O, and a Lipschitzian function 4, (’,") defined on the $-tube about z (.)
such that (5.1)-(5.3) are satisfied.

As remarked in 2, (5.1) (which may alternatively be written as (2.7)) reduces
to the Hamilton-Jacobi equation (2.5) when (.,.) is a continuously ditierentiable
function. Thus the theorem does indeed provide a modified Carath6odory condition
expressed in terms of a Lipschitzian function which is a generalized solution to the
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Hamilton-Jacobi equation. It also establishes local calmness as the weakest hypothesis
under which such a modified condition applies.

Local calmness may not hold, and then the modified Carath6odory condition fails
to apply. However in this case one can show that local calmness can be induced by
an arbitrarily small perturbation of the set C1 (c.f., [15, 7]).

And now our sufficient condition for local calmness"
THEOREM 5.2. Let z(.) be an interior trajectory which is locally optimal at z(.)

and let (P) be strongly normal at z (. ). Then (P) is locally calm at z (. ).
In light of Theorem 5.2 and remarks in 4, local calmness (at a locally optimal,

interior trajectory) is a condition intermediate in strength between strong normality
and normality. It is very easy to construct examples of problems illustrating that local
calmness is strictly weaker than strong normality.

For problems (P) in which
(i) f(. is convex and
(ii) F(.,.) takes the special form

F(t, x)={A(t)x}+G(t), all (t, x)

for some continuous n n-matrix valued function A and some continuous function
G taking values compact convex subsets of R", it can be shown that local calmness
is equivalent to normality. It remains a promising, but as yet unverified, conjecture
that local calmness is equivalent to normality for a large class of nonlinear problems.

Recalling that (P) is always strongly normal at z(. if z (1) int {C1}, we deduce
from Theorems 5.1 and 5.2 the following local optimality condition for "free endpoint"
problems:

COROLLARY 5.1. Let z(. be an interior, admissible trajectory and suppose that
z(1) int {C1}. Then z(. is locally optimal if and only if there exists some 6 > 0 and
a Lipschitz continuous function (.,.) defined on the 6-tube about z(.) such that
(5.1)-(5.3) are satisfied.

As we have observed in 1, a simple, direct proof of this last result can be given,
Finally we mention that results somewhat similar to Theorem 5.2, but developed

in the context of mathematical programming, are implicit in Robinson’s work [13].

6. Proof of Theorem 5.1.
Part (a). Let 6 be a positive number and (.,.) a Lipschitzian function which

satisfies (5.1), (5.2) and (5.3).
Suppose that x(.) is a trajectory having graph in the 6/2-tube about z(.), and

such that x (0)- Xo. Consider the function t--> &(t, x(t)). This is Lipschitzian since it is
formed by the composition of Lipschitzian functions. It is therefore certainly absolutely
continuous and

d
& (1, x(1)) (0, Xo) + -d-(t,x(t))dt.

By (5.3)

(6.1) d
(1, x(1))=f(z(1))+ -d-(t,x(t))dt.

Lemma 6.1. (d/dt)(t,x(t))>-O, a.e.
Proof. Let s (0, 1) be a point with the following properties.

(6.2) (t, x (t)) is ditterentiable at s,



86’2 FRANK H. CLARKE AND RICHARD B. VINTER

(6.3)

(6.4)

By (6.2)

2(s)F(s,x(s)),

s is a Lebesgue point of --> x (t).

d
-(t, x(t))

s+h

=lima,0 h-l[(s+h’ x(s)+ Is 2(t) dt)-(s, x (s))].
Using the Lipschitz continuity of 4 (’,") and (6.4), we can readily justify writing this
limit as

lim h-1[ (s + h, x(s)+ h2(s))-(s, x (s))].
h$0

This in turn is bounded below by the following expression involving the generalized
directional derivative (-)(. ;. of (-)"

-(-)((s,x(s)); (1, (s)))

-max {a +/32 (s)}
(,13 )o(-,b )(s,x (s))

min {a + f12 (s)} (we have used the fact that 0(-) -0),
(,13 )o,b (s,x(s ))

=> min mirr {a +/e} (by (6.3)),
(o,13)eO&(s,x(s)) eeF(s,x(s))

min {a H(s), -B} 0
(o, )o4,(s,x (s

by (5.1). We have shown that (d/dt)(t, x (t))l,=s _->0.

Since points s having properties (6.2), (6.3) and (6.4) constitute a subset of full
measure, the lemma is proved. !-!

From (6.1) and Lemma 6.1 we deduce

(6.5) (1, x(1)) ->f(z (1)).

Now let e be a closest point in C1 to x(1). Since Ix(1)-z(1)l<,/2, the point e is in
{s I-z(1)l <t}(’l C. By (5.2)

/(x (1))- (1, x(1)) >-K[x(1)-el -Kdc(X(1)),

where K is the Lipschitz constant of the function x --> f(x)- & (1, x). By (6.5) then

f(x (1)) >-f(z(1))-Kdc(x(1)).

We conclude from this inequality that z(. is locally optimal, and (P) is locally calm
at z(.).

Part (b). We first state a lemma, an obvious variant of [3, Prop. 2], which provides
an estimate of the "distance" of a function from the set of trajectories satisfying a
specified boundary condition.

LEMMA 6.2. There exists a constant k with the following properties: given a > O,
a sub-interval [s,s2]c[0, 1], s[s,s2] and an absolutely continuous function
X(" )i IS 1, $2] n such that

(i) the a-tube about x (. is contained in ll, and
(ii) kIAF(X(.))<, where

Av(x (’)) dv(,.(,))(2 (t)) dt,
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then there exists a trajectory y (.) [s 1, s2] --> R" such that y (s x (s and
s2

])) (t) -. (t)] _--<klAF(X(.)).dt

We shall denote by T the a-tube about z (.). Let e, K > 0 .be numbers having
the properties

e < 2r (r as in (3.2)), T3 c 12

and

(6.6) f(z (1)) f(x (1)) + Kdcl(x (1)) for all trajectories x (.) [0, 1 --> I" such that
x(0) x0 and x(. closure {T2}.

Such numbers exist since z(. is an interior arc and since (P) is locally calm at z (.).
Define the function g (., ):fl--> l" by

g(t,x)=max{Ix(t)-z(t)l-e, 0}, (x,t)I).

With each point (s, u) I) we associate a problem (Ps,u):

Minimize the functional

(Ps..) n..(x(.))=n g(t,x(t))dt+Kdc(X(1))+f(x(1))

over trajectories x (.)" [s, 1] " which satisfy x (s) u.

Here n is some positive number.
If the set of such trajectories is nonempty, we denote the infimum of the values

of rt.. (’) by inf {P,. }.
LEMMA 6.3. Numbers 6 (0, e) and n >0 can be chosen with the following

properties"

for each (s, u) e T, (P.) has a solution,

and all solutions to (P..) have graphs in closure (T2}.

Proof. Choose 3’ > 0. Now select 6 e (0, e) and n > 0 to satisfy

e 4r
(6.7) 6< and n>-(Ke+2L+y)

klk+l e

(here kl is the constant of Lemma 6.2, k that of (3.1), r that of (3.2) and L is a
bound on the values of If(" )1).

Take (s, u)e T. Recall that 6 e (0, e/(klk + 1)) and T el). By Lemma 6.2 then,
applied to the function z(.) restricted to [s, 1] and translated by u-z (s), and (3.1),
there exists a trajectory y (.)" Is, 1]- [" in T satisfying y (s)= u. It follows that there
exists a minimizing sequence {x l(" )} for (P,,).

We note in passing that inf {Ps,,} is bounded above by ,, (y (.)), whence

(6.8) inf {P..} <=Kdc(y(1))+f(y(1)) <-Ke +L.

We shall show presently that for every trajectory 2(. ):Is, 1]- " not in closure {T2}
and such that 2 (s) u we have

(6.9) rt,. (2(’)) => inf {P..} + /.
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This will in effect complete the proof, because (6.9) means that the elements xi(" in
the minimizing sequence must eventually have graphs in the closed set closure {T2 } c
ll; bearing in mind our hypotheses on the data, notably that F(.,.) has as values
compact, convex sets, we deduce, by means of standard compactness arguments, the
existence of a cluster point (in an appropriate sense) of {xi(’ )} with graph in closure
{T2 }, which solves (P.u).

For a trajectory 2 (.) with the stated properties, we must have

(l-s)->-

by (3.2), and since ]2(s)-z(s)l<e. But then, because t-->lx(t)-z(t)[ has Lipschitz
constant at most 2r and e e (0, 2r), we can easily show that

ne 2

n,.((’)) n g(t,(t))dt+Kdc((1))+f((1))>=--4r+O-L
>= Ke +L +3/_->inf {P,u}+ %

by (6.7) and (6.8). We have shown (6.9).
In view of Lemma 6.3, we may define a function

(s, u) inf {P.}, (s, u) T.
LEMMA 6.4. (i) f(Z(1))=&(O, Xo); and (ii) (1, x)=f(x) for x

{y:ly z(1)[ < t} f-I C.
Proof. (i) Let x (.) be any solution to (P0.xo). By Lemma 6.3, x (.) has its graph

in closure {T2}. We have, bearing in mind (6.6),

inf {P0.xo}= n | g(t,x(t))dt +gdcl(X(1)) +f(x(1))
Jo

>-Kdc,(X (1)) +f(x (1)) -> f(z (1)) 10,xo(Z (")) >= inf {Po,xo}.
Hence f(z (1)) inf {Po,o} (0, Xo).

(ii) This follows directly from the definition of
LEMMA 6.5. (’,’)" Ts Rn is Lipschitzian.
Proof. We show first that

[&(s, t)-(s, u)[ _-< (n +g + c)(1 + kk)la ul
(6.10) .for s e [0, 1], and points u, ti in the 6-ball

about z(s) such that [u -ffl<-_e/(klk + 1).
Here c is the Lipschitz constant of f(. ).

Consider such s, u and tT. Let x(. solve (P.). Recall that x (.) has its graph in
closure {T2}. Since T3 c f we may apply Lemma 6.2 to x(.) translated by ti-u
and conclude that there exists a trajectory 2 (.) with 2 (s) a such that

But then,

(s, a)-<_n I
n

max [2(t)-x(t)l<=(kk + 1)It7-u[.
t[s,1]

g(t, 2(t)) dt + Kdcl(2(1)) +f(2(1))

g(t,x(t)) dt +Kdc(X(1))+f(x(1))+(n +K +c)(klk + 1)la-ul

=(s, u)+(n +K +c)(klk + 1)[t-u[.
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Since the roles of u and t maybe reversed, we deduce (6.10).
Now let (s, u) be an arbitrary point in T.
We next show that

I(s, u)- (g, )l <= (n +g +c)(kkl + 1)(lu t2l + rls
(6.11)

for any (L t) T, sufficiently close to (s, u).

This property implies the Lipschitz continuity of 4’ (’,").
Take (L tT)T,. We shall need to consider two possible cases: (i) g<=s and

(ii) g>s. In the first case, let 37(’) be a solution to (P,.a) and define w 37(s).
Since 37 (’) has Lipschitz constant at most r,

(6.12) ]w -al<=rls-gl.
We may also arrange, by requiring that (L iT) be sufficiently close to (s, u), that the
restriction of 37(. to [L s] has graph in T,. Since the restriction of 37(’ to Is, 1]
solves (P.w) (the "principle of optimality") and g(t, x(t)) is zero on [L s],

(6.13) (s, w) =(L a).

Equations (6.10), (6.12), (6.13) and the triangle inequality imply (6.11) (for
sufficiently close to (L t)).

In the second case, take y(.) to be a solution to (P.,) and define now w =y (g).
Arguing as before, we deduce that, for (L iT) sufficiently close to (s, u),

(6.14) [w -ul<-_rls

and

(6.15) $(g, w)=(s, u).

Equations (6.10), (6.14) and (6.15) also imply (6.11). In either case then (6.11) is
true.

LEMMA 6.6. For every (t, x)int {T,}

min {a -H(t, x, -B)} 0.
(,O )o4(t,x

Proof. Since the mapping (a, , t, x)a -H(t, x, -B) is continuous, and since the
set-valued function (t, x)->O(t, x) has closed graph and values contained in some
compact set, it suffices to prove"

(i) For all points (t, x) e int {T}

(6.16) min {a -H(t,x,-fl)} => 0;
(a,B)o(t,x)

and
(ii) For all points (L iT) in a dense subset of int

(6.17) min {a H(L ti, -B)} <-- 0.

Consider (i). Let (s, u) s int {T} be an arbitrary point at which (., is differentiable,
and e an arbitrary point in F(s, u).

Note that (6.16) can alternatively be expressed as

a+fld>=O forall(o,fl)eO&(t,x), dF(t,x).

In view of the continuity of F(. ,.) and the characterization of 0(.,.) provided in
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[2, Prop. 1.11], it follows that (i) will be true if we can show that

(6.18) d)’(s, u) (1, e)>-O.

Here ck’(s,u) is the gradient of (t,x)d(t,x) at (s,u). Define y :[0, s] R" by

y(t)=-(s-t)e+u, [0, s].

Since e F(s, u), dF,,y(,))((t)) 0 as t’s and therefore

-1 fs(6.19) lim 7" dF(ty(t))((t)) dt=O.
-,[0

Now let {si} be a sequence of numbers such that si’s. From (6.I9) and Lemma 6.2 we
deduce that, for [si s sufficiently small, there exist trajectories y (.)" [s, s R" in
int {T} such that yi(s)= u and

(6.20) (s --Si)-1
$i

In view of the definition of d,(’,’ and the fact that g(.,.) is zero on T
(s, u)-(s, y(s)) >_- 0

for sufficiently large.
Now using (6.20) and the facts that d(’, ") is differentiable at (s, u) and Lipschit-

zian, We deduce that

lim(s--Si)-I{(S, U)--)(Si, yi(Si))

exists and

O_<lim (s-si)-l[)(s, u)-(si, yi(si))]

--liim (s--si) (S’ LI)--)(Si’ bl i(t) dt)
lim (s --Si)--l[f(S, U)--t (Si, U --(S -si)e)]

=d’(s, u).(1, e).

We have arrived at inequality (6.18).
Consider now (ii). Take any point (s, u)int {T}. Let y(. be a solution to (Ps.u)

and let g>s be such that (g,y(g))interior{T}, (g)F(s,(s)), tk(t,y(t))
is differentiable at L and g is a Lebesgue point of ))(t). We define t7 =y(g)
and e 3 (g).

The point (L iT) can be chosen arbitrarily close to (s, u) in this manner. For
h > 0 sufficiently small we have from the definition of & (.,.) and the fact that g(.,.
is zero on T

(g+h, y(g+h))-d(g, tT) 0.

Our assumptions about the point g permit us to write

0 lim h-l[b ( + h, y ( + h))-d (g,
h$0
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lim h-a[(g + h, a + he)-(g,
h$O

=>-(-b)((g, tT); (1, e))

-max {a +/e} min {a + fie }
(,t3)o(-,b)(,) (,t3)o4,(,)

_-> min min {a + Be } min {a H(g, a, -/3)}.
(,13 )o4,(,a) eF(,a) (,l )O,6(,a)

We have proved (6.17).
Reviewing Lemmas 6.4, 6.5 and 6.6, we see that 6 and the Lipschitzian function

(., .) defined on the 6-tube about z(.) satisfy (5.1), (5.2) and (5.3). The proof of
part (b) is now complete.

7. Proof of Theorem 5.2. As previously, we denote by T the a-tube about z (.).
Suppose (P) is not locally calm at z(.). We shall show it is not strongly normal at
z (.). Let e > 0 be such that

and such that z(.) is minimizing with respect to all trajectories x(.) with x(0)= x0,

x (1)e C1 and having graph in T. Such an e exists since z(. is interior and locally
optimal.

Let {a}, {/}, {el} be sequences of positive numbers converging to zero. For each
define g (., )" fl--> " by

g(t,x)=max{Ix(t)-z(t)l-e, 0}, (x,t)f.

With each i, we associate a problem (P)’

Minimize the functional

(P) n(x(.)) g(t,x(t))dt+dc(X(1))+Bf(x(1))

over trajectories x (.) satisfying x (0) x0.

If the set of such trajectories is nonempty, we denote the infimum of the values of
r(. by inf {P}.

LEMMA 7.1. We may assume that the sequences {}, {} and {e} have been so
chosen that, for each i, (P) has a solution (this we shall write x(. )) and

x(.) + z (.) uniformly.

Pro@ Let {y} be any sequence of positive numbers converging to zero. We now
choose the sequences {}, {} and {e} which in addition satisfy closure {T,}c f,
i=1,2,...

Ei(7.1) 2--< 1, 1, 2, ..,
(7.2) OgiE 2i > 4r(2iL +
Here, r is the constant of (3.2) and L is a bound on the values of If(’ )[.

Consider fixed. Let {xii(" )} be a minimizing sequence for {Pg} (such exists, since
z (.) is a trajectory with z(0)= x0). Suppose xgi(.) does not have its graph in closure
{T2}. Then we can easily show, using (7.1) and the fact that tlxg(t)-z(t)[ is
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Lipschitzian with constant at most 2r, that
2

Oi
Tli(Xi,(" )) >-[3iL.

4r

By (7.2), this last number is bounded below by

[3iL + "}li /if(z (1)) 4- /i Tli(Z (")) dr" Ti inf {Pi} + ’i.

This means that {xi,(" )} must have its graph in the set closure {T2} II for sufficiently
large. Again we appeal to standard compactness arguments to deduce that (P) has a
solution, xi(’), and

sup IXi(t)--z(t)l<--_2ei. I-I
t[0,1]

LEMMA 7.2. X(1) C for all sufficiently large.
Proof. Fix i. Since (P) is not locally calm, there exists a trajectory 2(. having

graph in T, such that

(7.3) dcl(i (1)) + fir(2, (1)) <f(z (1)).

Suppose in contradiction xi (1) e C1. Then, since xi (.) has its graph in T for sufficiently
large (see Lemma 7.1), it follows from the local optimality of z (.) that

(7.4) f(z (1)) <=f(xi(1))

for sufficiently large. But then, by (7.3) and (7.4),

inf {Pi} cei Jo g,(t, x,(t))dt +dc,(Xi(1))+.dC(xi(1))

>= 0 + 0 + Bf(z (1)) > dc,(2,(1)) + .[(2i(1)) => inf {Pi}.

From this contradiction we deduce that x(1)
Next we note"
LZMMA 7.3. There exists a positive number , and, for each i, both an absolutely

continuous function p(. )’[0, 1]--> I" and a vector qi e R" with the properties"

(7.5) (-p,(t),,(t))ea,Og,(t,x,(t)){O}+OH(t,x,(t),pi(t)),

(7.6) -pi(1)={q,}+fliOf(xi(1)), q,edc(e,), Iqil- 1,

where ei is a closest point in C1 to xi(1).
Proof. Consider the optimal control problem in which the state vector, written

(x, x 1, x), is a point in R "
Minimize x(1)+[(x(1))+lx(1)-xl(1)l
over trajectories (x( ), x (.), x (.))" [0, 1] --> x " x R" such that

d---(x(t), xl(t), x(t)) e {aigi(t, x (t))} {0} F(t, x(t)),
dt

(x (0), x 1(0), x (0)) {0} C1 {Xo}, and

x(. has graph in

We see that

((7.7) "-> \Oli gi(s, xi(s)) ds, ei, xi(t)
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is a solution to this problem, for each i. In light of Lemma 7.2

(7.8) x(1) # e,.

Now we apply to (7.7) the necessary conditions of [5, Thm. 2] in a slightly strengthened
form (but one which can be established by minor modifications to the arguments in
[5]), in which inclusion [2, (6)] is replaced by

p(0) h0 (z (0)) + ldco(z(O)).
Here is some positive number which depends only on the Lipschitz constants of the
data.

It is an easy exercise in calculating generalized gradients to deduce the lemma
from the necessary conditions and (7.8). I-1

We are now ready to complete the proof of the theorem. It is not difficult to
show that (7.5) and (7.6) imply

(7.9) Ip,(t)l<--(l+,c+,)+kJ, Ip,(s)lds, t[0,], i=1,2,....

Here c is the Lipschitz constant of f(. and k is as in (3.1). Application of Gronwall’s
lemma to (7.9) yields the information that the family of functions {pi(" )} is bounded
with respect to the supremum norm. By (7.9) then, the family is uniformly Lipschitzian.
The family {xi(’)}, too, is uniformly Lipschitzian by hypothesis (3.2). It follows that
after extraction of subsequences,

(7.10) pi(.)-->p(.) (andx(.)z(.)) uniformly,

and

(7.11) p,(.)/(.) (and$(.)2(.)) weaklyinL2

for some Lipschitzian function p (.).
By Lemma (7.1),

(7.12) ei--, z(1).

After further extraction of subsequences

(7.13) qiq

for some q R".
Consider now the differential inclusion (7.5). The set aOgi(t, x(t)) is contained in

the closed ball of radius a. Recall a 0. Using these facts, the upper semicontinuity
of (x,p)OH(t,x,p) and properties (7.10) and (7.11) we can show by familliar
arguments (c.f. proof of [6, Lemma 5]) that the limiting functions p (.), z (.) satisfy

(7.14) (-Ik(t), 2(t)) OH(t, z(t), p(t)) a.e.

We examine finally the boundary conditions (7.6). The set/30f(x(1)) is contained in
a ball whose radius tends to zero as oo. It follows from (7.6), (7.10), (7.12), (7.13)
and the upper semicontinuity of x Odcl(x) that

(7.15) p(1) vOdc(Z(1))

and

(7.16) Ip(1)l= 1.
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Equation (7.15) implies

(7.17) p(1) Nc(Z(1)).
The existence of a function p(.) satisfying (7.14), (7.16) and (7.17) establishes that
(P) is not strongly normal.
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OPTIMAL FEEDBACK CONTROLS FOR A CLASS OF NONLINEAR
DISTRIBUTED PARAMETER SYSTEMS*

VIOREL BARBUS

Abstract. It is shown that the optimal controls for a distributed control problem governed by semilinear
parabolic equations can be expressed in feedback form. The corresponding Hamilton-Jacobi equation is
studied and applications to infinite time horizon and time optimal control problems are given. Some
extensions to control problems governed by parabolic variational inequalities are indicated also.

Key word, optimal feedback control, optimal value function, Hamilton-Jacobi equation, control
problem with infinite time horizon, time optimal control, approximating feedback control

1. Introduction. We consider the class of semilinear diffusion control processes
described by the generalized heat equation

(1.1)
yt+Ay+fl(y)=Bu inQ=l"]O,T[,

y (x, O) yo(x), x

with the cost functional

(1.2) (d(y (t)) + h (u (t)))

Here the subscript denotes the partial differentiation of y’O-R ]-m, +oo[ with
respect to and 1 is a bounded and open subset of the Euclidean space R which
has a sufficiently smooth boundary F. As regards the operators A’D(A)cL(I)
L(I), B" U
]-m, +m] the following conditions will be assumed"

(i) A is a finear, .self-adjoint and positive operator in L(I) having the property
that for every , the subset {y e D (A); (Ay, y) + lY e --< , } is Compact in L(1) and for
every Lipschitz increasing function ’R -R with (0)= 0, one has

(1.3) (Ay,(y))_->-Cl(y)l(l+lyl) forall y inD(A).

Here C is some positive constant which depends on and (., ), I" are the scalar
product and the norm, respectively, in/_,(f).

(ii) B is a linear continuous operator from a real Hilbert space U to L(f).
(iii) "R -R is a locally Lipschitz monotonically increasing function such. that

t(0) 0.
(iv) The functions ’L2(fl)R and 4 "L2(I)) R are locally Lipschitz and non-

negative. The function h" UR is convex, lower semicontinuous (1.s.c.), non-
identically +0 and satisfies the growth corcition

(1.4) h(u)>=Cllull2+C2 forallu in U.

Here I1" denotes the norm of the control space U. The scalar product in U will
be denoted by (.,.). From now on the space L2(fl) with the usual norrn I. land the
scalar product (.,.) will be denoted by H. The scalar product and the norm of the
Euclidean space R" will be denoted by (., ), and I" 1,, respectively. By D (A) we have
denoted the domain of A endowed with the graph norm.

Let X be a real Banach space with the dual X* and let q’XR be a locally
Lipschitz function on X (by a locally Lipschitz function on X we mean a function

* Received by the editors March 23, 1982, and in revised form September 28, 1982.
t University Iasi, Iasi 6600, Romania.
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0which is Lipschitz on every bounded subset of X). Denote by "X X-->R the
function

(1.5) 0(y, v) lim sup (0(z + hv)-(z))h -t

and by 0 "X --> 2x* the generalized gradient of ([9], [10], [16]), i.e.,

(1.6) &c(y) {y* eX*; (y*, v)-<q(y, v) for all v inX}.

(Here (.,.) denotes the pairing between X and X*.) If is convex then 0 is just
the subdifferential of 0 in the sense of convex analysis (see e.g. [5, p. 89]). If admits
a continuous Gteaux derivative Vq then 0q V. Given a compact interval [a, b]
we shall denote by C([a, b];X) the space of all continuous X-valued functions on
[a, b] by BV([a, hi; X) the space of all X-valued functions of bounded variation on
[a, b] and by AC([a, b]; X) the space of all absolutely continuous functions y :[a, hi-->
X. We shall denote by Wl"2(a, b; X) the space {y L2(a, b; X); y’ L2(a, b X)} where
yi is the derivative of y in the sense of distributions. It is useful to recall that
W’2(a,b;X)cAC([a,b];X) and for any y e wl"2(a,b;X), y’ is just the ordinary
derivative of y (which exists almost everywhere). By ACloc(R/;X) we shall denote
the space of all functions y :R /= [0, +oo[ X which are absolutely continuous on
every compact interval [0, T]. The spaces L21oc(R +; X) and Wlt,;2 (R +; X) are similarly
defined.

Let F ;H-->H be the nonlinear operator given by

(1.7) Fy =Ay +B(Y) fory D(F),

where

(1.8) D(F) ={y eD(A); fl(y) ell}:

By (1.3) and assumption (iii) it follows that the operator F is maximal monotone in
H H (see for instance [1, p. 83] and [8]). As a matter of fact F is the subdifferential
of the convex and 1.s.c. function l"H --> R,

(1.9) l(y)=lAt/2yl2+ j(y(x))dx, yell,

where f (r) (s) ds for r R. Also D(F) H.
In terms of F, the Cauchy problem (1.1) can be written as

(1.1)’
y’(t)+Fy(t)=Bu(t), a.e.t]0, T[,

y(0) yo.

According to the general existence theory of nonlinear evolution equations (see [8]
and [1, p. 202]) for each yoH and u L2(t, T; U), O<-t <= T the Cauchy problem

(1.10)
y’(s)+Fy(s)-Bu(s), a.e.s]t, T[,

y(t) yo,

has a unique solution, denoted by y (s, t, yo, u), satisfying

(1.11) y(s,t, yo, u)C([t, T];H), l(y(s,t, yo, u))LX(t, T),

(1.12) (s t)/Ey(s, t, yo, u) L2(t, T; D(A)),

(1.13) (s -t)X/Ey(s, t, yo, u)LE(t, T; H).
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If /(yo)<+o0 then y(.,t, yo, u)Wl"2(t,T;H)L2(t,T;D(A)). Along with the
Arzela-Ascoli theorem the latter implies that for every y0D(1) the map u
y(., t, y0, u) is compact from L2(t, T; U) to C([t, T];H). In general, for yoH we
see by (1.12) and (1.13) that this map is compact from LZ(t, T; U) to C(]t, T];H)
L2(t, T; H). In (1.13) Ys denotes the derivative y’ of y :It, T]H.

We shall denote by q :[0, T] xH R the optimal value function of the control
system (1.1) with the cost criterion (1.2), i.e.,

(1.14)

T

(t, yo) =inf {It ((I)(y(s, t, Yo, u))+h(u(s)))ds

+0(y (T, t, Y0, u)); u L2(t, T; U)}.
The contents of the paper are outlined below.
In 2 necessary conditions of optimality for problem (1.1), (1.2) are derived in

terms of the generalized gradients of the functions/, , h and ft.
Proposition 1 and 2 given here for the purposes of 3 and 4 have an intrinsic

interest and extend in certain directions some results in [3] (see also [17]). In 3 it
is proved that every optimal control u for problem (1.1), (1.2) is a feedback optimal
control expressed by the formula

(1.15) u(t)e -O(t, y (t)), tel0, T],

where 0 is the generalized gradient of the function y q(t, y). Furthermore, it will
be shown that the function is the solution in a certain generalized sense to a partial
differential equation of Hamilton-Jacobi type. In 4 similar results are obtained for
control problems of the form (1.1), (1.2) with infinite time horizon, i.e., T +oo. In
5 some applications to optimal time control problems associated with system (1.1)

are given. In 6 are indicated some extensions to control problems governed by
parabolic variational inequalities.

To conclude this section it is worth noting that a typical example of operator A
satisfying assumption (i) is the following

(1.16)

N

Ay E (air(x)yx,)x, +A0y,
i,j=

D(A)= y eH2(f); aly +a2-- 0, a.e. on F

Here Ao is a linear continuous, positive, self-adjoint operator from H to itself,
c + a2 > 0, a -> 0 for 1, 2 and 0/0u is the outward normal derivative corresponding
to air. We must assume also that air CX(), aj ar for all i,/" 1,..., N and for
some to > 0,

N

(1.17) Y’. aj(x)r ->tol12, a.e. x e lq, eR.
id=

Nonlinear systems of the form (1.1) occur for instance in the temperature control
of a heat conductor f (see [11, p. 28]). In this case the function B has the following
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gl, if r <- h
ka(r-ha), if hl+gak

fl(r)= 0, if ha <-r<-h2,
k2(r-h2), ifhE<rhE+gEk-a,
g2, if r > hE + gEk1,

where ga, g2 and ha, hE, ka, k2=0 are real constants.

2. The generalized Euler-Lagrange equations. We shall study here the optimal
control problem with state system (1.1) and cost (1.2), i.e.,

T

(2.1) inf {Io ((y(s, 0, yo, u))+h(u(s)))ds +O(y(T, 0, yo, u)); u e L2(0, T; U)},
where yo e D (l), i.e.,

(2.2) yoD(Al/2), ](yo) e L(I")
and the functions ’H R, 4"H-R, h’ U R and A, satisfy assumptions (i)-(iv).
Since, as remarked earlier, the map u y(t, 0, y0, u) is compact from L(0, T; U) to
C([0, T]; HI it follows by (1.4) that problem (2.1) has at least one optimal control
(see Lemma 3 below). Let u* be a such optimal control and let y*= y(., 0, y o, u*)
be the corresponding state. We notice that y* W’2(0, T;H)L2(O, T;D(A)). For
any e > 0 consider the control problem: minimize

(2.3) O’(y(t))+h,(u(t))+llu(t)-u (t)ll2

over all u eL(0, T; U) and y e W’(0, T; H) subject to

(2.4)
Y’ +Ay +B (y) Bu, a.e. e ]0, T[,

y(0) yo,

where

(2.5)

(2.6)

h(u) inf {(2e)-Xllu -vlla+h(v); v U},

fl" (r) fl, (r e’t’)p (7") dr.

Here/3 e-a(1 -(1 + eft)-1) and O is a C-"mollifier" on R. The functions and
0 are defined as follows. Let {ei} be an orthonormal basis in H and let Xn be the
linear space generated by {ei}=l. For n [e -a] we define

(2.7)

(Y) IR- (P"Y e A,r)0n (’) dr,

f,. *(A"O)P"(A-’P"ye -0)dO,
and

(2.8) ,(y) fR.O(P.y -eA,r)on() dr, y H,
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where Pn"H X, is the projection operator on Xn, pn is a C-"mollifier" in R and
An "R Xn is the operator

An(’r) ze., (zt, , ’,),
i=1

Clearly the functions , 0, h are Lipschitz, Fr6chet differentiable and with the
Fr6chet differentialsV, V6, Vh Lipschitzian onH and U, respectively. As a matter
of fact since and are locally Lipschitzian we see that V and V6 are bounded
(uniformly with respect to e on every bounded subset. In other words, for every r > 0
there exists Cr > 0 independent of e such that

(2.9) IVq (Y)I + IVO (y)[ Cr for ly[ =< r.

Let (y, u..,) be an optimal pair for problem (2.3),.
LEMMA 1. For e --> 0 one has

(2.10) u- u*

(2.11)

Proof. We have

(2.12)

strongly in L2(0, T; U),

strongly in C([0, T]; H) and weakly in
W1"2(0, T; H) (’IL2(O, T; D(A)).

Ion’( 1 ,112)(P(y)+h(u)+-llu -u dt + (y (T))

T<=Io (cb(z)+h(u*)) dt+O(z(T))’

where z W1’9,(0, T; H) is the solution to

(z), +Az + (z Bu *, a.e. ]0, T[,

z(0) yo.

Using assumption (i) it follows by a standard argument (see [3]) that z y* in
C([O, T]; H). Hence

T T

(2.13) liml0e-,o
dt fn. (Pnze-eAn-)pn(-)d-= fo dp(y*)dt

because JR" 0n (’) d" 1, support 0n = {" R" ]’ln -< 1} and

IdP(P,z (t) e A,’) (P(y * (t))]

<-L(Iz (t) y*(t)[ + n-lzl. + IPny*(t) y*(t)l) for e [0, T].

Similarly, we have

(2.14) lim (z(T)) 4,(y*(T)).
e--0

On the other hand, it follows by (2.12) that {u} is bounded in L2(0, T; U). Hence
one some subsequence again denoted {e}

u ua weakly in L2(0, T; U),

y - ya weakly in Wa’2(0, T; H) and strongly in C([0, T]; H),
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and therefore
T T

(2.15) limloe-,o P(Ye)dt=Io (yl)dt,

(2.16) lim O(ye(T))=O(yl(T)).

Finally, by the Fatou lemma,
T T

(2.17) lim_,0inf Io he (ue) dt >= Io h (u 1) dt.

Along with (2.12), (2.13), (2.14) formulas (2.15), (2.16), (2.17) imply (2.10). As
regards (2.11) it follows by (2.10).

Since the functions e, 0e, he and/e are ditterentiable it follows by a standard
device that there exists p e W1’2(0, T; H) L2(0, T; D(A)) which satisfies along with
y and ue the system

(2.18) p’ -Ap -peVfl (ye) V (y), a.e. t e ]0, T[,

(2.19) p(T)+Vg/(y(T))=O,

(2.20) B*pe(t)=Vh(u(t))+ue(t)-u*(t), a.e. te]0, T[.

We take the scalar product of (2.18) (in the space H) by pc(t) and integrate on [t, T].
We get

T

(2.21) Ipe(t)[2+| (Ape (t), pe (t)) dt <-_ C, te[0, T]
J0

because (fie),_> 0 on R and by (2.9) {VcP (ye)} is bounded in C([0, T]; H). (We shall
denote by C several positive constants independent of e.) Now we take the scalar
product of (2.18) with ’(p) where sr is a C-increasing function on R which approxi-
mates the signum function. Integrating on [0, T] and using condition (1.3) we see that

(2.22) IoPe(Pe)V(Ye) dx dt <- IoVde (Y)(Pe) dx dt + CIo l((Pe)lE dx dt.

Then letting sr tend to sgn we get the estimate

(2.23) [Ivl3(y)pllL(O<=C foralle >0.

Let us denote by V the space D(A 1/2) endowed with the norm

Ily 112 Ia*/Zy 12 + lyl2

and with the usual Hilbert structure. Denote by V* the dual space of V. We have
V cH c V* and notice that by assumption (i) the injection of V into H is compact
and A is continuous from V to V*. Then by (2.22) it follows that {Ape} is bounded
in L2(0, T; V*). Hence {p’} is bounded in the space LI(0, T;LI(I)+ V*). Since by
the Sobolev embedding theorem L (YD = (H (I1))* for s >N/2 we may conclude that
{P’e} is bounded in the space L 1(0, T; (HS(ll))*+ V*). We shall denote by Y* the
space (H (fD)* + V* which can be viewed as the dual space of Y H (fD f’] V. Since
the injection of H into Y* is compact (because the injection of Y into H is compact)
by the Helly theorem in infinite dimensional spaces we may infer that there exists a
subsequence of {pc} which converges pointwise to a function p eBV([0, T]; Y*) in
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the strong topology of Y*. In other words,

(2.24) p (t) p(t) strongly in Y* for [0, T].

On the other hand, for every 8>0 there is C(8)>0 such that (see [14, Chapt. I,
Lemma 5.1 ])

]p(t)-p(t)l<-,llp(t)-p(t)llv+C(,)llp(t)-p(t)lly., t[0, T].

Along with (2.21) and (2.24) the latter implies that

(2.25) pp strongly in L2(Q) and weakly in L2(0, T; V)

and

(2.26) p(t)p(t) weakly in H for all [0, T].

By (2.23) we see that on some subsequence we have

(2.27) tzp lim V/ (y)p weak star in M(Q),

where M(O) is the space of all bounded Radon measures on O. Summarizing
at this point, we have shown that there exists pLz(O,T; V)f’IL(O,T;H)f’I
BV([0, T]; Y*) and tzpM(() which are the limit in the sense of (2.24), (2.25),
(2.26) and (2.27) on some subsequence and satisfy the system

(2.28)
p’-Ap- tzp v in (2,

p(T)-- r/ in I,

(2.29) B*p(t)Oh(u*(t)), a.e.t]0, T[.

Here v L2(Q) and r/H. are the weak limits of V(y) and V$(y(T)) in L2(Q)
and H, respectively and p’ is the derivative of p in the sense of vectorial distributions.

We need the following lemma.
LEMMA 2. Let {y,} be a sequence strongly convergent to y in H and such that

(2.30) V (y,) r weakly in Hfor e n -1 O.

Then zr 0(y).
Proof. By the theorem of the mean and formula. (2.7) we see that

A-((y, +Az)-(y))

h -I((P, (y,, + hz)-e A,z,,,x) (P,,y,, -e A,’,,x)),

where Iz.,x I. -<- 1. On some subsequence h 0 we have z,.x ’, and therefore

(2.31) (7 (y.), P.z) <= O(p.y. e A.., P,,z) for all z in H.

Inasmuch as the function o is upper semicontinuous on H H (see e.g. [10]) the
latter yields (Tr, z) <_- O(y., z) for all z H. Hence r 0(y) as claimed.

Coming back to the system (2.28) we may conclude by (2.30) and Lemma 2 that

r/ 0(y*(T)).
On the other hand, since by (2.9) and (2.11) {’(y)} is bounded in C([0, T]; H)

we may infer that

r(y), weak star in L(0, T;H).



878 VIOREL BARBU

Then by (2.31) we see that
T T

0
(u(t), z(t)) dt <-_ Io *(Y*(t); z(t))

and this yields

t/z L(0, T; H),

u(t) O(y*(t)), a.e. 6 ]0, T[.

We have therefore proved"
PROPOSITION 1. Let (y*, u*) W1’2(0, T;H)OL2(O, T; U) be an optimal pair

for problem (2.1). Then there exists p BV([0, T]; Y*)L(O, T;H)L2(O, T; V)
and I.tp M(O) such that

(2.32) p’-Ap-Izp L(O, T; H),

(2.33) p’-Ap-txoO(y*), a.e. on ]0, T[,

(2.34) p(T)+OO(y*(T))O,

(2.35) B*p(t)Oh(u*(t)), a.e. t]0, T[.

The function p is called the dual extremal arc associated with the optimal pair
(y*, u*).

Let us assume now that/3 satisfies the following condition:
(a) /3 is a monotonically increasing, locally Lipschitz function on R such that

/3 (0) 0 and

(2.36) ’(r)<-_C([fl(r)[+lr[+ l), a.e.rR.

PROPOSITION 2. If fl satisfies assumption (a) then x LI(O), p
AC([0, T]; ":’*)Yl Cw([0, T];H) for s >N/2, and

(2.37) x(x,t)p(x,t)O(t*(x,t)), a.e. (x,t)O.

Here Cw([0, T]; H) is the space of all weakly continuous functions from [0, T]
toll.

Proof. By (2.36) we see after some elementary calculations that

[Vt(y)]C(l/(y)]+ly[+l) Vy eR

and therefore

(2.38)
I [P[ Vfl (Y) dx dt<-- C(I [p[ [fl (y)[ dx dt

+I [P[ [Y[ dx dt + I ]P[ dx dt),
where E is an arbitrary measurable subset of O. By Lemma 1 and (2.25) we see that
{pfl (y)} is weakly convergent in LI(Q) while {p} and {y} are strongly convergent
in L2(O). Along with (2.38) these imply that the family {EP V(y)dx,dt; E cO}
is uniformly absolutely continuous and therefore by the Dunford-Pettis criterion
{p 7/3 (y)} is weakly compact in LI(Q)LI(O, T; (HS())*). Hence xp eL(O) and
since p’ L2(O, T; V)+L(O, T; (HS())*) L(0, T; Y*), pAC([O, T]; Y*).

Since p L(0, T; H) Yl C([0, T]; Y*) we see that for every to and each sequence
{t} to the weak limit in H of p(t) exists and equals p(to). Hence p :[0, T]-H is
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weakly continuous. Relation (2.37) has been proved in [3]. However, for the reader’s
convenience we outline its proof. By Egorov’s theorem, for each r/> 0 there exists a
measurable subset E, c (2 such that {y} is bounded on E. and y y* uniformly on

E. for e 0. Hence Vfl (y) are uniformly bounded on E. so that without loss of
generality we may assume that

Vfl(y)g weak star in L(E.).

Then by [4, Lemma 3] we may infer that g(x,t)O[3(y*(x,t)) a.e. (x,t)E,. Since
{p} is strongly convergent to p in L2(Q) we may conclude that

tXp(X, t)=p(x, t)g(x, t)p(x, t) 0/3(y*(x, t)), a.e. (x, t)E,.

Since r/is arbitrarily small (2.37) follows.
PROPOSITION 3. In addition to the assumptions ofProposition 2 suppose that either

[3 is globally Lipschitz or D(A) H2() andN 1. Then lzp L2(Q), p C([0, T]; H)
and for every 0 < 6 < T,

(2.39) pL2(8, T;D(A)), p’L2(8, T;H).

If /=--O then p L2(0, T;D(A))(3 W1’2(0, T;H).
Proof. If /3 is globally Lipschitz then {Vfl } is uniformly bounded on R and

therefore {p Vfl (y)} is weakly compact in LE(Q). Hence/zp LE(Q) and (2.39) follows
by (1.12), (1.13). If 4--0 then p(T)=OD(A) and therefore pc
L2(O, T; D(A)) wl’2(0, T; H). If D(A)c HE(f) and N 1 then

W1’2(0, T;H)fqL2(O, T;D(A))C(()

(C(() is the space of all continuous functions on Q) and by (2.11) it follows that
{y} is a bounded subset of C((). Thus V/3 (y) are uniformly bounded in Q and the
conclusion follows as in the first case.

Remark 1. Condition D(A) H2(Iq) is in particular satisfied by the operator A
defined by (1.16). As regards assumption (a) it is satisfied by a large class of monotone
nonlinear functions growing not faster than exponentially at +/-o. In particular it is
satisfied by any polynomial monotonically increasing function/.

3. Optimal feedback controls for problem (2.1). Let [0, T] H R be the
optimal value function defined by (1.14). Observe that is everywhere finite on
[0, T]H. Other elementary properties of are indicated in the lemmas which
follow.

LEMMA 3. For every (t, yo) [0, T] H the infimum defining (t, yo) is attained.
For every [0, T] the function q(t, .) is locally Lipschitz and for each yoD(F) the

function p(t, yo) is Lipschitz on [0, T].
Proof. As remarked earlier the map u y(., t, yo, U)TiS compact from L2(t, T; U)

to C(]t, T]; H) fqL2(t, T;H). Since the function u, h(u(s))ds is weakly lower
semicontinuous it follows by condition (1.4) via a standard device that the infimum
in (1.14) is attained. Let [0, T] be arbitrary but fixed. Since the operator F defined

by (1.7) and (1.8) is monotone we have

(3.1) ]y(s, t, yo, u)-y(s,t, 37o, u)]-< ]y0- f0[,

(3.2) [y(s,t, yo, u)l lYol+l[BII Ilu( )lld , t<=s <-T,
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where ]IBII is the norm of B. Let Yo H be such that [Yo[-<-r. We have (we may assume
h(O) < +oe)

(3.3) p(t, yo)_-< ((y (s, t, yo, 0) + h (0)) ds + $(y (T, t, yo, 0))--< Cr.

Along with (1.14) the latter implies that in (1.14) we may restrict the infimum to the
class -{u t=(t, T; U); ffllu()ll= d<-C) where C is independent oft and yo.
Let u’ be an optimal control for problem (1.14) and p’ L(t, T; H) be a corresponding
dual arc. By (2.18), (2.19) we see that for u’ J/lr [p’(s)[<-C a.e. s]t, T[ and so
(2.35) implies that u’ L(t, T; U)and Ilu’(s)ll<-_c a.e. s ]t, T[ (because by condi-
tion (1.4) (Oh)-1 is bounded on bounded sets). Hence without loss of generality we
may take :///r {u L(t, T; U); Ilu’(sll<-c, a.e. s ]t, T[.

By (3.1) and (3.2) we see that for every u :///r the function yo (y(s, t, yo, u))
is locally Lipschitz with Lipschitz constant independent of u. Hence y (t, y) is
locally Lipschitz on H. Next for every yoD(F) we have

(3.4) [y (s, ?, Yo, u) y (s, t, Yo, u)l <--ly (t, ?, yo, u) yo]-<- (IVyol +C3 )It- 71.
Let ut L(t, T; U) and Yt y(s, t, Yo, Ut) be such that

T

p(t, Yo)= Jt ((y,(s))+h(u,(s))) ds + (yt(T))

and let v(s) Uofor <-_s <-_t, v(s) u,(s) for _-<s <_- T where Uo is such that h(uo) < +00.
We have

q(?, yo)-cp(t, yo) -< ((y(s, ?, yo, v)+h(uo))) ds

T

+ J, ((y(s, ?, yo, v))-(y(s, t, yo, v))) ds

+ O(y (T, ?, yo, v))- O(y (T, t, yo, v)).

Along with (3.4) the latter implies that

1(/’, yo)-(t, yo)l_-<Ll/’-tl forall’,t[0, T].

LEMMA 4. For all [0, T] and yo H we have

q(O, yo) inf { ((y(s,O, yo, u))+h(u(s)))ds

(3.5)

+o (t, y(t, 0, yo, u)); u e L2(0, t; U).
J

Proof. Let (y, u) be such that y (s, 0, yo, u) y and

(0, yo) ((y (s )) + h (u (s ))) ds

T

+| ((y(s))+h(u(s))) ds +4,(y(T)).

The latter yields

(3.6) (0, yo)_-> q(t, y(t)) + ((y(s))+h(u(s))) ds.
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On the other hand, for all u EL2(O, T; U) and y y(s, O, yo, u) we have

(0, yo)_-< (d(y(s))+h(u(s))) ds

T+I ((y(s))+h(u(s))) ds +O(y(T)).

We may choose the pair (y, u) in such a way that
T

q(t, y(t)) ((y (s )) + h (u (s ))) ds +O(y(T))

and therefore

o(0, yo) <- ((y (s )) + h (u (s ))) ds +o(t, y (t)).

Along with (3.6) the latter inequality implies (3.5) as claimed.
We are now ready to prove the main result of this section.
TI-IEOREM 1. Let assumptions (i)-(iv) and (a) be satisfied. Let (y*, u*) be an

optimal pair in problem (2.1) where yoED(/). Then

(3.7) u*(t)E Oh*(-B* Ot#(t, y*(t))), a.e. E ]0, T[.

Proof. By Lemma 4, for every E [0, T] the pair (y*, u*) restricted to [0, t] is
optimal for the control problem

(3.8) inf. ((y(s, 0, yo, u))+h(u(s))) +o(t, y(t, 0, yo, u t;

Then in virtue of Proposition 2, for every tE[0, T] there exists
AC([0, t]; Y*) f3 Cw([0, t]; H) which satisfies the equation

(3.9) B*p’(s) Oh(u*(s)), a.e. s ]0, t[

and the transversality condition

(3.10) p’(t)E-Op(t, y*(t)).

It is well known that every measurable function is a.e. approximatively continuous
on [0, T]. Let E be the set of all points [0, T] where u* is approximatively
continuous. This means that for every E there exists a measurable subset Et c [0, T]
having the property that is a density point of Et and u* restricted to Et is continuous
at t. Let E’ be the set of all s [0, t] which satisfy (3.9) where is a fixed point in E.
Clearly there exists at least one sequence {t,}= E fqEt convergent to for n
Hence u*(t)= lim._ u*(t,) where B*p’(t,)E Oh(u*(t,)). Since p’(t,) is weakly conver-
gent to pt (t) and Oh is strongly-weakly closed in U U we may infer that

B*pt(t)EOh(u*(t)) forall tEE.

Along with (3.10) the latter implies (3.7) as claimed.
COROLLARY 1. In Theorem 1 assume in addition that h is Gteaux differentiable

on U and the range R (B) of B is a dense subset o[ H. Let p be any dual extremal arc
associated with (y*, u*) by Proposition 2. Then

(3.11) p(t)E-Oq(t, y*(t)) [oralltE[O, T].
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Proof. Let p be a dual extremal arc associated with (y*, u*). By (2.35) and (3.9)
we see that

pt(s)=p(s) for all s [0, t].

Because 7h is single valued, the kernel N(B*)= {0} and pt, p are weakly continuous
on [0, t], (3.11) follows by (3.10).

Let us assume now that besides (i)-(iv) and (a) the following conditions are
satisfied:

(b) The function/3 is either globally Lipschitz or D(A)c HE(D.) and N 1.
(c) 4’--0, h* is Fr6chet differentiable and Vh* is locally Lipschitz on U.
Let y0 be arbitrary in D (F) and let [0, T] be such that s - q (s, y0) is differenti-

able at s =t. Let (yt, ut)6 W,2(t T;H)xL2(t, T, U) be such that yt(s)=y(s, t, yo, u t)
for _-< s _-< T and

T

(3.12) q(t, yo) J, ((yt(s))+h(ut(s))) ds.

By Lemma 3 it follows that
T

(3.13) w(s,y’(s))=Js ((yt(r))+h(ut(r)))dr, t<-s<-T.

By Proposition 3 the dual extremal arc pt associated with (y’,u’) belongs to
W1,E (t, T; H). Recalling that u (s) Vh *(B *p’ (s)) a.e. s It, T[ it follows from assump-
tion (c) that u e W1,E(t, T; U). This implies (see for instance 1, p. 133]) that d+/ds y (s)
exists everywhere on It, T[ and therefore by (3.13)

d+

(3.14) dsq(s, yt(s))+(yt(s))+h(ut(s))=O foralls e[t, T[

because in virtue of the well-known conjugacy formula

(3.15) h(v)+h*(v*)=(v,v*) forv=Vh*(v*)

and assumption (c) the function s h(u’(s))= h(Vh*(B*pt(s))) is continuous on [t, T].
On the other hand, we have

d+

ds
q(t, yt(t))=qt(t, yo) +1 (q(t +e, yt(t +e))-q(t +e, yt(t)))/e

(3.16)

pt(t, Yo) + 1}o (r, y"(t + e y’ (t))/e,

where r (t)6 Oq(t +e, 0) and 0 is a point in the open line segment between yt(t) and
y’(t + e). Here we have used a mean value theorem due to G. Lebourg (see [9]). Then
if further we impose the condition

(d) The map (t, y) 0q (t, y) is w *-upper semicontinuous on [0, T] x H.
It follows by (1.1), (3.14) that

(3.17)
qt(t, yo)+ (st(t, yo),B Vh*(-B*q(t, yo))-Fyo) + (yo)

+h(Vh*(-B*rl(t, yo))) 0,

where

(3.18) ((t, yo)O(t, yo), r/(t, yo)eOq(t, yo).
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Since for yoD(F) the function s q(s, yo) is a.e. differentiable on [0, T], it follows
that (3.17), (3.18) hold for all yoD(F) and a.e. [0, T].

In this sense we may view q as a solution to the Hamilton-Jacobi equation

q,(t, y)+h(Vh*(-B* Oq(t, y))

(3.19) +(Oq(t, y),B Vh*(-B* Oq(t, y))-Fy) +(y) 0,

y D(F), a.e. e [0, T]

with the Cauchy condition

(3.20) q (T, y) 0 for all y in H.

In summary, we have proved:
PROPOSITION 4. Under assumptions (i)-(iv) and (a), (b), (c), (d) the value function

q is the solution to the Cauchy problem (3.19), (3.20).
If 0q happens to be single-valued at (t, y) then by the conjugacy formula (3.15)

we see that (3.19) can be written as

(3.21) qt(t, y)-h*(-B* &c(t, y))-(Fy, &c(t, y)) +(y) 0.

Remark 2. Condition (d) is in particular satisfied if (t, y) is convex in y (this is
the case if is convex and F linear) or if 0 admits a (jointly) continuous derivative
qy. The latter case occurs when the functions q, h and fl are continuously differentiable
and the interval [0, T] is sufficiently small. For a direct treatment of (3.19) in this
case we refer the reader to [7]. In the special case when F is linear, and is convex
(3.21) has been studied in [5, p. 293]. For classical results on feedback synthesis we
refer the reader to [13].

Remark 3. If fl 0 then in Proposition 4 condition (c) can be weakened to:
(c’) h* is Gteaux differentiable on U. Indeed in this case (d+/ds)yt(s) exists at

s and the conclusion follows by the same argument.

4. Control problems with infinite time horizon. We shall study here the control
problem

inf{ (d(y(s, O, yo, U))+h(u(s))) ds; u Lo(R+; U) =q(yo),(4.1)

where y (s, 0, y o, u) is the solution to (1.1).
Besides (i)-.(iv) and (a) the following assumptions will be imposed:

(j) (0)= O, h is Gteaux ditterentiable on U and h (0)= O, Vh (0)= O.
(jj) R(B)=H.

(jjj) There exists w > 0 such that

(4.2) (Fy, y)_->,olyl:, y cO(F).

LEMMA 5. The function q is everywhere finite on H and for every yoH the
infimum defining (yo) is attained. The function q is locally Lipschitz on H.

Proof. Let yo be fixed but arbitrary in H. By assumption (jjj) it follows that there
exists u L2(R+; U) such that h(u)Ll(R +) and (y(t, 0, yo, u))LI(R+). Indeed it
suffices to take u =-B*y where y is the solution to

y’ +Fy +BB*y =0, a.e. >0,

y(O) yo.
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Hence q (yo)< +oo. Arguing as in the proof of Lemma 3 it ollows that the infimum
in (4.1) is attained. Now for lYol _-<r it follows by (4.2) that

P

(Yo) --<- Jo (y (t, 0, yo, 0)) dt <= C.

Hence we may confine ourselves in (4.1) to those u eLo(R/; U) which satisfy

(4.3) h(u (t)) dt <- C;

denote by a// this subset of LIo(R+; U). For every u 0-//, by (1.3), (4.1) and (4.3),
we have

lY(t, 0, yo, u)l<-e-’’lyol+llBII e-O’"-llu(s)llds

<=e-’tr / IIBII(C / C) <-

Let yo, 370 be arbitrary in ={y H; ]yl _<-r}. We have
P

q(yo)-p (37o)=< Jo ((y(t, 0, yo, a*))-(y(t, 0, )70, a*))) dt

where t* is such that

(37o) Jo ((y(t, 0, 370, a*))+h(a*(t))) dr.

Since is locally Lipschitz, by (4.2),

]y (t, 0, yo, 7") y (t, 0, 370, a*)l _-<_ e-O’lyo 37o1, _-> o
and we find that

q (yo) q (37o) -<-t[yo- 37o1, Yo,

thereby completing the proof.
In particular it follows by Lemma 5 that for every yoH the control problem

(4.1) has at least one optimal pair (y *, u *) C(R +; H) LIo(R +; U). Throughout
the sequel we shall assume that yoD(/), i.e., yo satisfies condition (2.2). Then
y*- y(t, 0, yo, u*) WI (R +" H)fqLIo(R +" D(A))

THEOREM 2. Let assumptions (i)-(iv), (a) and (j)-(jjj) be satisfied. I]’ (y*, u*)
W,;2 (R +" H) x L2 +lo(R ;U) is an optimal pair in problem (4.1) then there exists p
L(R /; H) fqL21o(R +; V) fqACIo(R +; Y*) f3 C(R +; H) which satisfies the system

(4.4) p’-Ap -p OB(y*)-Od(y*) 0, a.e. >0,

(4.5) B*p(t) =Oh(u*(t)), a.e. >0,

(4.6) p (t) +0 (y*(t)) 0 ]’or all >= O.

Proof. Arguing as in the proof of Lemma 4 it follows that for every -> 0,

I0(4.7) q(Y)=inf
t

((y(s, 0, yo, u))+h(u(s))) +o(y(t)); u t; U)

From Proposition 2 it follows that there exists

p eL(O,t;H)rlL(O,t; V)AC([O,t]; Y*)C([O,t];H)
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such that

(4.8)

(4.9)

(4.10)

ps-Ap -p Ofl(y -0(y 90,

pt (t) + Oq (y*(t)) 0,

B*p’ (s) Oh (u*(s)),

in Ot f x ]0, t[,

a.e. s ]0, t[.

(Here the subscript s denotes as usual the derivative of pt as a function from [0, t] to
Y*.) Inasmuch as by assumptions (j) and (jj), N(B*)= {0} and Oh is single valued, it
follows by (4.10) that

(4.11) p’(s)=p(s) for 0_-<s._-< t_-<

Let p"R/H be the function defined by

(4.12) p(s)=p’(s) fors el0, t].

Obviously the function p satisfies (4.4), (4.5), (4.6). Since h (u*) e LI(R +) it follows
by condition (1.3) that u*L2(R+; U)+L(R/; U) and so by (4.2) the function

ly*(t)l is bounded on R +. Inasmuch as 0o is locally bounded we see by (4.6) that
p L(R /; H) thereby completing the proof of Theorem 2.

In particular, it follows by Theorem 2 that the set {(y, p)H xH;p +O(y) 0}
is an invariant manifold of the Hamiltonian system

(4.13)
yt+Ay+(y)-B Oh*(B*p)90, t>-_O,

p, Ap p 0[3 (y) 0(y) 0, -> 0.

(For related results in the case of linear systems of the form (1.1) and convex we
refer to [2].)

By Theorem 2 we may also conclude that every optimal control u* for problem
(4.1) is an optimal feedback control of the form

(4.14)

We notice that by (4.7)

u*(t) =Oh*(-B* 0q (y *(t))), a.e. >0.

and therefore

o(y*(t))= It (dp(y*(s))+h(u*(s))) ds for all _-> 0

d
--o(y*(t))+(y*(t))+h(u*(t))=O, a.e. >0.
dt

Along with (4.5), (4.6) and the mean value theorem the latter yields

(4.15)
(((t), Fy*(t))-(B*((t), Oh *(-B*n(t)))

=(y*(t))+h(Oh*(-B*rl(t))), a.e. >0,

where ’(t), q(t)Oq(y*(t)), a.e. eR +. Thus there exists a dense subset ED(F)
such that

(4.16)
(sr(yo), Fyo) (B*ff(yo), Oh*(-B*r/(yo)))

(yo) + h (Oh *(-B*rl (yo))) for all yo in E,

where ’(yo), r/(y o) e Oq (yo).
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Thus q can be viewed as a generalized solution to the Hamilton-Jacobi equation
(the Bellman equation)

(Oq (y ), Fy (B * 0q (y), Oh *(-B *Oq (y ))
(4.17)

=(y)+h(Oh*(-B* 0q (y))).

If r(y)=rt (y) then in view of the conjugacy formula, (4.17) can be written as

(4.18) (Oo(y),Fy)+h*(-B* 0q (y)) (y).

For a direct treatment of this equation in the convex case we refer to [6]
Remark 4. Let us assume that is Fr6chet differentiable and that condition (b)

is satisfied. Then by Proposition 3 the dual extremal arc p arising in system (4.4),
(4.6) is locally absolutely continuous as a function from ]0, +oo[ to H. Then multiplying
(1.1) by p’, (4.4) by _yr, and adding the results we get

d d
tdtd
-(p(t)’Fv*(t))=-=(h*(p(t))-(y*(t)))’ a.e. >0.

Hence

(4.19) (p(t),Fy*(t))-h*(p(t))+do(y*(t))=C for all t->0.

5. Approximating feedback controls for the time optimal problem. Consider the
time optimal control problem

(5.1)
inf {T; y’(t)+Fy (t) u(t); lu (t)l-<- 1, a.e. [0, T];

y(0) yo, y(T) 0} T(yo),

where F is defined by (1.7) and (1.8) and y0 is in H. Throughout this section we shall
assume that hypotheses (i), (a) and (jjj) are satisfied.

The value T(yo) of problem (5.1) is called the optimal time corresponding to yo.
Next we shall prove a null controllability result.
LEMMA 6. For every yo6H there exists at least one control u* such that

y (T(yo), 0, yo, u*) 0.
Proof. Consider the Cauchy problem

(5.2)
y’(t)+Fy(t)+sgn y(t) 90,

y(0) yo

a.e. > 0,

where

sgny=y/lyl foryO, sgn0={z H; [zl <-1}.

The operator y Fy + sgn y is maximal monotone in H xH as a sum of two maximal
monotone operators satisfying the condition D(F) int D(sgn) (see [1, p. 46]).
As a matter of fact this operator is the subdifferential of the function y-/(y) + [y[.
So, as noticed earlier, for every yo H the Cauchy problem (5.2) has a unique solution
y W,; (6, +o; H) for every 8 >0 and continuous from [0, +o[ to H. Taking the
scalar product of (5.2) by y (t) we get

(lY (t)12) + 2ly (t)[ 0, a.e. > 0.

Hence

ly (t)l ly0[- for all _-> 0.
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The latter implies that y(t)= 0 for => lyo]. We have therefore proved that there
exists at least one time T>0 anda control u(t)= -y’(t)-Fy(t)sgn y(t), a.e. ]0, T[
such that y(T, 0, yo, u)=0. Hence T(yo)<+oo for all yoH and there exist the
sequences {Tn} T(yo) and u, 6L(O, Tn;H) such that lu.(t)l_-< 1 a.e. t[0, T,] and

yn(t)+Fyn(t)=u,(t), a.e.t[0, Tn],

yn(0) yo, y,(T,) 0.

Without loss of generality we may assume that the u, are defined on the whole positive
half axis and

u, u* weak star in L(R +’, H).
Using hypothesis (i) and condition (4.2) we see that for every 6 > 0

fT"lYn(t)[2 dt+llY,(t)llv<--C for all n and t[6, T,]

and

o

a"
Ily. (t)llZv dt <- C for all n.

Thus selecting a further subsequence we may assume that

y, - y weakly in L(0, T*; V),

y ’ y’ weakly in L(8, T*’, H),

and by the Arzela-Ascoli theorem

y, y in C([8, T*]; H),

where T* T(yo). In particular we infer that y (T*)= 0. On the other hand, since the
operator y Fy is maximal monotone in every L2(8;T*; H) it is strongly-weakly
closed in this space. Hence

u*-y’=Fy a.e.t[8, T*] for allS>0.

We have therefore proved that

y’+Fy=u*, a.e.t]0, T*[,

y (0) y 0, y (T*) 0,

thereby completing the proof of Lemma 6.
The above argument can be used to prove the null controllability of general

systems of the form

y’+Fy =u,

where F is a maximal monotone operator in a Hilbert space H. Such a control is
called a time optimal control of system (1.1). For linear systems there exists a number
of significant results on the time optimal control problem (see for instance [12], [15]).
Here we shall use a different approach which relies on the results of 4.

Let zr e C(R +) be a given function such that 0-<_ zr -< 1, zr’=> 0 and

1 for r->2,
(5.3) zr(r)=

0 for0-<r<-l.
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Let g :H R be defined by

(5.4) g (y) r(lyl/e =) for y n.
We set

(5.5) G =Vg, h(u)=(2e)-l((lul-1)/)2 foru eH

and define the function q:H R,

io(5.6) q(y0) =inf
t

(g (y (s, 0, y0, u))+h(u(s))) ds; u H)

Here y (s, 0, y o, u) denotes the solution to (1.1)’ where B --L
Let us assume that y0eD(l). Since assumptions (i)-(iv), (a) and (j)-(jjj) are

trivially satisfied With g and h h , for every e >0 problem (5.6) has at least
one solution (y r, u ) Wllg2 (R /’, H) x Loc(R /’, H) and by Theorem 2 there exists
p L(R +’, H)f’IL21oc(R +’, V)f’)ACIo(R +’, Y*)f’ICw(R +’, H) which satisfies, along
with y and u , the system

(5.7)
y t+Fy (t)=u, a.e.t>0,

p -Ap -p 0/3(y ) G(y), a.e. >0,

(5.8)
u (t)

p (t) Vh (u (t)) e lu (t)l
0

(lug(t)[- 1) if lu (t)[ e 1,

if u (t)[ < 1,

(5.9) p(t)+Oq(y(t)) 30 for all t->0.

By (5.5) and (5.8) it follows that

(h)*(p)=lpl+-lp for allp H

and therefore

u (t) sgn p (t) +. ep (t), a.e. > 0.

Along with (5.9) the latter implies that

u -sgn 0q (y) e 0o (y)

is an optimal feedback control for problem (5.6). As a matter of fact any optimal
control u to problem (5.6) can be expressed as a function of optimal state y by the
formula (5.11), i.e.,

u (t) -sgn 0q (y (t)) e 0o (y (t)), a.e. > 0.

Here the multivalued mapping sgn "H H is defined as above, i.e., sgn y y/[y[ for
y # 0 and sgn 0 {z H; Izl --< it,

By (4.16) and (5.I0) we see that o is the solution to the stationary Hamilton-
Jacobi equation

1oo (y)l + Io,0 (y)l + (Fy, oo (y)) g (y),
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i.e., there exist ’ c0 and r/ c0 such that

e
(’(y),Fy +sgn r/(y)+er/(y)) =g (y)+lr/(y)

for all y in a dense subset of D(F).
Let us now assume that/3 satisfies condition (b). Then by Remark 4 (see (4.19))

we have

(5.14) (p (t), Fy (t)) Ip (t)l lp (t)]2+g (y (t))=C, a.e.t>0.

Since u L2(R /; H) +L(R /; H) it follows by (4.2) and the first equation in (5.7) that

[y (t)l <= C, Ify (’)l- d" <- Ct for -> 0

and by (5.8) we see thatp La(R /; H). Sinceg (y) LI(R /) the latter estimate implies
that there exists at least one sequence {t,} + such that

(p (t,),F(y (t,))-(p (t,)l-lp (t)12+ (y (t))0

Hence C 0 in (5.14) and so satisfies (5.13) in the following stronger sense: there
exists a single valued section O such that

(5.15) lC(y) +1 (y)I+(Fy, (y))= (y) VyeE,

where E is a dense subset of D (F).
The relevance of the function in the time optimal control problem (5.1) becomes

clear in Theorem 3 below.
THEOREM 3. Let Yo H be given. Then

(5.16) lim (yo)= T(yo)

and on some subsequence (again denoted e) we have

(5.17) u u* weakly in L2oc(R /" H)

(5.18) y - y* strongly in every C([0, T]; H),

where u* is a time optimal control and y*(t) y(t, 0, yo, u*) is the corresponding state.

Proof. For the sake of simplicity we shall assume that yoD(l) the proof in
general case is completely analogous. Let T*= T(yo) be the optimal time and let
(y ’, u *) be an optimal pair for problem (5.1). We have

q (yo) <-- (g (y ’ (t)) + h (u 1" (t))) dt
T* T*

Hence

(5.19) q (yo) -< T* for all e > 0.

In particular it follows that {u } is bounded in every La(0, T; H) and {y} is compact
in every C([0, T]; H). Hence there exist (y*, u*)e wlg2 (R /; H) L21oc(R /; H) such
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that y*(t)= y(t, 0, yo, u*) and

u --> u* weakly in L2oc(R +’, H),
(5.20)

y(t)y*(t) uniformly on every [0, T].

By (5.6) and (5.19) we see that
T

(5.21) limsup| g(y(t))dt<-_T* for every T > 0.
e-0 ao

This implies that there exist a sequence {e,} 0 and To > 0 independent of n such that

(5.22) ly-(t)[-<_ 2e, for t->_ To.
For, otherwise for every sequence {e,} convergent to zero there would exist t,
such that [y-(t,)[ > 2e, for all n. Let e, n -/2. Then by an easy calculation involving
(1.1)’ it would follow that

(5.23) [y"(tn)l--<[y"(t)[+ lu-(s)l ds for t_-<

Since (2en)-1 o ((]u"(t)[- 1)+)z dt <- C, by (5.23) it follows that

[Yn(tn)[--<--[Yn(t)[ + It tn[ + C(’en[t tn[) I/z for _--<

Hence for n sufficiently large,

[y n (t)[ => /en for t[tn--6n,

where 6, =Cn -. This would imply that lim,_.o m{t; [y " (t)[ -> x/en} + (m is the
Lebesgue measure) contrary to (5.21).

By (5.22) it follows that y*(t) 0 for _-> To. Let 7 =inf (T; y*(T) 0}. We will
show that =T*. To this end for any e>0 consider the set E=
(t [-0, 5V]; [y (t)] _-> ",/e }. By (5.21) it follows that

(5.24) lim sup m (E) =< T*.
e--0

On the other hand, lim_.o m (E) T, for otherwise there would exist 6 > 0 and en 0
such that m (E.) _-< T- 6. In other words, there would exist a sequence of measurable
subsets A, [0, ] such that m (An) _-> 6 and [y - (t)l =< /en for An. In virtue of
(5.20) this would imply that

[y *(t)[ _--< 4e, + ’n for cAn,

where vn-0. On the other hand, since y*(t) #0 for t[0, ], m{t; ly*(t)l-</e,, +
:n }--) 0 for n --) +oo. The contradiction we arrived at shows that indeed lim_,o rn (E) .
Along with (5.24) the latter implies that T* as claimed. Thus u* is a time optimal
control and the proof of Theorem 3 is complete.

Remark 5. Letting e tend to zero in (5.12) we see that formally, T can be
regarded as solution to the Bellman equation

(5.25) (Fy, OT(y )) + [0T(y)[ 1.

Since T is locally Lipschitz on H we suspect that T is indeed a solution to (5.25) but
we have failed to prove this. Anyway in virtue of Theorem 3 the feedback law (5.11)
can be viewed as an approximatingfeedback control for problem (5.1). The implementa-
tion of this suboptimal feedback control requires a numerical procedure for the
calculation of q either from (5.13) or directly from formula (5.6).
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Now we shall study the following optimal control problem’ Minimize

(5.26) - lu (t)[ at + aT

over all (y, u) W,2 (R +’, H) Lo(R +’, H) subject to

(5.27)
y’(t)+Fy(t) u(t)o a.e. >0,

y(0)-yo, y(T)=0.

Here a is a positive constant.
We associate with (5.26) the approximating problem

(5.28) inf a(g(y(t, O, yo, u)))+[u(t)[z dt=(yo).

Let (y, u)e WI’(R +; H) xLZ(R +; H) be an optimal pair for problem (5.28). By
Theorem 2 there exists p eLo(R +; V) L(R +; H)L(R +’, H)ACo(R +’, Y*)
which satisfies the system

(5.29)
Y +Fy p, a.e. > 0,

p’-Ap-p O(y)=aG(y), a.e.t>0,

(5.30) p (t) +0 (y (t)) 0 for all 0,

(5.31) u= =p=.

As noticed earlier, lim, y(t) =0 in H. By (4.16) we see that is the solution to
the Hamilton-Jacobi equation

0 [2(5.32) (Fy, O6 (Y))+I 6 (Y) =ag (Y)

and

(5.33) u -O6(y)

is an optimal feedback control for problem (5.28).
THEOREM 4. For every yo H,

(5.34) lim (Yo) 6o(yo)
e0

and on some sequence en 0

(5.35) u. u strongly in Le(R+; H),

(5.36) y. y uniformly in H on R +,

where (y , u is an optimal pair ofprob&m (5.26).
Here 6o(yo) is the optimal value of problem (5.26). The proof which is essentially

the same as that of Theorem 3 will be outlined only.
We have

(5.37)
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where (37, t) is any optimal pair in problem (5.26). Selecting a subsequence if
necessary, we may assume that for e --> 0

u --> ux* weakly in L2(R /’, H),
(5.38)

y --> y x* uniformly in H on every [0, T].

By (5.37) it follows that

(5.39) lim sup ff" (yo) <- o(yo).

As in the proof of Theorem 3 the latter implies that y’ (t)=0 for t-> To. Let
7 =inf {T; yx*(T) =0 and E ={t [0, 7]; [y(t)l>-4-e}. Then lim_o m(E)= and
therefore by (5.39),

1 IoaT+- lU * (t)l2 dt<-Oo(yo).

Hence (y ’, u 1" is an optimal pair in problem (5.26). In (5.37) we take )71" y *, t* u 1"
to get that

lim sup lu (t)l" dt lu (t)l dr.

This yields (5.34), (5.35) and (5.36) as claimed.
Now e point out some immediate consequences of Theorem 4. First we notice

that in virtue of (5.32) and (5.34) we may view 0o as a generalized solution to the
equation (the Bellman equation for the free-time optimal control problem (5.26))

(5.40) (Fy, O0o(y)) + 1/2 [Ogo(y)[ c.

We notice that if/3 satisfies condition (b) then by (5.29) and (5.31) we have (see (4.19))

(5.41) -(Fy(t), u(t))+1/2[u(t)[2=ag(y(t)), a.e. t>0.

Inasmuch as g(y) 1, a.e. [0, T], letting e tend to zero in (5.41) we see that

(5.42) -(Fy (t), u (t)) + lu (t)[= , a.e. ]0, T [.

Here T is an optimal time in problem (5.26).
Now we shall use Theorem 4 to derive a maximum principle type result for

problem (5.26).
COnOLLAnV 2. Let u be the optimal control provided by Theorem 4. Then there

exists p L(O, T V) C([0, T ]; H) AC([O, T]; Y*)whichsatisfiesalongwith
y and u the system

(5.43)
y’ +Fy =u, a.e.t]O, T[,

p Ap p O (y) 0, a.e. ]0, T [,

(5.44) p u , a.e. ]0, T [.

Proof. By (5.29), (5.36) and the definition of G we see that for every 6 > 0 there
exists e o(6) > 0 such that for all 0 < e < eo()

(5.45) p’ -Ap -p O(y) 0, a.e. ]0, T -6[.

Since by (5.35), {p} is strongly convergent in LZ(0, T ;H) to u =p and

(y)(y) weakly inLZ(0, T ;n)
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it follows by (2.22) and (5.45) that {p} is bounded in L2(0, T-6; V)I"I
L(O, T*a -6;H) and {p’} is bounded in LI(0, Tx* -6; Y*). Then proceeding as in
the proof of Proposition 2 we infer that p satisfies (5.43), (5.44).

Remark 6. Coming back to (5.7)-(5.9) let us assume that for every 6 ]0, T*[
there exists to IT*-6, T*] such that {IP (to)[} is bounded for e 0 (this assumption
is satisfied in several notable cases which will be discussed elsewhere). Since by (5.7)
we see that for e sufficiently small, p Ap p O(y) 0, a.e. ]0, T* 6 we may
conclude as in the proof of Corollary 2 that there exists p
L2(0, T*-6; V)f’IL(O, T*-6; H)VIAC([O, T*-6]; Y*) satisfying

(5.46)
p’ -Ap -p 0ff(y*) 0, a.e. ]0, T* -6[,

u* sgn p, p 0, a.e. 6 ]0, T*-6[.

6. Some remarks on feedback synthesis of variational inequalities. Consider the
control problem with cost (1.2) and state system

(6.1)
Yt +Ay +y(y) 9Bu, a.e. t ]0, T[,

y(0) yo,

where the operators A and B satisfy assumptions (i), (ii) and y is a multivalued
maximal monotone graph in R R such that y(0) 0. This class of distributed para-
meter systems includes the control of several important variational inequalities of
parabolic type. For instance the well-known "obstacle problem" can be written in the
form (6.1) where A is the elliptic operator defined by (1.16) and y is defined by

y(r)=0 forr>0, T(0)=R-, y(r)=Q5 forr<0.

Denote by D(y) the domain of y, i.e., D(y) ={r R; y(r) } and by D the set
{y 6H; y(x)D(y) a.e. x 12}. Let y(., t, y0, u) be the solution to (6.1) on [0, t] with
initial value condition y(t) =y0. We notice that relations (1.11)-(1.13) remain true
for y 0 D. Let [0, T] xD R be the optimal value function corresponding to control
problem (6.1), (1.2), i.e., the function

T

y0) =inf ((y(s, t, y0, u )) + h (u(s))) ds

(6.2)
+(y(T, t, yo, u)); u LZ(t, T; U)]

where , h and satisfy assumption (iv).
Let " [0, T]H R be the optimal value function corresponding to control

system

(6.3)
Yt +Ay +y(y)=Bu, a.e. 6 ]0, T[,

y(0) y0,

with the functional cost (1.2). Here y e-l(1-(1 + ey)-) is the Yosida approximation
of y.

It should be noted that y is Lipschitz and therefore all the results of 2 and 3
are applicable for the control system (6.3) with the cost functional (1.2).

Let (y, u) be an optimal pair in the problem (6.3), (1.2). We have
PROPOSITION 5. Under the above assumptions,

(6.4) lim o(t, yo)=o(t, Yo) forall (t, yo)e[O, T]xD
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and on some subsequence e, 0

(6.5) u. u* weakly in L2(0, T; U),

(6.6) y. y* strongly in L2(0, T; H),

where (y*, u*) is an optimal pair for the problem (6.1), (1.2).
The proof is standard and it is left to the reader.
Along with Theorem 1 and its consequences, Proposition 5 amounts to saying

that the feedback law

(6.7) u =Oh*(-B* Oq(t, y)), t[0, T], y H

is an approximating feedback control for problem (6.1), (6.2). In the same manner
we may use Theorems 2, 3 and 4 to construct approximating feedback controls for
the infinite time horizon problem and the optimal time problem associated with state
system (6.1).
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ESTIMATION OF DELAYS AND OTHER PARAMETERS IN
NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS*

H. T. BANKS+ AND P. K. DANIEL LAMM:

Abstract. We discuss a spline-based approximation scheme for nonlinear nonautonomous delay
differential equations. Convergence results (using dissipative type estimates on the underlying nonlinear

operators) are given in the context of parameter estimation problems which include estimation of multiple
delays and initial data as well as the usual coefficient-type parameters. A brief summary of some of our

related numerical findings is also given.

Key words, delay equations, parameter estimation, splines, numerical algorithms

1. Introduction. In [6] spline approximation ideas are developed in the context
of numerical algorithms for the solution of functional differential equations (FDE).
The theoretical framework is based on a functional analytic formulation (in an
appropriately chosen Hilbert space Z) of Ritz-Galerkin type ideas where one approxi-
mates on finite-dimensional subspaces Zn the underlying linear solution semigroup
T(t) (with infinitesimal generator A) for the FDE by linear semigroups Tn(t) (with
infinitesimal generators An= PnApn, where pn is the orthogonal projection of Z
onto Zn). These ideas were subsequently ([3], [4]) used in developing numerical
schemes for parameter estimation and optimal control problems. The fundamental
theoretical tool employed is the Trotter-Kato theorem (a functional analytic formula-
tion of the Lax equivalence theorem" stability plus consistency yields convergence of
approximation schemes) for linear semigroups.

In this paper we present approximation results that subsume those in [6], [3] and
[4] in that we develop schemes to estimate parameters that include multiple delays,
coefficients and initial data for nonlinear nonautonomous FDE. Our theoretical
arguments avoid the Trotter-Kato linear semigroup formulation altogether. Rather,
we combine dissipative type estimates with the use of Gronwall’s inequality to develop
a theory that not only allows for rather general nonlinearities but also accommodates
with ease nonautonomous systems (both of which are features that the Trotter-Kato
linear semigroup framework excludes). Of course, one could use an evolution operator
analogue of the Trotter-Kato approximation theorem to obtain results for linear
nonautonomous equations (see [7] for details), or a nonlinear Trotter-Kato type
theorem for nonlinear autonomous FDE (see [13], [14]). Both of these separate
approaches however are less direct than the one developed here when applied to
parameter estimation problems.

While the approximation methods we develop can be used with great success to
simply solve initial value problems for nonlinear nonautonomous FDE, the main focus
of our treatment here is parameter identification or estimation. That our ideas can
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also be fruitfully employed in control problems is demonstrated in [9], [10] while
application of the methods to estimation problems for certain partial differential
equations can be found in [5].

The fundamental ideas (which were first presented for simple nonlinear
autonomous, known delay, estimation problems in [1] and subsequently extended to
treat nonautonomous, unknown delay, FDE problems in [10]) are really quite simple.
However, the development of a theory for identification of the delays is a delicate
matter since the "history space" for the delay system changes as one iteratively
estimates the delays. This, unfortunately, results in a rather complicated presentation
from the standpoint of technical notation regardless of the approach (e.g., see the
treatment of the linear autonomous system case in [4]).

Our presentation is as follows: In 2 we describe a parameter estimation problem
for FDE’s and give an equivalent Hilbert space formulation involving an abstract
nonlinear evolution equation. Section 3 contains a discussion of approximate estima-
tion problems based on spline subspaces; general convergence results are given. We
conclude with a final section in which we present representative numerical findings
obtained using the approximation scheme proposed in 3.

Most of the notation (e.g., Hp for Sobolev spaces, Lp for Lebesgue spaces, etc.)
is quite standard and is in accordance with popular usage. The symbol I’ will be used,
in general, to denote the norm in various spaces in instances where no confusion will
result. However in some situations it is absolutely essential to distinguish special
weighted norms. These special norms will be defined as they are used in the discussions
below. For convenience of the reader, we have summarized these definitions in a brief
appendix for quick reference.

Finally we wish to mention the motivation behind our efforts to develop the
methods presented below. In [4] and [10] one finds brief descriptions of nonlinear
delay equation estimation problems arising in the study of enzymatically active column
reactors. Although such problems actually prompted the theoretical investigations
that we report here, a discussion of the application of our methods to these problems
would be quite lengthy and thus will be the subject of a separate report.

2. Formulation of parameter estimation problems for nonlinear FDE. In the
present section we describe the parameter estimation problem for a delay differential
system and detail conditions under which solutions exist. Our approach then is to
reformulate the FDE-governed identification problem as an abstract problem on an
infinite-dimensional state space, concluding the section by establishing the equivalence
between the FDE and the abstract state equation.

We consider the vector nonlinear delay equation

(2.1)
k (t) f(c, r, t, x (t), x,, x (t rl), X (t r)) + g(t),

(x(a),x)=(n, 6),

a <-t<-b,

where xt denotes the R-valued function tgxt((R))=x(t+(R)), -r-<(R)_-<0, and g is a
general L (a, b perturbation term. The equation depends on the parameters y (sr, q ),
where " (rt, b) is the initial data in some set S

_
W, with

W-={((0), t)R L’(-r, O)l Hl(-r, 0)}.

The parameter q =(c,rl,...,rv) is assumed to be in O=Y where c is a
coefficient-type parameter in the set

_
R" and the discrete delays are chosen from
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the set
={(rl," ", r)RvlO=ro<-r<-" <-r <-r, r>O}

with r > 0 fixed and given throughout this paper.
To simplify notation we shall use 1. Irv to denote the norm on L(-r, 0) while we

use [. to denote the norm onL(-r, 0) and L2n(a, b). We make the following standing
assumptions on f throughout the paper"

(H1) The mapping f satisfies a global Lipschitz condition on R
uniformly in (a, rv)s[0, r]. That is, there exists mx L2(a,b), mx >0, such that
forall (, , Wx, w,), (6, X, ya, y)R"L(-r, O)R",

If(a, r, t, , 4’, w, , w)-f(a, r, t, 6, X, Y, ",

m(t){[-6l-t-l-Xlr-t-i= Iwi-Yi[}
for all (a, rv) [0, r] and a.a. t [a, b ].

(H2) Foreach(a,r)ex[O,r],f(a,r, .,..., .): [a,b]R"xL’(-r, 0) Rn->
R" is differentiable, and t->f(a, r, t, (0), , (-r), ., (-r)) is in Hi(a, b) for
every C"(-r, 0)-= C([-r, 0];R n) and every (a, r,..., r)x.

(H3) Given any x s C" (a r, b), the mapping

o- --> ft(c, r, :r, x (o’), x,, x(o" -rl), ", x(r -r))
is in L.(a, b) for all q Q.

(H4) The function f is continuous on 1 x[0, r] x [a, b]xR" xL(-r, 0) xR ".
Remark 2.1. It follows immediately from (H1) and (H2) that f satisfies an affine

growth condition; that is, for a given x e L’(a r, b),

(2.2)
If(a, r, t, x (t), xt, x (t rl), x (t r))l

<--ml(t){[x(t)[+ Ixtlrv-b ]x(t-ri)l}+m2(a,r,t),
i=1

where mz(a, r, t) If(a, r, t, 0,. ., O)l is in L2(a, b). Quite standard arguments may
then be employed to demonstrate that, for each q Q,

-->f(a, rv, t, x(t), xt, x(t-rl),..., x(t-r))
is in LT(a, b) and that the mapping depends only on the equivalence class of x;
therefore there will be no difficulty associated with point evaluations of x appearing
in f since we shall write (2.1) as an equivalent integral equation.

Before we direct our attention to the estimation of the parameters appearing in
(2.1) we shall first state results guaranteeing the existence, uniqueness and continuous
dependence of solutions to the state equation for each choice of parameters (r, q)
SxO.

THEOREM 2.1. Let , (, q) (1, 4, a, rl, , r) be given in S x (2. There exists
a unique solution x to (2.1) on the interval [a-r, b] which depends continuously on
{1, , g} in the R" xL(-r, O)xL(a, b) topology.

In the proof, which may be found in [10, p. 6] and will not be detailed here, one
employs general uniform contraction principles (see [12, p. 7]) and relies heavily on
hypothesis (HI) and the growth condition (2.2).

We turn now to an examination of (2.1) when the parameters, including the
delays rl,’", r, and initial data (r/, b) are to be estimated. We will restrict our
attention to parameters in the admissible initial data-parameter set F S x (2 where
we assume throughout that F has the following property:

(H5) (2 is compact in R"+ and S _c W is compact in the R" xL(-r, 0) topology.
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The identification problem consists of finding / F which provides the best least
squares fit of the parameter-dependent solution (of the model equations (2.1)) to
observations of the output at discrete sample times. The problem, which could also
be reformulated as a maximum likelihood estimation problem, may be formally stated
as follows:

Given g and observations {/i}, /i s R , at times {ti}, i= 1,..., M, find 3 in F
which minimizes

1
(2.3) J(3,) i=l IC(q)x(t; 3,)- al2

over all 3’- (’, q) in F. Here C is a given s n matrix continuous in q, and
u(t; 3")= C(q)x(t; 3") represents the "observable part" of x(t; 3"), the solution to
(2.1) corresponding to 3".

Remark 2.2. For 37 (, O, 6,/71, /Tv) the optimal parameter, it may happen
that/7 < r so that we actually only need b defined on [-/7,, 0] to integrate the state
equations (2.1) (and, in fact, the O we obtain in practice will be defined on that
interval only). We will view O as a function on all of I-r, 0] by making an arbitrary,
but definite, continuous extension from -/7 back to -r, so that (, O) is an element
of S as required.

Remark 2.3. The compactness assumption on S will not be difficult to satisfy in
practice since a sufficient condition for compactness is that all elements (r/, O) in S
are such that rt belongs to a compact set in R and O is bounded in Hl(-r, 0). An
example of one such admissible initial data set is the set of all polynomials on [-r, 0]
of order _-<k (k a nonnegative integer) with coefficients in a compact set.

2.1. An abstract reformulation of the estimation problem. We next reformulate
(2.1) as an abstract evolution equation in an infinite-dimensional state variable. Our
approach involving use of the state space R nxL(-r, O) is quite standard and well-
established in the FDE literature (see, for example, [2] and the references therein);
however, the dependence here of operators and state spaces on unknown parameters
requires that we make such definitions in this and the following section with a certain
amount of care.

We will let Z =RL(-r, 0) with norm I’l induced by the inner product
((j,O),(6, X))--jr6+rOX. For (q,t)Ox[a,b], (,O)R"xC"(-r,O) define
F(q, t, , O) =f(a, r, t, , , O(-rl), ", O(-r)) and A(q, t): W Z by

(2.4) A(q, t)(0(0), 0) (F(q, t, 0(0), 0),

where denotes the L(-r, 0) function that is the derivative of 0. In addition, let
G(t)=(g(t), O)eZ, for t[a,b].

The equivalence of the FDE (2.1) to an abstract evolution equation is detailed
in Theorem 2.2; before proceeding, however, we need two results that also will be
called upon frequently in 3, so they are stated here as lemmas. Our first proposition
is actually a restatement of the well-known result [8, p. 100] that d/dt 1/21x(t)l-(i (t), x (t)).

LEMMA 2.1. If X is a Hilbert space and if x:[a,b]X is given by x(t)=
x(a)+’ v(tr), &r, then

Ix (t)[ Ix (a)l2 + 2 (x (o-), v (r)) do-.
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The second result describes how to construct an equivalent topology for Z so
that the nonlinear operator A satisfies a dissipative-type inequality. The Lemma, a
nonlinear version of that found in [2, p. 186] and [6], greatly simplifies our calculations
and is the foundation for our development without the use of semigroups.

LEMMA 2.2. Letq (a, rl," ", r) Qbe given.Fory (, ),z (, x)Zdefine
a new inner product on Z by (y, z) -= +].o, (O)X(O);(q)((R)) dO where (q) is
given on f-r, 0] by

1, (R) f-r,-r],

(2.5) fi(q)((R)) 2,. 19. (-r, -r-l],

u + 1, 19 (-rl, 0].
Then

(A(q, t)y -A(q, t)z, y -z)q <-- to (t)ly -zl2
for all q Q, almost all [a, b ] and all y, z W. The function to > 0 is in L (a, b)
and is given by to(t)= ml(t) + (u + 1)/2 +(u/2)m21(t).

Proof. Let y (if(0), ), z (X(0), X) W. Then

(A(q, t)y -A(q, t)z, y -Z)q IF(q, t, (0), O)-F(q, t, x(O), x)]r[ff(0)-X(0)]

where

0

+ I_ (-x)(0-x)(e); (q)(O) de,_
I(-r)-x(-r)l

= 2 2

< (u + 1) 14,(-r)- (-r)lz

2 10(o)-x(o)lz-
i=1 2

Therefore, for almost all [a, b ],
(A(q, t)y -A(q, t)z, y

10(-r)-x(-r,)l2

.2

m,(t)lO (0) x (0)!= +m(t)lO xI I0 (o) x (o)1

+ I4(-r)-x(-r)l(m(t)lO(O)-x(O)l)
=1

u + 1 1
10(-r)-x(-r)l+

2 I()-x()l:-

( um(t) u+l) 12 m(t)m(t)+m2(t) + 2
+

2
I0(0) x(O) + 2 IO-Xl

where we have used repeatedly the fact that ab N a/2 + b/2. It follows then that
{A(q, t)y -A(q, t)z, y-z}q (t)lO(o)-(o)1

(t)ly -zl e
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It is clear that for all q Q, the norm[. [q on Z induced by the iS(q) weighted
inner product is equivalent to the usual Z norm since 1 <- 7(q) <- u + 1.

TrEOREM 2.2. For fixed 3’ F let y(t; 3", g) (x(t; 3", g), x,(3", g)), where x is the
solution to (2.1) corresponding to 3" (,1, 4, a, rl, , rv) and g L(a, b). Then y(3", g)
is the unique solution on [a, b of

(2.6) z(t) =’+ {A(q,r)z(o)+G(r)}do’.

Furthermore, y(t; 3",g)Z is continuous in e[a,b], and uniformly continuous in
{’, g}e W x L(a,b) (in the Z xL(a,b) topology) uniformly in e[a,b].

Pro@ We shall sketch the proof of the theorem, which demonstres that (i) the
integrand in (2.6) is well-defined and integrable, (ii) the equality in (2.6) holds
z(t) y(t; , g), and (iii) the solution y is unique and continuously dependent.

To prove (i) we first must show that y(t; ,g)dom(A(q,t))= W for each
te[a,b], or, since x(0)=x(t), that xH(-r,O) for all t. Using the ane growth
condition (2.2) on [ and the continuity of x it is not dicult to show that
(, r, t, x(t),x,x(t-r),.. ,x(t-r)) is square-integrable on [a, b] so that, using
the fact that 2 = on [a-r, a], we obtain 2 eLf(a-r, b). Standard estimates in
[11, p. 254] may be invoked to demonstrate that

(2.7) (x,+-x,)(), inL(-r, 0)
e

so that (x,) (k), L(-r, 0), for each [a, b ]. Arguments similar to these may be
used to show A(t)y(t)+G(t) is integrable on [a, b], concluding the proof of (i).

The argument that y(t)=(x(t; y, g), x,(y, g)) satisfies equation (2.6) is trivial if
this equation is examined componentwise: The R" part of (2.6) is simply a restatement
of (2.1) while the desired equality for the L(-r, 0) component follows immediately
from (2.7).

Finally, uniqueness and continuous dependence of solutions on {if, g} follow from
arguments that will be repeated often throughout this paper and will be presented in
detail here for the case of continuous dependence; uniqueness also follows from these
arguments. Let z, z2 denote solutions to (2.6) corresponding to {ffa, g}, {ff2, g}
respectively with q O fixed. Then, for [a, b ],

z(t)-z(t)=-(+ {A()z()-A()z()+(g(), 0)-(g(), 0)}d

so that from Lemma 2.1,

2 2lz(t)-z=( )lolffa-ff.+2 (A()za()-A()ZE(),z()-ZE())od

+ I(g()-ge() 0)1d+ Iz()-z()ldq q

b
2 d.[x- ff22( + 1) + lgx- g22 + (2() + 1)za() z2()[
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Gronwall’s inequality may be used to obtain
b

Izx(t)-z2(t)[2=< (lx-2l=( / 1) + [gx-g2[2) "exp I (2to(tr) + 1)dtr

from which continuous dependence (uniform in [a, b ]) follows at once.
We have demonstrated the equivalence between an FDE in x(t)R" and an

abstract evolution equation (AEE) in the infinite-dimensional state variable z(t). We
remark that the infinite dimensionality of (2.6) is inherited from (2.1) in that in the
latter the history of x on It- rv, t) is required before x may be determined at t. Thus
the computational difficulties encountered with (2.6) are not simply an undesirable
feature of this reformation of (2.1) but rather are a manifestation of the inherent
infinite dimensionality of the underlying FDE.

In view of the established equivalence, the ID problem in (2.3) may be reformu-
lated as an abstract ID problem, where we now wish to find /F which minimizes

(2.8) J(y)= ,=x IC(q)rroZ(t,; y)-a,I

over all y F where ro :Z R" is defined by r0(:, 4’) .
In the next section we investigate the problem of approximating the infinite-

dimensional identification problem (2.8) by a sequence of finite-dimensional state
space identification problems (where the state variable satisfies an ordinary differential
equation (ODE) on a finite-dimensional state space xN). Fundamental to this under-
taking is the establishment of the convergence of solutions of the approximating
systems on XN to solutions of the original equation on Z. Although our formulation
is a classical one of the Ritz type (involving orthogonal projections of an infinite-
dimensional system onto a sequence of finite-dimensional subspaces) our problem is
complicated by the fact that the state space changes for each choice of parameters
q (a, rl,’’’, rv). This concept is explained in detail in [4, p. 800] and involves the
idea that the natural state space for z(t) associated with the parameter choice q
(a, rl,... ,r) is X(q)=R"xL’(-r,, 0), where in general X(q)C-Z. Since we would
expect the (finite-dimensional) approximating spaces Xr(q) associated with q to be
subspaces of X(q), we obtain a sequence of spaces {XN(q)} where XN(q) is different
for each choice of q and is usually not contained in Z.

3. Approximate parameter estimation problem. Our focus in this section is the
definition of finite-dimensional ODE-governed estimation problems which approxi-
mate the ID problem governed by the AEE (2.6), and their relationship to the original
FDE-based ID problem. While we shall present the details for a scheme based on
linear splines, arbitrary order spline approximations may be employed in a similar
way with only slight modifications in the arguments detailed below (see the theory
developed in [6] on which all of our development here is based).

For parameters y (’, q) F consider

(3.1) zN(t; 3,)=pN(q)’+ {Ar(q, tr)zN(tr;’y)+pN(q)G(tr)}dtr, t[a,b],

where AN and pN are defined via the following q-dependent operators and spaces.
For a given q (c, r,. , r) we define the Hilbert spaceX(q) as the setR" xL(-r, 0)
with inner product

0

((:, if), (8, X))p.q T8 + I_ ((R))Tx((R))P(q)(O) dO,
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where p (q)(19) fi (q)(t0) 1, with fi defined as in (2.5). We shall also use an equivalent

topolo.y on X(q) given by the (unweighted) inner product ((s,), (8, X))x.q
5r8 + -rv 4(O)rX (O) dO. The operator cd+(q):X(q) Z is the "continuous extension"
operator defined by c+(q)(, )= (:, ) where= on [-rv, 0], 4(O) 4(-rv), toe
[-r,-r); i(q)’Z X(q) is defined by i(q)(, O)=(s, ) where is the restriction of
4 to [-r, 0]. The subspaces XN(q) of X(q) are defined by XN(q)= {((0), )1 is a
piecewise linear spline with knots at t(q)=[-(f-(k- 1)N)(rk--rk-1)/N]--rk-1, f
(k 1)N + 1,. ., kN, k 1,. ., v; to 0} and we denote by rN (q)’ X(q) -XN (q)
the canonical orthogonal projection of X(q) onto XN(q) along XN (q)l. Finally,
PN(q)’ZXN(q) is defined by pN(q)=zrN(q)i(q) and Ag(q, tr)’X(q)XN(q) is
given by AN (q, tr) zrN (q)A (q, tr)zrN (q) where here A (q, tr) is defined as an operator
in X(q) given by A(q, tr)(,(0), ffq)= (F(q, tr, q(0), Itq),l[Iq) for (@q (0), d/q) W(q)=-
{((0), )1 Hl(-r, 0)}. Here and below, for any ffq defined on [-rv, 0], q denotes
the extension of.@q to all of I-r, 0] defined by @q -= 0 on [-r, -r). (The arguments and
proofs below are actually independent of how we extend fro.)

NRemark 3.1. AN is well-defined since X(q), the range of 7r (q), is contained
in the domain of (q, t). Note also that AN (q, t) actually may be considered as an
operator from Z into XN(q) if it is defined by Ar(q, tr)=pN(q).(q, tr)pN(q). For
present uses though, P(q) and zN(tr; y) are in XN(q)SO that viewing AN(q, tr) as
an operator from XN(q) to itself yields (3.1) as an equation on XN(q), a finite-
dimensional space since each of its elements is completely determined by its value at
each of vN / 1 knots. Equation (3.1) is then equivalent to the ODE

(3.2)
N(t; V)=A(q, t)zN(t; v)+pN(q)G(t),
N pNz (a; y) (q)(,

t(a,b],

which, as we shall show in the arguments that follow, approximates (2.1) in some sense.
When the parameter 3’ is unknown we may state an "approximate identification

problem" N associated with (3.1) and (3.2)’
Find N= (N, N) F so as to minimize

(3’) - [C(q)zroz N (t" 3’)- u,

over y F, where g and observations ti at times ti, 1,..., M are given and
z N (t; 3’) satisfies (3.1).
We now establish the existence of a unique solution to (3.1) for each choice of

y, and, further, the existence of a solution 3
N to the Nth ID problem, N. First we

must state an analogue of Lemma 2.2 which demonstrates a type of dissipativeness
for AN.

LEMMA 3.1. Let q (a, rt, , r) Q be given. Then

(AN(q, t)yN--AN(q, t)z N, yN--zN)o.q

]:or all yN, z N XN (q) where to, defined in Lemma 2.2, is independent of q and N.
Proof. Note first that for y, z W(q), we may argue that

((q, t)y -A(q, t)z, y -z)o,q -< to (t)ly z 12o,a

using estimates similar to those used to prove Lemma 2.2, where to(t) is independent
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of q, N. Then for y, zNXN(q) W(q),

(AN (q, t)yN _AN (q, t)z N, yN _zN)o.q
(TrN(q)(q, t)rN(q)yN N N N--r (q)(q, t)r(q)z, y --z )o.q

((q, t).N (q)yN _(q, t).trx (q)z N, 7rN (q)yN _TrN (q)zN)o,q
< o (t)lTr (q)yN -’rr

N

< to(t)lyN -zrl2p,q
Nwhere we have used the properties of the (self-adjoint) orthogonal projection ,r and

the dissipativeness of A(q, t) on W(q). ]
Our next result demonstrates the existence of solutions to (3.1) as well as to the

identification problem N. In addition, the proof sheds light on the numerical pro-
cedure used to solve (3.1).

THEOREM 3.1. Let g L(a, b) and y (, q) F be given. Then there exists a
unique solution zN(t; %g)XN(q) tO (3.1)on [a,b] withthe property that the map
{i(q)r, g} zr(t; (, q), g) is uniformly continuous on X(q) L’(a, b), uniformly in N
and t. Finally, there exists a solution /r to the Nth identification problem N for each
N=1,2,....

Remark 3.2. The continuity with respect to initial data given in this theorem is
actually "uniform in q Q" in the following sense: Given e >0, there exists 8 > 0
independent of q and N such that for rl, "2 ( S and q Q with [’1 2[x.q < 6, we have
Iz N(t; ((, q), g)-z N(t; (’2, q), g)lx.o <e. This type of "uniformity in q" follows from
the arguments given below for Theorem 3.1 and will be used in establishing the
convergence :esults of Theorem 3.3.

Proof. We first argue existence, uniqueness and continuous dependence of sol-
utions to (3.1). We shall do this using arguments similar to those in [1] and [6] (where
Nz (t) is written in terms of basis vectors for XN(q)). Let qQ be fixed, q

(a, rl,’", rv), and let e denote the scalar first-order spline function on [-rv, 0]
characterized by

Ne (ti) 8ii, i,j =0, 1,’’ ", vN

where 8i is the Kronecker symbol and t t(q) are the knots defined for functions
in XN (q), 0,. , vN. Define

AN (e(O) e), j O, uN,ej
Nflu =(e,.." ,eN)(R)I,

where I is the n n identity matrix and (R) denotes the Kronecker product so that
is an (n n(uN+ 1))-matrix-valued function on [-r,, 0]. We represent by / the
matrix-valued pair, /2v= (/3r(0), flr), and whenever w is an n,uN + 1) vector, we
adopt the notation/Uw (/3r (0)w,/3rw).

From [6], Xv(q) =span {/v},/. 1,..., n(uN + 1) where the basis vectors are
given by A/31_r (/3v(0),/3v), /3v the/’th column of/32v. (Note that/r is not the/’th
column of/N.) It follows then that since zN(t)Xr(q), there exists wN(t)R
such that

vN

(
vN

z N(t) rwr(t) X w(t)8 wff(t), X w(t)e
=0 =o

for w(t)R", ] =0,..., vN. Furthermore, since PrG(t) and PNr are vectors in
XN (q), there exist GU(t), R"(N/x) such that

PNG(t) dNGr(t) and pr, =/NrN
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so that (3.2) may now be written in terms of/N as

/r (t) A (q, t)[Sw (t) +G (t), (a, b ],
(3.3)

LetM(q, t) denote the representation of A (q, t) (restricted to X (q)) with respect
to the basis of X (q). Here M(q, t) is nonlinear as opposed to the matrix (linear)
version of the operator arising in [6]. As in [1] and [6], usual Galerkin calculations
establish that the coecients ws(t) in (3.3) satisfy

(t) d (q, t)w (t) + G (t), (a, b ],
(3.4)

w (a)=

We next establish a representation of U(q, t) which will enable us to consider the
existence and uniqueness of solutions to (3.4) as well as the realization of numerical
solution techniques for the system. Note first that

A(q, t)z (t) (q)(q, t)(q) w(t), 2 w(t)e
]=0

N ( vN

(q) f(a, r, t, w(t), w(t)e,

uN uN uN

w(t)e(-r),..., w(t)e(-r)), w(t)e
i=o i=o =o

N N= (q ,r,t, (t)), t)Ne

where’ x[O, r]xR+(*R is defined by

(
vN vN vN

f(a,r,t, (Vo,’’’, V)T)=f a,r,t, Vo, E v,e,
=0 =0 =0

for vi e R ", ] 0, , uN, and can be shown to be globally Lipschitz in (Vo, , vu)T
NR"t+) since f satisfies such a condition. us,

R ""N+a) is such that

N N%(t)=a(q,t)w(t)= (q) a,r,t, w (t)), Z w(t)e
1=0

NIt follows from [6, p. 508] that whenever
R nN+), we have

(O)-h(, ),

where the nonsingular matrix Ou is given by Ou =(Bu(O))Bu(O)+,fl-(O)ru(O)p (q)(O) dO and hu (, ) (fl (O))V +o flu (O)v$(O)p (q)(O) dO.
We may apply these results to obtain

N N -lhN wNa (t) (Q (a, r,, t, (t)), w(t)e
/=0

a,r,t,w(t))

(OU)_a 0 -aHu w+(Ou) (),

0
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whereH is given in [6] and [10] by
.N N N(eo,.eo) (,,,eo)

H2 (R)I.
N" N N N\(e0,es) (d,e

In this matrix (.,.) denotes the p (q )-weighted L(-r, 0) nner product.
Similarly, GN(t) in (3.4) is given by GN(t)=(Q)-lhr(G(t)), hr((g(t), 0))=

(g(t), 0,’", O)TR"(/), so that (3.4) may be rewritten as

r(t) (Or)-l((a, r, t, wr (t))+ g(t), 0,." ", 0)7,

(3.5) + (Or)-IHw (t), (a, b ],
Nw (a)=rr,

an ODE in w (t) wv (t; % g)R"(v/). Since f satisfies a global Lipschitz condition
in wr (t), the form of (3.5) allows one to employ standard ODE theory to obtain the
existence of a unique solution wr (t) on l-a, b ]. We can therefore conclude that

Nz (t) =/wZ(t)
is the unique solution to (3.1) (and (3.2)) on [a, b] for r eZ given.

The proof of the continuous dependence on r and g as stated in the theorem is
identical to the corresponding proof in Theorem 2.2 where dissipativeness forAr(q, t)
is now used to show that whenever [’l--2[X,q <6 and [gx-g2l<t, 6=6(e, to, a,b)
independent of t, q and N, we have for the corresponding solutions, z(t; (, q), g)
and z(t; (’2, q), g2),

NIz[(t)-z(t)lx,q <--[z((t)-zz (t)[o, <e
for all t e [a, b ].

Finally, to establish existence of a solution /r to , one argues continuity (for
fixed N) of the map y =(’, q)-->TroZr(t; 3,)=w(t, ) and thus infers continuity of
3’ jr (3/) on the compact set F. But it is not difficult to see that the right side of (3.5)
depends continuously on q as do the basis elements (q). Continuous dependence
results (with respect to parameters and initial data) from the theory of ordinary
differential equations can then be invoked to obtain the desired conclusions. [-1

In view of the last result, we are assured of a solution qr to the Nth estimation
problem r (which is a standard least squares problem governed by an ODE). Since
an application of conventional optimization techniques requires a solution to (3.1) for
each choice of % straightforward computational schemes may be devised to solve
(3.5), the associated ODE in the "Fourier" coefficients w r(t). Although it may be
relatively easy to solve the finite-dimensional problem r, the solution qr we find is
meaningful only if /r approximates the solution / to the original ID problem.
Fundamental to the establishment of this fact (i.e., the convergence of qr to q in
some sense) is the demonstration that the sequence of state variables {zr (t; y, g)}
converges to z(t; , g) given any sequence {yr} with yr -*3; (, 4) in F. We shall
first consider this problem for limits 3; and perturbing functions g such that {’, g} lies
in a smooth but dense subset of W L(a, b) (which. simplifies our calculations). We
then extend the convergence results for all limits ( and perturbations g such that
{’, g}e W xL2(a, b).

3.1. Convergence of state variables. We shall assume that a sequence of para-
meters {yr} in F has been given, yr (, qr) (rl t r, rN ), and that
N N

V - 3; (r, 4) (, &, t, ,..., r), in the sense that (i) q - 4 in R" and (ii)
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[i(qN)( N)Io,qN " 0 as N- c. We make the following standing assumptions on
and S:

(H6) There exists some 8r > 0 such that [k --k-ll -> &, k 1, 2, , u.
(H7) If sr S then (/(qN)i(qN)(S for all N.
Remark 3.3. We note that the set S involving all polynomials of order k on

I-r, 0] mentioned in Remark 2.3 does not, strictly speaking, satisfy (H7). However,
the reader can easily see from the arguments below that a modification in defining
the extension operator (g/ (rather than extending from [-r, 0] to I-r, 0] by constant
values, extend any polynomial on [-r, 0] to I-r, 0] by simply extending the domain
of definition of the polynomial) would allow the set S of Remark 2.3 to satisfy (H7)
and not require any change in the convergence arguments to follow.

In what follows we will simplify notation by abbreviatingX X (qN), AN (t)
N N + NAN(qN, t),A(t)=--A(4, t),PN=--pN(qS), is=--i(q), r =--zr (qr), CN=_C/(q ),and

IN Io,q We shall also use [s to denote the L2(=_ -r, 0) norm weighted with p (qr ).
We remind the reader that l’ldenotes either the Z or L(-r, 0) norm while[’lr
denotes the unweighted L2( N-r, 0) norm. When no confusion results we shall also
write z(t) instead of z(t; ,, g) and z(t) for zN(t; yN, g) the solutions to (2.6) and
(3.1) associated with 37 and yN, respectively.

For q given in Q, define (q)={{f,g}WL(a,b)l=(6(O),6), tP
H2(-r, 0), gHl(a,b), b(O)--F(q,a, 6(O),,)+g(a)} and define 5={(6(0),,)
Z Ig H2(-r, 0)).

LUMA 3.2. For any qeO, (q) is dense in WL2(a,b) (in the ZL(a,b)
topology). Furtkermore, if , g)e(q), then the solution z(t; (,q), g)-
(x(t; (,q), g),x((,q), g)) to (2.6) corresponding to ,q, g satisfies z(t)e for all
t[a,b].

Proof. Let qQ and ’=((0),th) be fixed in 5 and define (q,’)=
{g L’(a, b)[g Hi(a, b), g(a)=(b(O)-F(q, a, (0), )}. Then for g L(a, b) given
and e > 0, standard arguments may be used to construct a that is piecewise -C(1)

satisfying ,(a)=(b(O)-F(q, a, (0), ,) with [g-,[e. That is, (q, sr) is dense in
L(a, b). Furthermore, for ", the pair {(, g} belongs to (q) whenever g (q, (),
so that

12 [{’}(q, ’)]_o(q)_ WL’(a,b),

where the first set is dense in the last since St is dense in W. It follows that (q) is
dense in W L(a, b).

Required for the proof of the second part of the theorem is a verification that
Jc’6L2(a-r,b) (since 2(Xt)--(k’)t for t[a,b]). If {’, g}(q), " (r, ), it follows
that xC([a-r,b] since" (1) A(t)=6(t-a) for t[a-r,a); (2) for t(a,b),
A(t) =f(a, r, t,x(t), xt, x(t-rl),. x(t-r))+g(t), which is continuous by assump-
tion (H2) and the definition of 5(q); and (3) A(a-)=c(O)=F(q,a, $(0),)+g(a)
(a/). Further, the differentiability of f and g yields

5c’(t) f,(a, r, t, x(t), xt, ") +f(a, r, t, x(t), xt, .)(t)

+/+[c, r,, t, x(t), x,, ,]

/ fy,(a,r,t,x(t),xt,...)2i(t-ri)+(t)
i=1

for e (a, b), where f denotes the Fr6chet derivative of f(a, r, o’, ’, , y t, , y) with
respect to 8, 8 tr, :, , y.. The global Lipschitz condition on f ensures that these
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derivatives (excluding f) are bounded, so that, for almost all (a, b),

If(a, rv, t, x (t), xt,’’ ’) (t)l m l(t)l: (t)[,

[f[a, rv, t, x(t), xt, t]l <=ml(t)[t[,

and similarly for fy,. Therefore,

[ (t)l-<-I/ (, r., t, x (t), x,,...)1 +cm(t) + I(t)[

almost everywhere on (a, b), where m, eL(a, b), and c is a constant. Using (H3)
we thus obtain that/c" eL’(a, b) and hence it follows that k" eL’(a -r, b) since (t)
(t-a), (a -r, a), eL’(-r, 0). q

Essential to our convergence proofs are certain standard estimates from the theory
of spline approximations, in particular the Schmidt inequality and the results from
[16, Thm. 2.5]. These inequalities are stated in the next lemma.

LEMMA 3.3. Let z ((0), 4’) be given in , and denote by (r(0), r) the element
Pz ofXN. Then the following estimates may be obtained for Nsufficiently large"

(3.6) kl

(3.7) k2

(3.8) I(o) (o)1 < -+ leg,I, o [- 0],

where k and kz are positive constants independent ofN and qN.
Proof. We have

where zt
N (v(0), tN), v the interpolating spline for s H2(-r, 0) with knots {tv}.

From [4, (6.10)] we use

1/2

thus obtaining (3.6). The calculations for the estimates in (3.7), (3.8) are found in [4,
pp. 814-15]. [3

These estimates may now be employed to show convergence of zr (t; 3’ g) to
z(t; /, g) (in the proper sense) when z(t) 5; i.e., when {, g} o(4).

THEOREM 3.2. Let {yr} be arbitrary in F with /r --> ., yN ( qN), , (, 4) r’,
where {’*, g}J(4), and let zN(t; 3,

, g), z(t; , g) denote the solutions to (3.1) and
(2.6) associated with 3,

r and " respectively. Then

zN (t; yN, g)_pNz (t; 3, g)ls - 0

as N --> az uniformly in [a, b ].
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Proof. We have

Ar (t) z r (t)-Ptz (t)

pU(U + {A (tr)z (tr) +PVO(tr)} dtr

so that from Lemma 2.1 we obtain

I (t)] 1(a)]+ 2 <A ()z () -A ()P%(), &()>de

+ ((lP( P(z(, ()

I(a)l+ (2() +

b

+ IA

Gronwall’s inequality may be employed (since the L function 2 + 1 is positive and
is continuous in t) to obtain

b

l(t)l(e(N)+e2(N)) exp (2() + 1)d,

where

e(N)=l(a)[,
b

e(N) IA
It remains to show that e(N)O as N; that the convergence is uniform in is
readily seen. First,

() lec _elli-converges to 0 as N from the definition of convergence of to . We will also
obtain e2(N) 0 once we demonstrate the dominated convergence of

IA ()e%()-eA()z()O.
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Let z(cr) (y(0), y,) Pz(tr) (y(0), y,), y eL2(-r, 0). en
IA

-I (F(q , y(0), - -n
y)-F(4, , y(0), y)[ +[y-y-7() + r7(),

where y is the usual extension of y to all of [-r, 0]. From (3.7), T()02 as
N . Furthermore,

N(T())
+F(q

N-7()+: (),

where v2 ()0 as N since quite standard arguments may be used to show that
the map

q =(a, rx,...,r)

F(q, , (0), ) f(, r, , (0), , (-r), (-r))

is continuous whenever $ is continuous. In addition, () is O(1/N) (for almost
all ) from (3.6), (3.8) since, for almost all

lF(q
mx(){ly(0)- y(0)l + [y (-ri)- y(-r)[}

i=1

and [Y Y[ =< IP() z ()[. Therefore, for almost all e [a, b ], T() 0 as
N, and the convergence (a.e.) to zero of the integrand of e2(N) is assured.
Dominated convergence follows from similar arguments:

N 2IA()P()-PA()z()I(?()+r: ()) + r[()
as before where, from (3.7), T()

M0
e[a,b] ae[a,b]

(we have made use of Lemma 3.2 to assert that z () e for all ; i.e., y e HZ(a r, b)).
The Lipschitz condition on f and estimates (3.6), (3.8) may be used to show

v()cm()Mo
for a constant c > 0 and almost all . Finally,

z[() IF(q, , y(), y)-F(4, , y(), Y)I

2 sup IF(q, , y(), y)l,

where y was determined by a fixed e O and is thus independent of q and is continuous.
Again the continuity of F(q, , y(), y) in (q, ) may be easily established, (q, ) in
the compact set O x[a, b], so that there is some (q*, *) in O x[a, b] such that

N
2 () 2IF(q*, y
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It follows then that, for almost all tr [a, b ],

IAN (cr)pz (tr) PNA (cr)z (cr)12N <-- (cm (o’)Mo +M1)2 + k22Mo -= h (tr),

where h L l(a, b) (since m L2(a, b)). Thus the theorem is proved. 71
We now turn to the main state variable convergence result for arbitrary {(, g}

W L(a, b); it contains the key arguments needed to prove Theorem 3.4 below,
which describes how solutions </N (to N) converge to /, a solution to the original
parameter estimation problem.

N N qNTHEOREM 3.3. Suppose 3’ - "y where y (N, and (, 4) are arbitrary in
F. Then for any g L(a, b),

N
7roz (t; yN, g) 7roZ(t; 3, g)

as N oo uniformly in [a, b ].

Proof.
N,In’oZN(t; y g)-Troz(t; /, g)l<=lrozN (t; "yC, g)-TroPCz(t;

+ lTropNz (t; ", g)--roz (t; ",

=--T(t)+T(t),

where T(t) - 0 as N - oo uniformly in [a, b from the convergence 7roPNz 7roz,

z Z, demonstrated in [4, p. 814]. (Uniformity here is due to the fact that z
{z(t; 3, )lt [a, b]}, a compact set in Z.) Further, since (4). is dense in W L(a, b),
a pair {r, if} may be chosen in 5(4) arbitrarily close to {r, g} so that, given that

the first and third terms may be made as small as desired from the continuous
dependence of z N, z on {iU,g}X(qC)L’(a,b) and {,g}ZL’(a,b) respec-
tively, uniform in N and (we may use this result for the first term since I"-
ciNl,, -liN(N iNlx,o <= liNN iN’IN + lir iN’IN is arbitrarily small from the
convergence of srN to ). Finally, the middle term goes to 0 uniformly in [a, b] as
N oo since {,}5(4) and the parameters involved, (ci(, qtV), converge to (, 4)
in the sense required (14 qNl 0 and li N(ffiN)lu 0), SO that we are guaranteed

Nthe uniform convergence of rtoZ N(t; y g) to rroz(t; 3, g). [3

3.2. Convergence oI parameters. Our attention to this point has been focused
on the convergence of solutions z N (to (3.1)) to the solution z (to (2.6)), once the
convergence of any sequence of parameters has been established. In reality, though,
we have yet to determine that any sequence of solutions {/N} to is in fact convergent;
even then, we must prove that the limiting value 37 is indeed a solution to the original
parameter identification problem. The result we now state addresses this question and
indicates when an approximate ID problem may be used to compute numerical
solutions for the original problem.

THEOREM 3.4. Let {37}, 3N F, be a sequence of solutions to the approximate
parameter estimation problems . Then there exists /6F and a subsequence {N}
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such that /rk --> q, and, if / and S satisfy hypotheses (H6) and (H7), q is a solution to
the original parameter identification problem.

Proof. From (HT), the sequence {virr} belongs to S and S is compact in the
a+ ir-kZ topology, so that a subsequence satisfies I .. -[ 0 for some e S. The

compactness of O guarantees the convergence of a subsequence of {},
for some e O. Relabelling as q, we have a sequence q (g,) in F that
converges to q ( q) in the required sense because and

1/2liff -i[ v liiff

It remains to show that q is a solution to the original ID problem. We have (see (2.8)
andJ in the definition of)

J(q)= [C(t),roz(t,,/,g)-u, r-,olim Jr(3N)_--<N_oolim Jmk(y),

where the continuity of C and the convergence of 7r0zn(t; qrk, g) to 7roz(t;/, g) is
used to obtain the second expression and the final inequality holds for any 3’ F since
/r, is a solution to r. The convergence of 7rozr(t; 3", g) to roz(t; 3", g) for any
3" F also follows from Theorem 3.3, so it follows that Yrk (3") J(3") as Nk - oo, or that

.r(/) __< r(/)

for any 3" F. Thus /is a solution to the original identification problem.

4. Numerical results. In this concluding section we present a sample of numerical
findings obtained using the spline approximation estimation schemes discussed above.
The test examples we investigated were chosen with certain types of applications
and/or difficulties in mind. Example 4.1 deals with a nonlinear pendulum (small
oscillations are not assumed) with damping through a linear feedback on the velocity,
i.e., U(2)= k2. We assume the existence of actuator delays in effecting the feedback
laws. (Delayed damping and delayed restoring forces are quite common in mechanical
systemssee [15, Chapt. 21].) A possible application is associated with the design of
a damped "pendulum" to "track" a given course or program (t). Example 4.2
involves a nonlinear nonautonomous multiple delay equation in which the nonlinearity
is of the Michaelis-Menten, Briggs-Haldane velocity approximation type. Such non-
linearities occur in biological applications in which enzyme mediated reactions must
be modeled. Our third example concerns a linear multiple delay system with unknown
coefficients such as might arise in multi-compartment transport models, while Example
4.4 contains a nonlinearity that is only locally Lipschitz and thus it does not satisfy
the hypotheses detailed above. It is interesting (although not at all surprising) to
observe that the methods under investigation also perform admirably when applied
to examples of this type. Indeed, we believe that a convergence theory for problems
with only locally Lipschitz systems could be developed, but the technical details would
be even more unpleasant than those in the theory presented above.

The computations reported below were performed on the IBM 370/158 at Brown
University. The goal of our numerical efforts was to test convergence properties of
the estimation algorithm on selected examples. This was done in the following manner.
"True" values of the parameters to be estimated were chosen and an independent
method was used to integrate the systems with these values. These "exact" solutions
or these solutions with random noise added were used as observed "data" (a number
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of "sample" data points were chosen) and the spline-based methods were employed
with a least squares criterion. For a given N, an IMSL package (ZXSSQ) for’ the
Levenberg-Marquardt method was used to iteratively find the corresponding para-
meters. Our experience with this package has been very positive; convergence often
was obtained after relatively few iterations (e.g., less than 10). In most cases, we
employed the default values for the several input parameters required in the IMSL
version of the Levenberg-Marquardt algorithm.

Example 4.1 (nonlinear pendulum with delayed damping).
We considered the system

(t)+k(t-r)+() sinx(t):O,

x((R)) 1, 19-<0,

(o) o, .o<_-o.

0-< t-<7,

"Data" consisting of 28 sample points at times in [0, 7] were generated for "true"
values ?=2, k =4, and g/1=9.81. Several different estimation problems were
investigated.

(a) We sought to estimate r with k k, g/l g/l given (start-up value: r= 2.5).
We denoted by fN the "converged" values for r corresponding to a fixed value N
of the approximation index. (See Table 1.)

TABLE 1.

-N

2 2.429
4 2.412
8 1.908
16 2.003
32 2.002

(b) We estimated r, g/l with k =/ given (start-up values" r= 2.2, (g/l)= 8.6).
For N 16, we obtained 16= 2.002, -16 9.84.

(c) We estimated r, k with g/l g/l given (start-up values: r= 2.5, k=8.0).
For N 16, we obtained 716= 1.999,/16= 3.977.

Example 4.2. The nonlinear nonautonomous multiple delay equation for con-
sideration is

3x(t-r2)
(t) -tx (t) + 2x (t rl) + 0 <- <-_ 4,

K+x(t-r2)’

x((R))=
20+toO,

"Data" were generated for 16 sampling times in [0, 4] using true values - 1,
2 2, K 10, n 5. The following problems were studied and results obtained.

(a) We estimated rl, rE with K--/, m n (start-up values’ r .5, r 2.5).
(See Table 2.)
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TABLE 2.

2 1.055 1.600
4 1.013 1.896
8 1.007 1.943
16 .9995 2.003
32 .9998 2.003

(b) We estimated K for rl 1, r2 52, m (start-up value: K= .05). (See
Table 3.)

TABLE 3.

N /n

2 8.345
4 9.706
8 9.816
16 10.027
32 9.9998

(c) We estimated m for r- F, r2--F2, K =/ (start-up value" m= -4.0). (See
Table 4.)

TABLE 4.

-N

2 5.114
4 5.028
8 5.014

16 4.998
32 4.999

(d) We repeated the calculations of (c) except that we corrupted the data with
random noise (Gaussian with zero mean and standard deviation o- =. 1). (See Table 5.)

TABLE 5.

-N

2 5.059
4 4.973
8 4.956
16 4.940
32 4.940

Example 4.3. We consider next the linear multiple delay example

(t) -1/2x (t) +/x (t rl) +x (t r,.), 0 _-< t _-< 3,

02x(O)= -30, -4_-<0<-0.
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"True" values of/3 3, ’1 1, ’2 "--2, & =-.75 were used to produce 24 data points
on the interval [0, 3].

0(a) We estimated a for /3 =/3, rl 1, rE- 2, (start-up value" a 5.0). (See
Table 6.)

TABLE 6.

-N

2 -.661
4 -.724
8 -.742

16 -.748
32 -.749

(b) We estimated r, r2,/ with a c (start-up values: r 1.3, ra 1.7,/o 3.5).
(See Table 7.)

TABLE 7.

-N -N /gNN rl r2

2 1.1233 1.600 3.1642
4 1.0028 1.957 3.0323
8 .9993 2.009 3.0064
16 .9996 2.005 3.0007
32 .9998 2.002 3.0000

(c) We repeated the calculations of (b) with data that had been corrupted by
noise. (See Table 8.)

TABLE 8.

-N -N NN rl r2

2 1.096 1.600 3.152
4 .9998 1.970 3.023
8 .9940 2.024 2.994
16 .9934 2.025 2.987
32 .9941 2.023 2.987

Example 4.4. As our final example, we present a multiple delay equation with
nonlinearity satisfying only a local Lipschitz condition.

(t)=-l.5x(t)-l.25x(t-r)+cx(t-r2)sinx(t-r2), 0_--<t--5,

x(O)= 100+ 1, (R)=<0.

True values were 1, 1, gE 2, and data were generated corresponding to
20 sampling times in [0, 5]. We estimated r, rE, c with start-up values of r 1.4,
r 2.2, co= .2. (See Table 9.)
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TABLE 9.

N rl

2 1.0814 1.9863 1.0606
4 1.0537 1.9900 .9757
8 .9998 1.9906 .9745
16 .9992 1.9993 .9981
32 .9996 1.9995 .9986

5. Appendix. Notation.

l" standard norm on R n, L’(-r, 0), or more generally L"(a,2 b), or on Z
R" x L(-r, 0),

I" Irv -standard norm on L(-rv, 0),
I" Iq -fi(q) weighted norm on Z,
I" Ix,q standard norm on X(q) R" x L2 (-rv, 0),
I’ Io,q P (q) weighted norm on X(q),
I" Ir =p(qr) weighted norm on either L’(-r, 0) or X(qr).
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FINITE DIMENSIONAL DETERMINISTIC NONLINEAR FILTERS VIA
RICCATI TRANSFORMATION AND VOLTERRA SERIES*

MARKKU T. NII-ITIL

Abstract. Filtering in two classes of nonlinear differentihl and difference systems is studied. The system
structures admit the representation of the optimal recursive filter in the form of a finite dimensional
differential or difference system. The filtering problem is posed as a set of fixed interval optimization
problems. The deterministic least-squares problem statement results in the filter which is an ordinary
nonstochastic differential or difference system driven by the observed signal. No stochastic concepts are
used. The system classes considered are described by two linear subsystems with a polynomial link map
between them. In one class the link map affects the input of the latter subsystem. In the other class the
coefficient matrix of the latter subsystem is a polynomial in the state of the preceding subsystem satisfying
a Lie algebraic nilpotency condition. The former class is a special case of the systems described by finite
Volterra series for which finite dimensionality of the optimal filter is also proved. Some examples and
comparisons on the basis of examples with the corresponding stochastic systems admitting finite dimensional
optimal conditional mean filters studied recently are performed. The comparisons show that except in some
special cases including a linear one the deterministic least-squares filter and the stochastic conditional mean
filter are not equivalent.

Key words, nonlinear least-squares filtering, finite Volterra series, Riccati transformation

1. Introduction. A deterministic approach to nonlinear filtering, both in time-
discrete and time-continuous cases, is applied here. The filtering problem is formulated
as a set of fixed interval optimization problems (FIOP), the final values of the optimal
trajectories of which give the filtering. The formulation is the same as originally was
used by Detchmendy and Sridhar [1], Bellman et al. [2], and later on by Mortensen
[3]. Via Pontryagin’s principle the optimization problem is converted into a two-point
boundary-value problem (TPBVP). The solving of the TPBVP in a recursive finite
dimensional form for some classes of systems as the final time (or k) goes from 0
to T (or from 1 to kr) is the main result of this paper.

The system classes to be considered cover the classes studied via stochastic
formulation by Marcus et al. [4], [5]. The key mathematical machinery to be used is
in part adopted from Marcus and Willsky [4] and from Brockett [6].

Filtering in the following nonlinear systems is studied.

(1) 1: =A(t)x+B(t)w,

(2) : =[F(t)+O(x)]z +P(t,x),

(3) g(t, y(t), x(t)) v(t),

(4) 2: xi/l =Aixi +Biwi,

(5) zi+l=Fizi+P(i, xi),

(6) g(i, Yi, xi) vi,

where the state-linear output mapping g is defined by

(7) g(cr, y, x)= G0(cr, y)+Gl(o’, y)x.

In (2) F is constant and P is identically zero, or Q equals to zero. The state components
x and z are of the dimension n and n 1, respectively. The observed signal y has values

* Received by the editors March 23, 1982, and in revised form August 24, 1982.
Department of Electrical Engineering, Control Engineering Laboratory, Helsinki University of

Technology, Otakaari 5A, SF-02150 Espoo 15, Finland.

916



DETERMINISTIC NONLINEAR FILTERS 917

in R". w and v stand for the unknown system and generalized observation errors of
the dimension and m 1, respectively. Furthermore, w and v are functions of the time
only, not stochastic processes. Consequently, the systems studied are ordinary differen-
tial and difference systems. P and Q are polynomials in x; P arbitrary time-varying
and Q a specified time-invariant one, with values in n 1-vectors and n n matrices,
respectively. Furthermore, it is assumed that {A, B} is completely controllable and
{A, Gl(’, y (’))} completely observable along the given observation y. Go and G are
appropriate smooth functions of tr and y with values in m x-vectors and m n matrices,
correspondingly.

The observation equation (3), or (6), expresses the dependence of the observation
y on the state x and on the generalized observation error v. The dimension m of
the generalized error need not be the same as the dimension m of the observation.
However, (3), or (6), must possess a feasible (not necessarily unique) solution for the
given triple (t, x(t), v(t)), or (i, xi, vi).

The partial problem (1) and (3), and (4) and (6), with a state-linear output mapping
(7), was studied in [7], [8].

It is seen by setting

g(tr, y, x) y -H(o’)x,

that the state-linear output mapping also includes the standard linear case.
Assuming certain properties for the polynomial mappings P and Q the finite

dimensionality of the filters is proved by applying a Riccati transformation technique
or a successive differentiation method in the relevant multidimensional Volterra series.
Comparisons on the basis of some examples with the corresponding stochastic finite
dimensional conditional mean filters developed by Marcus et al. [4], [5] are performed.
A similar polynomial structure of the optimal discrete filter with respect to the
innovation was also found via the deterministic formulation. The comparisons show
that the deterministic filters and the conditional mean filters are not for the given
systems formally equivalent although special cases exist. The formal equivalence
means here that formally the same system equations generate formally the same filters.
In the linear case it has been proved by Fleming and Rishel [9] that the conditional
mean filtering problem has a formally equivalent deterministic counterpart. In non-
linear problems this equivalence breaks down.

The organization of the paper is as follows. Section 2 presents the problem
statement in a deterministic framework for both continuous and discrete time systems.
Some motivation of the nonstatistical least-squares approach is also discussed. Section
3 gives the main results in the form of three theorems. Some additional lemmas and
proofs of the theorems are included. The proof of the second theorem is based on
the finite generalized Volterra series defined and studied in the appendix which also
includes a side result concerning finite dimensional computability of the optimal
filtering for systems described by finite generalized Volterra series. Some Lie algebraic
concepts are also introduced in the appendix. Section 4 is devoted to applications.
Concluding remarks complete the paper.

The word formally is here used due to the fact that there exists a very essential difference between
deterministic and classical stochastic approaches. The deterministic formulation produces a deterministic
filter which is an ordinary differential or difference system the input of which is the observed signal.
Stochastic filters in Marcus et al. [4], [5] are stochastic differential or difference equations driven by the
stochastic observation process.
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2. Problem statement and motivation.
2.1. Deterministic formulation. In the following both continuous and discrete

filtering problems are posed as sets of fixed interval optimization problems.
Filtering problem 2.1. For every final time [0, T] (T < c) and for a given

observation y on the time interval [0, t] find the final value of the optimal trajectory
of the fixed interval optimization problem’ Minimize the performance index

with respect to (x, z, d) subject to the constraint

(9) (tr) A (tr)x (tr) +B (tr)d (tr),

(10) ,(r)=[F(tr)+O(x(tr))]z(o’)+P(tr, x(tr)),

where g is given by (7).
Filtering problem 2.2. For every final time k e [0, kr] (A{0, 1, .., kr}) and for a

given observation sequence y, 1, 2,..., k, find the final value Xk of the optimal
trajectory of the fixed interval optimization problem: Minimize

k

(11) J(k,x,z,d) 1/211Xo- / 1/211zo- ’[l/ 1/2 Y. [l[g(i,y,,x,)[l,/l[di-l[ls,_]2
i=1

with respect to (x, z, d)i, O, 1, , k, subject to

(12) xi/ Aixi + Bidi,

(13) Zi/x Fizi + P(i, xi),

where g, is given by (7).
J, J and values of S and R are positive definite weighting matrices of appropriate

dimensions, s and " are the given (approximate) initial state vectors. ]1" ][J denotes a
norm of R defined by [Isc[l2 sTJ.

2.2. Motivation. The problem statements can be motivated as follows. In the
deterministic filtering the objective is to get the response of the given state system
which is disturbed (by the pseudo-control d) as slightly as possible driven through the
generalized observation equation as close as possible to the observed signal on the
whole time interval. The two goals are in disagreement if we have not a common
measure for them. So, our selection is to minimize the weighted sum of the squared
pseudo-control d and the generalized observation error, or residual g(tr, y,x)
integrated (or summed up) over the observation interval. Almost whatever reasonable
measure instead of the chosen quadratic measure could be used. However the chosen
measure leads into relatively simple algorithms; in the purely linear case into the finite
dimensional formal Kalman-Bucy filter, and expecially in the given system classes
also into finite dimensional filters. It has to be emphasized that the selection of the
quadratic measure corresponds in the stochastic formulation to Gaussian assumptions
of the process and observation noise. Furthermore, the weighting matrices in the cost
functional can be interpreted as the inverses of the noise covariances in the stochastic
formulation. From a practical viewpoint the weighting matrices are tuning parameters
in the filters.
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2.3. Denote the optimal solution of the FIOP for every fixed (or k) by
(x(. [t), z(. It)) and (x(.Ik),z(.[k)). The total time derivative of the solution of the
continuous problem is given by

(14) (tit) x(t[t) / xt(tlt),

(15) (tit) z(t]t) + z,(tlt).

The subindices cr and denote partial derivatives with respect to the first and second
argument position, respectively.

Remark 2.1. It is seen that both problems are split into a state-linear filtering
problem and a feedforward problem. In the continuous case (for instance for Q (x) 0)
we have to solve the feedforward problem

(16) z(tr[t) F(tr)z (r It) + P(tr, x (r It)),
(17) z(0lt)- if,

to get z (tit). In principle it could be obtained by integrating the equations of the linear
two-point boundary-value problem (see e.g. [7]), which corresponds to the state-linear
subproblem, from the known final values (x(tlt), 0) backwards to the initial time. This
would give the function x(. [t) which then could be used to obtain z(. It) (i.e. z(t[t)).
However, this procedure is neither time-recursive nor practical because the procedure
should be performed separately for every final time [0, T] due to the fact that in
general x(tr[tx) # x(tr[t2) for tl # t2.

DEFINITION 2.1. The filtering s(t)& z(tlt) (or s a___ z(klk)) is finite dimensionally
computable if it can be obtained from a finite dimensional differential (or difference)
system with a fixed initial state driven by the observed signal y(t) (or Yk).

Remark 2.2. The inclusion of an additional disturbance term G(tr)a(tr), or Ga,
in the feedforward system (10), or (13), and the inclusion of the corresponding
quadratic term 1/2][(tr)l[(,), or [[di_l[[ 2g,_, in the performance index do not extend the
problem classes studied via the deterministic formulation. This is due to the fact that
the optimal d in the both cases would be the zero function.

3. Main results.
THEOREM 3.1. The filtering s(t) is finite dimensionally computable if Q 0 and

P is an arbitrary polynomial.
THEOREM 3.2. The filtering s(t) is finite dimensionally computable if P 0 and

Q is a polynomial given by

(18) O(x)= Y. F(k,ix’ x"
k=l i=1

Xj=k

where v is the degree of the polynomial Q, and if the Lie algebra generated by the nl
by n matrices {F.} is nilpotent.2

Without loss of generality the constant term F0 has been omitted from the
polynomial. This is based on the result by Marcus and Willsky [4, Lemma 3.2]. For
subsequent purposes we express the polynomial (2 in the form

N

(19) O(x)= Y F.u.,
i=1

where u RN is formed by homogeneous terms in x in the obvious way.

2The index j(k, i)is given by j(k, i) Y./Y (,+-1)+ i, <__ (,+-1).
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THEOREM 3.3. The filtering Sk is finite dimensionally computable ifP is an arbitrary
polynomial.

The proof of Theorems 3.1 and 3.3 is straightforward. It is based on the application
of a polynomial type Riccati transformation in (10) and (13), respectively, and on the
following lemma.

LEMMA 3.1. The solution of the state-linear subproblem in the continuous case,
i.e. the state-linear filter, is obtained by applying the linear Riccati transformation
(20) x (crlt)= r(cr)-K(cr)p(crlt)

in the corresponding TPBVP. K is an n x n matrix valued function, and p is the co-state

of the TPBVP.
The proof of Lemma 3.1 is presented in [8]. It turns out that r(t) is independent

of p, and the pair (r, K) satisfies the deterministic equations of the state-linear filter
driven by the observed signal y(t), i.e. r(t) is finite dimensionally computable. The
proof of Theorem 3.3 is analogous to that of Theorem 3.1. So, it is omitted.

Proof of Theorem 3.1. Let the degree of the polynomial P be u. Define a uth
degree Riccati transformation

(21) z(rlt) s (o’)-M(o’, p(cr[t))

where M is a uth degree polynomial on R" with differentiable tensor coefficients (see
Appendix)

(22) M(o’,p)= 1--Mi(r)pi
i=li!

By differentiating (21) with respect to tr and by substituting the result and (20) into
(16) a new uth degree polynomial/r(tr, p) is obtained. By setting all the coefficient

~itensors M, 1, 2, ., u, and the zeroth order term equal to zero we obtain u + 1
coupled ordinary inhomogeneous differential systems for s(.) and Mi(.),i
1, 2, , u, with the time parameter tr. By setting tr we obtain a finite dimensional
system for the filtering s(t). The initial values are obtained at 0 from (17):

(23) s(0) ,
(24) M (0) 0 (zero tensors). Q.E.D.

For the proof of the second theorem some additional lemmas are needed. In the proof
we show that the second term in (15) is finite dimensionally computable. Multi-
dimensional and generalized Volterra terms needed are studied in the appendix.

LEMMA 3.2. The partial derivative x,(rlt) is given by

(25) x,(rlt) -K(tr)(tr, t)Gl(t, y(t))TRg(t, y(t), r(t))

where the n x n matrix valued satisfies
(26)

(27)

where W is defined by

(28)

(tr, t)= -[AT_ W(tr)K (cr)](tr, t),

’I’(t, t) L

W(o’) O(o’, y (tr))TRGl(tr, y (tr)),

and K is the solution of the matrix Riccati differential equation

(29) g AK +KAT -KWK +BS-IB r,
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(30) K(0) =j-l,

obtained as a result ofLemma 3.1.
Proof. From (20) we obtain

(31) x,(cr It) -g (o’)p, (r It).

Differentiate then the differential equation of the co-state p of the linear TPBVP,
which corresponds to the state-linear subproblem, with respect to the final time t;
change the order of differentiation, i.e. set p, p,,; and use (31) to obtain

(32) O-g p,(r It)- -[a’- W(r)K(,r)]p,(r[t),

which is interpreted as an ordinary differential equation for pt(rlt). The final condition
is obtained via differentiation from the same TPBVP:

(33) pt(t[t) G(t, y(t))rRg(t, y(t), x(t[t)).
Consequently, (32) and (33) yield

(34) p,(o’lt) (cr, t)ax(t, y(t))rRg(t, y(t), x(t[t))
resulting in (with (31)) (25). Q.E.D.

LEMMA 3.3. The partial derivative z,(rlt) is given by

(35) z,(rlt) A(cr}t)z(crlt),
where 3

(36) A(rlt) (o’lt, O) (c It, 0)-[0 (x( I))x( I)]( It, O) d (o’lt, O)-,
where d is the state transition matrix o the system

(37) z(tr[t) O(x(crlt))z(rlt).

Proof. Differentiate the equations of the state transition matrix

(38) (o’lt, 0)- Q(x(rlt))I’(rlt, 0),

(39) (01t, 0) !

with respect to the final time t, change the order of differentiation, i.e. set
and solve the resulting linear differential equation of (.[t, 0). Application of the
obvious relations

(40) z,(o’lt) ,(rlt, 0)if,

(41) " (rIt, 0)-xz (r It),,
and of the transition property of I, gives the desired equation (36). Q.E.D.

LEMMA 3.4. A can be represented in the form
(42) A(o,]t) =-S(rlt)aI(r, t)Gx(t, y(t))7"Rg(t, y(t), x(tlt))

where $ has a finite generalized Volterra series (see Appendix) with values on
T(R"", R").

3The derivative Qx has to be interpreted as an element of TI(R"1’1, R") (see the appendix). It is
defined componentwise by (Qx)iik =OQii/OXk, i, j 1, ", nl, k 1, ., n.
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Proof. Due to the nilpotency of the Lie algebra generated by {Fk } in the representa-
tion of O (19) there exists an invertible nl by nl matrix P with the following property
[4]. The similarity transformation --F pp-1 decomposes F into/i-dimensional
subsystems satisfying

(43) F(o" It, o)=o (x(o-lt))r(o-lt, o),

(44) F (0It, 0) I,

where oi are polynomials in x of the degree u at most. Furthermore, in the representa-
tion of O corresponding to (19) the coefficient matrices F, satisfy

(45) F a ,I +B k,

where B are strictly upper triangular, i.e., have zero elements on and below the main
diagonal. For notational simplicity we assume that the polynomial O is directly of the
form (45). It is easily seen [4] that

[ Io(46) (o-lt, O)= exp ak u,(-rlt) d V(rlt, o)
k=l

where V satisfies

(47) IN ]w=(rlt, 0)= Ex= u(rlt)B V(o-lt, 0),

(48) V(0]t, O) I.

Due to the strict upper triangularity of Bk V can be represented by a finite Volterra
series [4], [6] with the input N-vector u(. It).

In the definition (36) of A, can be replaced by V due to (46). In the resulting
expression V(trlt, 0)-I can be represented by a finite Volterra series due to the finiteness
of the series of V itself and due to the fact that V is upper triangular with units in
the main diagonal. The second property is easily deduced from the strict upper
triangularity of the matrices Bk.

Consider now the representations of V and V-1 as generalized finite Volterra
series with the input x(. It). Then the product in (36) is also of the same type. This is
seen by suitably using representations of the Volterra series with triangular or sym-
metric kernels. Consequently, A(trlt) admits a generalized finite Volterra series.

The extraction of the innovation term Gl(t, y)rRg(t, y, x) from (36) is obtained
by defining first two multiplications

(Ad)i]k Ail:dlik,
l=l

( A)i, YdiSgli, A G_ Rnlxn’ I e R
/=1

the latter of which gives the obvious identity

(Ydu)A (Y3 A)u, , R".

On the basis of the identity and the expression (25) of xt(rlt) we obtain (42) where

(I0 )(49) S(r[t)-V g-X(og) Vd g-a



DETERMINISTIC NONLINEAR FILTERS 923

as an element of Tt(R"1nl, Rn) (identified with Rnlnln) has a finite generalized
Volterra series. Q.E.D.

Now it is simple to deduce Theorem 3.2.
Proof of Theorem 3.2. The filtering defined by s(t)= z(tlt) satisfies

(50) g(t) [O(r(t)) + A(t]t)]s(t),

(51) s(0) "due to (15) and (35). A has a finite generalized Volterra series on the basis of
Lemma 3.4. Theorem A.1 in the appendix says that then A(tlt) is finite dimensionally
computable. Consequently, s(t) has the same property. Q.E.D.

4. Examples. Explicit nonlinear filters in the following classes are first derived.

2 Ax +Bw, Xk + Axk +BWk,. =fz +1/2 xiAix, Zg+l--Fzt +21- Xi,tAixk,
i=1 i=1

g(t, y, x) y -Hx, g(k, yk, x) y -Hx,

where the dimension of x, z and y are n, na and m, respectively. By introducing a
triply indexed matrix M (6R"1) by

Slijk (Ai)ik, l, n a, j, k l, n,

which is symmetric with respect to the two last indices, we can write the quadratic
term in the feedforward systems in a compact form (Mx)x where the first multiplication
has to be interpreted in the sense of (A.8). Componentwise, it is expressed by

(X i] i "2i]kXk"
k=l

4.1. Continuous problem. As stated in the proof of Theorem 3.1 we apply a
second degree Riccati transformation

z (rlt) s (o’) L (r)p (rlt) 1/2[/l (r)p (r[t)]p (trlt).
For typographical reasons we denote by L the n by n matrix and by a triply
indexed n by n by n generalized matrix. By differentiating with respect to o- by using
the equations of the feedforward system and of the co-state of the corresponding
linear TPBVP we obtain a polynomial equation of the form

which must be valid for all p. By setting v and the coefficients and//equal to zero
we obtain the algorithm (for r t) for s (t)

Fs + (Mr)r +LHrR (y -Hr),

FL +L(A 7- _HrRHK) + (Mr)K -tlHrR (y -Hr),

Jl FJA + JI Ar HrRHK + J/[ Ar HrRHK MK K,

s(0) (, L(0) 0, d//(0) 0,

where the multiplication has been defined in the proof of Lemma 3.4.
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4.2. Discrete problem. It is shown in [7] that the discrete linear TPBVP

x(i + llk)=Ax(ilk)-BS-BTp(i +llk),
P(ilk)=ATp(i + llk)-nrR[yi-nx(ilk)],

x (0lk) -J-p (01k),
p(k+l[k)=O,

corresponding to the linear subproblem of the filtering problem 2.2 for g =y-Hx
can be solved by applying the discrete Riccati transformation

ri =x(ilk)+KiAri p(i +llk)
in the TPBVP. The obvious result is the formal discrete Kalman-Bucy filter for the
pair (r, K). As is well known the gain K satisfies the recursion

+ AK,A 7" +BS-B T,
Ko J-.

Application of the second degree Riccati transformation

z(ilk) si -tim Tp(i + llk)-[iATp(i + l[k)][A Tp(i + llk)]
in the feedforward system and by using the equations of the TPBVP, we obtain a
polynomial equation

vi +Sip(i + l[k)+[ip(i + llk)]p(i + llk) 0

for all 1, 2,..., k. By setting vi and the coefficients and /i equal to zero we
obtain for cr the discrete filter

s, + Fs, + 1/2(r)r, +L,+ + + (l,+ r,, +)u+,
u, + HTR (y+ HAr,),

L+ FLT + (sgr)K.T -l,+xu+x,. (I +,k+,HTRH)-A,
/g+1 F(lkT) .T (SgKkT) (KkT),

S0=", Lo=0, /o=0.

As compared with the continuous filter an essential difference is that the filtering
equation itself is driven by a second degree polynomial in the innovation u/.

An immediate conclusion which can be easily proved is the following. If the
degree of the polynomial link map is then the filtering equation is driven by the/th
degree polynomial in the innovation. Furthermore, every coefficient tensorM in the
corresponding Riccati transformation

z(i[k) si-= M{(ATp(i. + llk)Y

is obtained from a (tensor) difference equation driven by a polynomial of degree l-/"
in the innovation. The highest degree coefficient Mt is independent of the innovation.
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This phenomenon was, however, expected on the basis of some approximate similar
filters proposed in [10] for nonlinear difference systems. The stochastic formulation
in the case of a two-dimensional system performed by Marcus et al. [5] also resulted
in the optimal conditional mean filter driven by a second degree innovation polynomial.

4.3. Comparisons. Marcus et al. [4], [5] proved for the aforementioned system
classes the existence of finite dimensional optimal conditional mean filters. As an
explicit example they considered the stochastic counterpart of the following system.

3 --OX " W 1, .2 --X2 -" W2, --yZ -" X 1X2, y Hx + v,

where H is the identity matrix, J 0, and R and S are diagonal (in (8)). By applying
the general equations of 4.1 we obtain the deterministic least-squares filter

-’ys + rlr2 +MIR (y rl) +M2R (Y2 r2),

h)I1 -(a + y +RKIx)Mx +Kxr2 -MaR (y2- r2),

12 -(fl + 3’ +RK22)M2 +KEEr1 -MaR (y rl),

13 -(a + fl + y +RKa +RKEE)M3-K1K22

where Kll and K22 are the diagonal elements of the Riccati matrix of the linear
subproblem. The nonlinear filter was obtained by using the Riccati transformation

Z S -MIpx-MEP2-Mapxp2.

A detailed inspection shows that stochastic and deterministic filters for this system
are formally equivalent. Although, in our case, we have one differential equation less
than in the stochastic case. It is seen in the next example that the formal equivalence
breaks down due to the dependence of the components in the product affecting the
feedforward system.

The example

-"--OX -t-W, -"--Z -" X 2, y X "l-

gives for s the filtering equation

--TS + r2 +MR (y r)

where M1 is obtained from a two-dimensional system. The stochastic counterpart is
now [5]

d (-y +2+K) dt +MxR(d- dt)

where stands for the conditional expectation, K is the covariance of and d37 is
defined by d37 xdt + dv (v is a Wiener process with the incremental covariance R-).
The obvious difference as compared with the first example is that instead of 2 in the
stochastic filter we have here 2+K, the conditional expectation of x 2. The stochastic
filter of the first example can be considered to include the similar term E{xx2} which
is, however, equal to the product of expectations of x and x2 resulting in the formal
equivalence of the stochastic and deterministic filter.

4.4. Niipotent class. Optimal filtering for a system of the class of Theorem 3.2
is then studied. Let the linear subsystem be scalar (: =-Ax + w, g =y-x) and the
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feedforward system given by

(Fo + u aFa + u2F2)z,

a 0 0 1 -1 1 1 2 0

Fo b F= 0 1 1, F2-- 1
0 0 0 1 0

2
Ul-’X U2-’X

The transformation rt exp (-Foo’)z rejects the constant matrix Fo. Furthermore, we
arrive at the differential equation (see Marcus et al. [4])

where w D (r)u, D is defined by

oI,:L, j,a:exp(a-b)o’,:exp(a-c)o’,y=exp(b-c)o’,
and {H} span the Lie algebra generated by {Fa, Fz}. They are given by

Ha 0 H2 0 H3 0
0 0 0

and satisfy [Hi,//] 0, except [Ha, H2] H3.
Next we consider the finite generalized Volterra series of the matrix S given in

Lemma 3.4. The state transition matrix q of the feedforward system satisfies

(o-lt, o)= exp ( w4(’lt) d V(rlt, O)

where

v,(o-lt, O)= Hw(o-lt) V(o-lt, 0).

Via a successive approximation technique it is seen that V is given by

v(o-lt, o)=I+ Hw(-It) d-+ H3w(-lt)w.(-lt) d- d-,
i=1

and that it is of the form

1 vl vvl21V= 0 1
0 0

On the basis of (49) it is seen that S is also upper triangular with equal but nonconstant
diagonal terms whose elements all have a finite generalized Volterra series. Going
back into the estimate z(tlt)=exp(Fot)rl(tlt) we obtain for the filtering s(t) the
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differential equation
2g (Fo + rF1 +r F2)s +LsR (y r),

where L is defined by L =exp (Fot)S exp (-Fot) and is also upper triangular. The
detailed equations for the four different elements of L are obtained via differentiation
of the Volterra series of the elements of $ and using the above-mentioned transforma-
tion formula.

5. Concluding remarks. It is shown that the least-squares formulation of the
filtering in a deterministic framework resulted in the same-results as the stochastic
conditional mean filtering: finite dimensionality of the optimal recursive filters for
some system classes. Explicit filter structures were developed for a class of continuous
and discrete systems. The Riccati transformation technique employed proved to be a
useful tool in the TPBVP’s. A side result is presented in the appendix" existence of
finite dimensional filters for systems driven by the state of a linear system and described
by a finite generalized Volterra series. It can also be proved using the realization
results of Crouch [11] and the proof of Theorem 3.1.

Appendix A. Multilinear mappings and generalized Volterra terms. The follow-
ing definitions and notation are in part from Greub [12], Krasnoselskii et al. [13],
and Brockett [6]. U and V are finite dimensional vector spaces over R.

DEFINITION A.1. & is a multilinear mapping of order k (k-linear) from U into
V if it is linear in each of the k arguments xl,..., x U.

DEFINITION A.2. & is symmetric if
(A.1) ’(Tr(x), r(x2),"’", r(Xk))=(X,X,’’" ,Xk)

where 7r is any permutation on {Xl, xE,""", Xk}.
DEFINITION A.3. M is a homogeneous operator of order k from U into V whose

value is denoted by Mx k if

(A.2) Mx k (X, X, ", X ).

DEFINITION A.4. A covariant tensor Mk of order k (k-tensor) is a k-linear
mapping from U into V. The linear subspace of k-tensors is denoted by Tk (U, V).
The subspace of symmetric (in the sense of (A.1)) k-tensors is denoted by Yk (U, V).

DEFINITION A.5. A mapping Q with values in V is a polynomial of order u in
xUif

(A.3) Q(x) M + Mkx k

k=l

where Mk Tk(U, V), and M V.
Consider the multidimensional Volterra term which depends on the time

parameter

(A.4)

where uj(rlt) Rr and Nki (tr[t) Tk (Rn, Rnl). The kernel is assumed symmetric in the
time arguments, i.e. for any permutation r on {z, , ri}

(A.5)
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The value of the kernel is an element of Y/(Rr, Tk(R", R"I)) for each IT, Zl,’’ ’, zi.
The value of the kernel as a k-tensor valued /-tensor can be interpreted as a
generalized matrix with k + + 1 running indices, i.e. it is formed by the scalars (see
also Crouch [11 ])

The kernel is said to be separable if every scalar component of W/ (IT,...) can be
written in the form

W/k(IT, T1,’’ ", Ti)comp E /0(IT)’(T1)’.. i(Ti).
1=1

The components are assumed to be piecewise continuous and locally bounded [6].
Volterra terms can also be defined by using triangular kernels by

T1

(A.6) X (iT[t) I (IT, 7"1, Ti)("" ") dr1.., dr,

where ff’ (IT, rl,..., ri)=0 if r,+>rj, k,]= 1,2,.... Brockett [6] has stated that
there exists a one-to-one correspondence between triangular and symmetric kernels.
So, depending on the situation to be considered we use triangular or symmetric kernels.

The differentiation of time varying tensors with respect to the scalar variables
or IT is interpreted componentwise.

Define a multiplication of k-tensor N/ (ITIt) and an n n matrix C, and an n-vector
v, by

(A.7)

(A.8)

(N (o’lt)e)(xx, x) N (rlt)(xx,..., x,_, Cx),

(N (rlt)v)(x, x_) Nf (rlt)(xx,.’., x_x, v).

LEMMA A.1. Let ui(. It) x(. [t), ] 1,..., N, the optimal trajectory ofthe problem
(8)-(10), in the Volterra term (A.4) with a symmetric separable kernel wk. Then

(A.9) 0--Nk (iT[t)= --Nk_+ (ITIt)(IT, t)G(t, y(t))TRg(t, y(t), x(t[t))
0t

where Nk_+ is a (k + 1)-tensor valued Volterra term of order i- 1 with a symmetric
separable kernel Wk_+ defined by

(A.10) W__+ (IT, r, , -,_)= W (IT, r,.. , r)K(r)*(z, IT) dry.

K and are given in the main text in Lemma 3.2.
Pro@ By differentiating the Volterra term (A.4) with respect to we obtain the

sum of terms. In the ]th term of the sum, instead of xO’lt), there is xt(rlt) which is
given by Lemma 3.2. Because of the symmetry of the kernel W and of the tensor
W (IT, rl,..., zi) all the terms are equal. By using multiplication rules (A.7-A.8)
we have a (i- 1)-tensor (in x) in the integrand. On the basis of the transition property
XI/’(Zi, t) /’(7"i, o’)XI/’(o", t) the term (IT, t)G(t, y(t))TRg(t, y(t), x(tlt)) can be extracted
from the integrand. The remaining term is consequently a (k + 1)-tensor. By integrating
with respect to ri the kernel (A.10) is obtained. The separability of the kernel W/_+
is due to the separability of W and to the transition property of . The symmetry
of W_+ is obvious due to the symmetry of W/. Q.E.D.
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DEFINITION A.6. Let u(-lt)=P’(-)x(-It)’, /’=l,2,..’,N, where P"(-)
Y,j(Ii", RN), and x(. It) is as in Lemma A.1. Then the/-fold integral (A.4) is called a
generalized Volterra term of order jl ’.

LEMMA A.2. Let (A.4) be a generalized Volterra term as defined above. Then
W(,. .) is a tensor of order in x. Relabel it by V (,. .), and the corresponding
N by M. It satisfies

(A.11) LM (glt)= -M ([t)W(, t)Gx(t, y(t))TRg(t, y(t), x(tlt))
Ot

whereM (lt) is a (k + 1)-tensor valued generalized Volterra term of order 1- 1 with
a separab& kernel, say V, and is given in Lemma 3.2.

The proof is analogous to that of Lemma A. 1, so it is omitted. The only exception
is that the kernel V cannot be represented in the explicit integrated form as was
the case for W.

Remark A.1. It is obvious that the generalized Volterra term of order with
/-fold integration can be expressed as a usual Volterra term of order with /-fold
integration. But then the kernel would include an (/-/)-fold product of 6-functions
(see Brockett [6]).

On the basis of Lemmas A.1 and A.2 and by using the results of Brockett [6]
and Crouch [11] the following theorem is obtained.

THEOREM A. 1. Let an input-output map be given in the form ofa finite generalized
Volterra series with symmetric separable kernels

(A.12) w(lt) Wo()+ W(, ra,’", i)
i=1

(u(ra[t),’’’, u (lt)) dr1" dzg,

where w(lt) R, and u(zlt) Ru are polynomials in x(z[t) given in Definition A.6.
Then (t) w(tlt) is finite dimensionally compumb&, i.e. it is obtained from a finite
dimensional differential system with a fixed initial value driven by y (t) and polynomials
of x(tlt).

Proof. In the formula (t)= w=(tlt)+ w,(t[t) we prove that the both partials are
finite dimensionally computable. By keeping as a fixed parameter the series con-
sidered as a normal Volterra series with input u (. It) is realizable by a finite dimensional
differential system. The result has been proved by Brockett [6], and later on by Crouch
[11] who also presented a detailed structure of the corresponding differential system.
By setting in it g we obtain a system for w(tt). Successive application of Lemma
A.2 in each of the individual terms of (A.12) gives as the final step the equation

(A.13) LM+’-I ([t)=-M+’(lt)(, t)G(t, y(t))rRg(t, y(t), r(t)).
Ot

Furthermore, we obtain a finite set of tensors M+a’-i(glt) which all are finite
dimensionally computable at g with obvious zero initial values. This is seen by
realizing every tensor for the fixed time by a finite differential system and by using
Lemma A.2 for g t.

At last, it is seen that M+t’ (g[t) is a zeroth order Volterra term, independent
of the final time t, and it satisfies

M+’ (tit) W+/,-a (t, t)g (t) +M+’ (t[t)[A W(t)K (t)],
(A.5)

M+, (010) 0.
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Consequently, every individual Volterra term in (A.12) for r is obtained from a
finite set of differential equations driven by y(t) and polynomials of r(t) (i.e. of
x(tlt)). Q.E.D.

Remark A.2. It has to be noted that if the Volterra series were infinite we could
not consider it in general as an input-output map between x and w, but only between
u and w [14].

Appendix B. On Lie algebras [15].
DEFINITION B. 1. A vector space L where a bilinear product L x L -L is defined

satisfying the anticommutativity and the Jacobi conditions

[A,B]= -[B,A], [[A, B], C]+[[B, C],A]+[[C,A],B]=O,

is a Lie algebra.
DEFINITION B.2. L is nilpotent if the lower central series of ideals

LO=L, L’+ =[L,L]={[A,B],B Li},
is {0} for some i.

It is seen that the n by n matrices considered in the main text form a Lie algebra
if the product is defined by using a standard matrix product by

[A,B]=AB -BA.
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NONLINEAR SYSTEM IDENTIFICATION BASED ON A FOCK SPACE
FRAMEWORK*

L. V. ZYLAI AND RUI J. P. DEFIGUEIREDO

Abstract. A method is presented for the identification of a nonlinear dynamical system whose input-
output map is assumed to be a Volterra series mapping inputs u belonging to L2(I) to outputs y in the
Sobolev space H2n (I), where I is a compact interval of the real line and n is a nonnegative integer. The
input-output relation is denoted by y(t)= V(u)(t) a= Vt(u), teL It is assumed also that a set of test
input-output pairs {uL2(I), yiH2, (I):/= 1,..., m} are provided.

Our system identification procedure is based on the construction of a reproducing kernel Hilbert space,
namely a symmetric Fock space F for the nonlinear functional Vt. The corresponding nonlinear.gperator
V then belongs to a Bochner space B2,. We obtain the best estimate I7" of V, based on the input-output
data, in the form of a generalized inverse in B Both the noncausal and causal versions of I7" are derived.
The concept of e-causality, which is weaker than that of causality, is also introduced and motivated, and
an e-causal solution to the system identification problem is derived. Finally, the modifications needed to
be introduced in the above solutions when the data is noisy are indicated.

Key words, nonlinear systems, system identification, generalized inverses, approximation, Fock spaces,
Volterra series, operator theory

1. Introduction. We consider the problem of identifying a nonlinear dynamical
system whose input-output map V is described by a Volterra series

y(t)= V(u)(t)= Vt(y)

(1) Y’. . h(t;t,...,t)u(t)...u(t)dt...dt,
k=0

where the input u belongs to real L(I), I being an interval of the real line, and, for
some nonnegative integer n, the output y is a member of the Sobolev space H (I)
of real-valued functions y on I such that y(= dy/dt is absolutely continuous on I,
=0, 1,... ,n-l, and y(/_,(I). To guarantee the smoothness property of the

output just stated, it will be sufficient that each kernel h "R/R satisfy the
following condition’

(al

(2) h Oh/Ot when viewed as a function from I to L(I) is absolutely
continuous over eI for =0,. ., n 1, and h" La(I+).

The following two additional restrictions on the kernels are assumed so that, as
shown in 2, the nonlinear Volterra functional Vt can be made to belong to a
reproducing kernel Hilbert space Fo, called a symmetric Fock space (or, simply, Fock
space), and the corresponding Volterra operator V to a Bochner space B where 0

* Received by the editors June 18, 1979, and in final revised form December 27, 1982. This research
was supported in part by the National Science Foundation under grant ENG 74-17955, by a contract from
the Rome Air Development Center, Air Force Systems Command, Griffiss Air Force Base, New York,
and by the Office of Naval Research under contract N00014-79-C-0442 (Mathematical Statistics and
Probability Program).

f McDonnell Douglas Technical Services Company, Houston, Texas 77058. Formerly with the Depart-
ment of Mathematical Sciences, Rice University, Houston, Texas 77251.

Department of Mathematical Sciences and Department of Electrical Engineering, Rice University,
Houston, Texas 77251.

Absolute continuity of h "I =[a,b]L(Ik) is defined by the statement" For every e >0, there is
a a>0, such that if a<--Zl<Yl<--z2<Y2"’’<--ZN<yN<--b, then Y;=lllh (yi;...)-h (z
whenever Ei [Yi- zi[ < 8.

931
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is a positive constant:
(b)

(3) hk(t; tl, ", tk) is symmetric with respect to the argument variables tl, , tk
(c)

k

(4) . Ilh (’,’’ ")11=,"/<, 0,..., n.

Finally, we assume that:

(d) Specific information on the system under consideration is provided in the
form of a set of test input-output pairs {ujL2(I), yiH2 (I)’f 1,. ., m}.

Under the above conditions, we obtain the best estimate Vt of Vt as a generalized
inverse in the space Fp. The knowledge of Vt for every I then determines the best
estimate Q of the operator V.

In 3 and 4, we present respectively the noncausal and causal versions of the
above solution (generalized inverse). In particular, we discuss in 4 some of the
difficulties which may arise in obtaining the expression for the causal solution in a
neighborhood of 0, and introduce the weaker concept of "e-causality," which is
easy to satisfy.

Finally, in 5, we indicate how the above results are to be modified when the
data is contaminated by noise.

The present approach to the system identification problem is similar to the one
proposed by deFigueiredo and Caprihan 1], [2] for the identification of linear systems,
with the basic difference that in the linear case, the space, to which the operator to
be identified belonged, was assumed to be the space of "trace class" operators.

We would also like to point out that the idea of using the generalized inverse
approach to the solution of the system identification problem has been extensively
disciassed in the literature and notably by Balakrishnan [3], Hsieh [4], Root [5], and
more recently by Beutler and Root [6], Franklin [7], Mosca [8] and Porter [9]-[11].
The new feature of the present results in the use of the infinite-dimensional Fock
space framework, and the reproducing kernel pertaining to this space, to derive a
parameter-flee solution to the nonlinear system identification problem under consider-
ation. The solution obtained is an approximate infinite-dimensional Volterra series
which constitutes the best approximation to the entire (untruncated) Volterra series
representing the system to be identified, subject to the input-output data constraints.

2. Fock spaces and Bochner spaces. Let p and I be defined as before and assume
I to be a fixed parameter. By a (symmetric) Fock space Fo we mean the set of

Volterra functional series maps Vt" L2(I) -’)’ R described by (1) and satisfying the
conditions stated in the preceding section, each member ofFo being uniquely character-
ized by its sequence of kernels, and the inner product between any two members Vt,
with associated kernels {ho(t), h(t; t),. ., hk(t; tl," ", tk)," "}, and Wt, with associ-
ated kernels {/o(t), l(t, tl),’", h’k(t; tl,’’’, tk),’" "}, being defined by

k

(5) (Vt,
k=O

Under the conditions stated, Fo can be shown [12]-[15] to be a Hilbert space
with the inner product (5).
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(6)

Then

Let us introduce the functional K" L2(I) L2(I) R expressed by

K(u, v)=exp {-(u, v)t2t)}.

(7) K(u,. exp (u,.).2(t)
k

u (R) u(R)... (R) u
=0 .#9

(where the symbol (R) denotes tensor product between elements of L2(I)) is clearly a
member of Fo. Furthermore, it follows from (5), (7) and (1) that

,8, (V,,K(u, .))r, =(V,, exp {(u, ")m}) V,(u).

Thus (7) and (8) imply:
PROPOSITION 1 [15]. Under the conditions stated, Fo is a reproducing kernel Hilbert

space (RKHS) with the reproducing K (u, v) defined by (6).
We next construct the Hilbert space B2, for the operator V. Formally, we define

BE, as the space of operators W from I to Fo (the value of W at being denoted by
Wt) such that the strong derivatives (in the Fo norm) W(/) of W at t, for i--0,
1, , n 1, are absolutely continuous on/, and W") satisfies

(9) It W(") 2, dt < oo.

It is clear that the conditions (2) through (4) on the kernels of the Volterra series
(1) guarantee that the Volterra operator V, introduced earlier, belongs to B.
B can be made a Hilbert space [15], [16] under a variety of inner products

defined in much the same way as in the Sobolev space H (I). A typical such inner
product for two elements V and W of B is

(1O) V, W)n a, V’), W’) )G at,
i=0

where a, 0, 1,..., n- 1, are positive constants.

3. Noneausal solution in the noiseless ease. Under the conditions stated, the
noncausal solution to the noiseless nonlinear system identification problem may now
be obtained as the solution to the following minimum norm problem"

(1 la) inf w B=
(llb) V(ui) y, ] 1,. ., m
(where {ui e L2(I), Yi e H2, (I): ] 1,. ., m} are test input-output pairs).

Since, according to (13),

(12) Ilwll  ai Itll" ") =v, I1 . at,
i=0

the minimum of (12) is achieved by the solution of the (n + 1) minimization problems

(13a) min IIv ’)ll . vt vl
(13b) --tii) (Us) Y)(t), 0," n, ] 1,. m.
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Now, for every /, each uj may be viewed as a continuous linear functional on
Fo. In fact if, for all Wt Fo, we write

(14) Wt(uj)= t(W,),
then the functional ff is linear, since ai(a W, + bl,) a W,(uj) + bl,(uj)
ad(W) + bd.(lt) for all a, b R and Wt, ff’, Fo, and also tT is bounded because"

(15) {1 }
The following is also true.
LZMMA 1. If Ui, f 1, , n, are distinct elements ofL2(I), then the m m matrix

(16) G {exp {(ui’ ui)L2(t)}}i,l=l,...,
is nonsingular.

Proof. If u, f 1,..., m, are distinct, then exp {(1/p)(ui,.)L2(t)}, f 1,..., m,
are linearly independent elements of Fo (see Guichardet [17]). Since, according to (5)
and (7),

1 b//.)L2(i)},(17) (exp {(ui,’)2(,}, exp {pl--(ui, .)-(,,}) =exp {-(ui,
it follows that G defined by (16) is the Gram matrix for the linearly independent
elements exp {(1/O)(u," )(}, f 1,..., m, of Fo, and hence G is nonsingular. 71

From now on we will assume that ui,/" 1,. ., m, are all distinct. According to
(8), we have

(18) (--t ,exp {-(u.,I/r(/) 1

P

Hence, by the projection theorem, the minimum of (13) is achieved by projecting
into the span of the representers exp{(1/p)(ui, ")L(Z>}, f= 1,’’’, m, of t.,

/" 1, .., m, in Fo. In other words, the optimal estimate --t v is of the form"

lr(i) 1
(19) -- Y ci(t) exp -(u., .)(t) 0,. ., n,

i=1 p

where the constants cgi(t) are determined by the constraints (13b). A simple calculation
(i (t), wheretoward satisfaction of all these constraint requirements shows that Cgi(t) c

c(t) are the coefficients in the following expression for lT"t.

(20) l’3"t Z ci(t)exp (ui, .):(-
]=1

The coefficients are obtained from"

(21) e(t)=G-y(t),
(22) c(t) =col (Cl(t),’"", c,(t)),

(23) y(t) col (y(t),..., y, (t)),

P i,] 1,...,m
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We summarize the above results in the form of the following:
THEOREM 1. Given that the input-output map V to be identified belongs to B 2

and assuming that we are provided with a set of test input-output pairs {uj L2(I), yj
H2, (I): f 1,.. , m}, where u, 1,. ., m, are distinct elements ofL2(I), the problem
(13) has a unique solution expressed by

(25) (u) 2 c. exp (u, u)()

where the functions cj HZ, (I) are obtained by (21) through (24).
Remark 1. It can be shown [15] that (25) is also the solution of the min-max

problem:

(26a) min {sup IIv-
WX WC

where

(26b) X {V B2, V(u) y, f 1,..., m}

and C is the uncertainty class

n---

where y is an appropriate positive constant, sufficiently large for C to have nonzero
intersection with X. In a specific application, y2 may be equated to the largest eigenvalue
of the covariance associated with the probability of V over B2

Remark 2. It is of interest to obtain an expression for the error

(27) ]IQ, wtllo.
According to the projection theorem, we have

z y -Xy(28) (ll ,llvo- (t)G (t)).

If ui, ] 1, , m, are orthonormal, then the diagonal elements of G .are e (Napierian
base) and its off-diagonal elements equal unity. Then (28) can be expressed as

(29)

where

i= i,i=

e+m-2 -1
(30) /

e 2 + (m 2)e m 1’ e 2 + (m 2)e (m 1)"
2An estimate of sc may be obtained by replacing IIVIIG in the above formula by

2
3’ where 3’ is the constant introduced in (26c).

4. Causal solution in the noiseless case. We now present and discuss the causal
solution to problem (11) for the case in which n =0, that is, in the space Bo. For this
purpose it is necessary to add to the minimization problem the additional constraint
that V Bo satisfy the causality condition’

(31) P,VPt(u)=PtV(u), el, u L2(I),
where P :L2(I)-L2(I) is defined by

(32) Ptu(s)={ u(S)
0 ifs >t.

ifs<--t’
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(33)

Let tT denote the continuous linear functional on Fo defined by

V(ui)(t) tj(V,), ui L2(/),
where now V is causal. Since the representer for tTj in Fp is

(34) exp {(P,ui,

it follows from an argument similar to the one in the preceding section that the
following expression applies to the causal solution of (11):

(35) (u)(t)= E i(t)exp
1

=1 -(Ptuh PtU )L2(,)

where now :(t)= col (tl(t),’’’, t,(t)) is the solution of

(36) (t):(t) =y(t)

where G(t) is the causal Gramm matrix

(37) (t) {exp ((P,ui, P,u).2t)) }
i.=l,...,,

and y(t) is defined by (23).

4.1 Strictly causal solution. For simplicity in presentation and without loss in
generality, let I --[0, 1].

We assume"

(38) {Ptul, , Ptu,,} are distinct elements of L2(I) for every (0, 1].

It is clear that, under this condition, t(t) is invertible for every (0, 1], and
hence (35) makes sense for all such t. A difficulty arises, however, at 0, since t(0)
is a singular matrix with all its elements equal to unity. To guarantee that (35) be
well defined at 0+, additional conditions on the system to be identified need to
be imposed, by our selecting the test inputs appropriately and observing that the
corresponding test outputs satisfy suitable conditions.

Specifically, according to (36), {(uj, y):/" 1,. , m} must be such that the condi-
tions (39) and (40) below are satisfied:

(i) for/’= 1,..., m,

y,(O+) im
t>o

exists and

(39) yl(0+) y2(0+) y,(0+)

(each being equal to 1(0+)+2(0+)+’’. +tm(0+));

(ii)

(40) lim t-(t)y(t)= -(0+)y(0+)
t-0
t>0

exists as a finite vector.
Remark 3. It is of interest to derive sufficient conditions on {(u, y)"/" 1, , m }

so that (40) is satisfied.
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For m 1, (39) implies (40). The situation however is nontrivial for rn > 1.
For rn 2, (40) is assured by requiring that

(41) ’(0+)u(0+), u:(0+), y (0+), y

exist as finite real numbers and ul(0+) u2(0+) (where, as before, for a given function
f on I we denote by f(0+) the limit approached by f at 0 from the right). This is
gleaned from the fact that (for m 2)

22(t)y (t) 12(t)y2(t)
(42) cl(t) (i(t)EE(t)-E(t)’

(43) c2(t)

Now, according to (37),

(44)

(45)

Hence, by l’Hbpital’s rule,

(46)

l(t)y2(t) 2(t)y(t)
(t)22(t) 2(t)

Gi(0+) 1, i, ] 1,. ., m,

i](O_) 1
__ui(O__)u](O_[..)"
P

1(0+) lim
t0
t>0
’ (t)y1(t)+r22(t)y’ (t) ’22 12Y2()-2(t)y(t)
r’ (t)r22(t) + 811(t)1 [2 (t) 212(t)2 (t)

1/p )U2(0q-)(U2(0--) U (0--))y (0-[-) -[- y (0"1-) y (0"q-)
(1/)(u 1(0+) u,.(0+))

and similarly with 82(t), which shows that (41) is a sufficient condition for (40).
For rn > 2, using an approach similar to the one above, we have, by Cramer’s rule,

(47) (i(t)
18(i; t)l
I(t)l

where I(’" ")l denotes the determinant of (...) and ((/’; t) is the matrix obtained
from G(t) by.replacing the fth column by y(t).

Letting G(t) denote the ]th column of t(t), we have by Leibniz’s rule

I’(t)l 1 (t), 2(t),’’’, .(t)] + [(t), (t), 3(t),""", m(t)[
(48)

+... + [(t), dt),..., ,,_(t), ’,,(t)l.
Since

(49) j(0+) =col (1, , 1), = 1,..., m,

each of the determinants in the right side of (48) vanishes because the respect.ive
matrix has m 1 columns consisting of ones. By continuing the differentiation of G(t)

> (k)k times, we deduce that only if k=m-1, does I (0+)1 consist of a sum of
determinants of matrices each of which need not possess a repeated column of ones.
Hence we conclude that’

(50)
For rn > 2, (40) holds by our recluiring that (for k -> rn 1 and for

’ (0+) 0, 1 x 1, and YT’(0+),1=1,...,m)uj
0, 1, , k, exist as finite numbers, and I(()(0+)l 0.
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From the above considerations we reach the following conclusion.
THEOREM 2. Suppose that the selected test inputs and the corresponding outputs

satisfy (38), (39), and (40) (or the conditions in Remark 3). Then the nonlinear system
identification problem (11) (with n O) has a unique causal solution expressed by
(35)-(37).

4.2. e-causal solution. In order to do away with restrictions (39) and (40) we
now introduce the following concept.

DEFINITION. A nonlinear operator V B2. is e-causal (for some positive e < 1) if

(51) P,(V(Ptu))=Pt(V(u)) for >-e.

Remark 4. This concept is motivated by the fact that it is not possible to identify
a causal system without first observing its input-output behavior over a time interval
of nonzero length.

The following conclusion is clear.
THEOREM 3. Suppose condition (38) holds. Then for an arbitrarily small e >0,

the nonlinear system identification problem (11) (with n O) has a unique e-causal
solution given by:

(52)

where

(53a)

(53b)

0<t-<e,

e <=t<=l,

c(t)=G-ly(t),
:(t) -l(t)y(t),

where G is an m m matrix with elements

(54) Gi =exp { l
(ui,

P

and (t) is defined by (37).

5. Nonlinear system identification in the noisy case. If the ouput measurements
are corrupted by noise, we model the input-output relation by

(55) y V(u)+

where u is the projection of the noise into the output space. Then the test input-output
data is of the form

(56) y V(u) +

where we assume that

(57) (Pi, Pj)H(I): qiij, i, f 1," ", m,

qi being positive constants and 8i Kronecker delta.
The nonlinear system identification problem may then be posed as the uncon-

strained minimization over all V B of the functional

(58)
j=l
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The solution is obtained in much the same was as in [2]. It has the same form
as (25) (noncausal case) or (35) (causal case) except that the vector e(t) or (t) is
calculated by

(59) e(t) or :(t) (I +Q-1G(t))-lQ-ly(t),
where

(60) Q diag (ql,. ’, q,)

and G(t) is either G(t) or G(t), defined previously, depending on whether the case
is noncausal or causal.

6. Conclusion. We have presented an approach, based on a Fock space
framework, for parameter-free nonlinear system identification for a system whose
input-output map is expressible by a Volterra series subject to appropriate restrictions,
and under the assumption that a set of test input-output pairs is available.

The algorithms described in this paper have been implemented in various com-
puter simulations with encouraging results.

Acknowledgments. We are indebted to an anonymous reviewer and to Professor
John Polking for helpful comments on the original version of this paper.
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NONLINEAR OPTIMAL CONTROL PROBLEMS IN
HEAT CONDUCTION*

AVNER FRIEDMANT AND LI-SHANG JIANG

Abstract. We consider two control problems: (a) Maximize the melting in a Stefan problem, given
the total heat flux as a control variable; (b) cool the temperature of an endpoint of a rod as much as
possible, given the control variable as a certain coefficient in the corresponding parabolic equation. Both
problems are solved using the same method.

Key words, optimal control, parabolic equations, Stefan problem, heat conduction

Introduction. In this work we consider optimal control problems for parabolic
equations. In the literature one can find models in which the control appears linearly,
that is, either as an inhomogeneous term in the parabolic equation or as the initial
or boundary data, e.g., [1], [3], [4],[5], [9]. In the present work the control appears
in a nonlinear fashion. The existence of an optimal control can be established by a
direct argument, using a minimizing sequence. Our interest here is in the actual analysis
of the optimal control; in fact, we determine exactly what it is.

The method is based on linearization and it consists of two steps:
(i) First we study optimal e-perturbation of a given control.
(ii) Next we apply (i) to the optimal control, treating it as an e-perturbation of

another control (which depends on e).
We shall apply the method to two models:
(a) the Stefan free boundary problem;
(b) a cooling problem for u,- Uxx + k (x )u O.
In case (a) the control variable is the amount of heat flux used to melt ice; we

wish to spread the flux (in time) in such a way as to melt as much ice as possible.
In case (b) the control variable is k (x); we wish to choose it so as to achieve the

best cooling result of one endpoint.
Problem (a) is studied in 1, 2 and problem (b) is studied in 3. The method

of this paper should apply to various other models in which the control does not
appear in the leading coefficients or in the free boundary condition; see Remark 3.2.

1. The SteIan problem; e-perturbation. In this section we consider an auxiliary
problem that will be used in 2 in order to solve the optimal control problem (a)
mentioned briefly in the introduction.

Consider a one-phase Stefan problem" find u, h satisfying

(1.1)

ut-Ux=O if0<x<h(t), 0<t<T,

u(x,O)=b(x) if0<x<b (b=h(0)>0),

-ux(O,t)=g(t)+e6(t) if 0<t< T,

u (h (t), t) 0 if 0 < < T,

dh
-ux (h (t), t) if 0 < < T.

dt

* Received by the editors June 16, 1982, and in revised form January 6, 1983. This work was partially
supported by the National Science Foundation under grant MCS 7915171.

+ Mathematics Department, Northwestern University, Evanston, Illinois, 60201.
t Department of Mathematics, Peking University, Peking, China.
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Here O(x)->_0, g(t) =>0, 6(t) =>0, e ->0 and b >0 are given. It is well known that this
problem has a unique solution for any (say) continuous data qb, g, 6. In fact the solution
can be obtained by solving a nonlinear Volterra type integral equation for ux(h(t), t)
(see [2]). By re-examining the proof one easily sees that the proof of existence and
uniqueness remains valid even if g(t) and 6(t) are measures, provided

T T

J0 g(t)< c, Jo 6(t)<

We recall [7], [10] that the free boundary is C for O.
We denote the solution of (1.1) for e > 0 by u, h. One can establish [8] that

u(x,t)=u(x,t)+ev(x,t)+O(e2), 0<x<h(t), 0<t<T,

u(x,t)=u(x,t)+ev(x,t)+O(eZ), 0<x <h(t), 0<t<T,
Ox

(1.2)
h(t) h(t) + e/(t) + O(e2),
d
d--h(t) h’(t) + ey’(t) + O(e2).

Notice, by comparison, that if 6(t)>-0, then y(t)_-> 0.
We fix A >0.
DEFINITION 1.1. Denote by the class of measures 6 (t) (0 < < T) satisfying

T

6 (t) => 0, Jo 6 (t) =< A.

Set 3,(t)= 3,(t).
Problem (H). Find 6 e such that

y (T) wax yg(T).

THEOREM 1.1. There exists a control 6 which solves Problem (1-I).
Indeed, any minimizing sequence 6, has a subsequence for which 6, 6 (weak

convergence of measures) and the corresponding v vs., y ys..converge; 78. y
uniformly, and lim 6,, lim v., lim y. give the maximum.

The.main result of this section is the following’
THEOREM 1.2. The optimal control 6 is unique; it coincides with A times the Dirac

measure at O.
Thus the best policy for maximizing the amount of melting is to use all the

admissible heat flux right at the beginning.
Proof. It is easy to see that v(x, t) satisfies:

v,-Vx=O if0<x<h(t), 0<t<T,

v(x, 0)=0 if0<x <b,

(1.3) -vx (0, t) 6(t) if 0< < T,

v(h(t), t)= V(t)h’(t)

v(t) f 6(s) ds-
ao

if0<t<T,

v(x,t)dx if0<t< T.
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Setting

w(x, t)= 8(s) ds- v(y, t) dy,

we obtain for w the problem

wt- Wxx 0

w (x, O) 0

w(0, t) 6(s)ds

wx(h(t), t)+h’(t)w(h(t), t)=0

if 0<x < h (t),

if 0<x <b,

if0<t<T,

if0<t< T,

(1.4)

and

(1.5) ),(t) w(h(t), t).

0<t<T,

8G O2G

G(x, t; O, ’)= O,
(1.6)

Ge(x, t; h(z), -) + h’(-)G(x, t; h(-), -)= O,

G(x, t; e, ’)3x() if zt,
where 8x (’) is the Dirac measure (in :) supported at : x.

We have

w(x, t)= (0, r)Ge(x, t; 0, ’) dr,

so that, by (1.5) and the third condition in (1.4),

(1.7) "y(t) F(t, s)6(s) ds,

where

II:0<x<h(t), 0<t<T;

(1.8)

We claim

F(t, s) Ge(h(t), t; O, ’) dr.

(1.9) --F(T,s)<O if 0<-s < T.
Os

Indeed, using the maximum principle we find that

G(x,t;j,-)>O if>0, -<t,

G satisfies

We shall represent w in terms of the Green’s function G(x, t; , r) ( < t) in the
domain
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for any 0 < x -< h (t). Since G(x, t; 0, -)= 0, the maximum principle gives

Ge(x,t;O,-)>O (O<x<-_h(t)).

It follows that Fs(T, s)=-Ge(h(T), T, 0, s) <0.
From (1.9) and (1.7) it is clear that y(T) is maximized if and only if 6(s) is taken

to be the Dirac measure at s 0 times the constant A.

2. The general Stefan problem. Consider the Stefan problem for u(x, t), h(t):

ut-Uxx=O if0<x<h(t), 0<t<T,

u(x, 0) 4(x) if 0<x <b,

(2.1) -ux(0, t)= g(t) if 0 <t < T,

u (h (t), t) 0 if 0 < < T (h (0) b > 0),

h’(t) -ux(h(t), t) if 0<t < T

with a control function g(t) varying in the control set
T

K {g(t) is a nonnegative measure, lo g(t) dt <=a}.
We sometimes write u ug, h hg.
Problem (II). Find g K such that

hg(T) max h(T).

THEOREM 2.1. There exists a solution g ofProblem (II).
The proof is similar to the proof of Theorem 1.1.
The main result of this section is the following:
THEOREM 2.2. There is a unique solution g ofProblem (II), given by g(t) A6o(t),

where 6o(t) is the Dirac measure supported at O.
Proof. Suppose the assertion is not true. Then there is an optimal control g(t)

and 0 < 3’1 <- T such that
TI g(t) dt > O.

For any small 6 > 0 there exists an r/ > 0 such that

I’+ g(t) dt 6, rl <- T.

Define

(2.2) l(t) / 0 elsewhere

and

(2.3) ga(t) g(t)-61(t).

Consider the Stean problem or u,a, h,a:

0 0=
at

u,a
Ox

u,a 0 if 0 < x < h,a(t), 0<t<T,
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(2.4)

ue,8(x, 0) b(x) if0<x <b,

---ue,8(O,t)=g(t)+el(t) if0<t<T,
Ox

u,(h,(t), t) 0 if 0 < < T,

d
h,,(t)=

0

d-- --xU,8(h,(t),t) if 0<t< T.

In view of (2.3) we have

u,(x, t)= u(x, t), h,(t) h(t),

where u Ug, h hg is the solution of (2.1) corresponding to the optimal control g.
We now wish to apply the results of 1 in order to derive a contradiction as

6 0. For this we need certain estimates on how the solution of (2.4) behaves as
6 0, uniformly in both e and 6, or actually just for e 6.

Set u Uo,, h ho.8.
LEMMA 2.3.

(2.5) 0 <- h (t) hn(t) <- 6.

Proof. By comparison (since g _-> gn)

(2.6) h(t)>-h(t) and u(x, t)>-u(x, t).

Integrating the heat equation for u and using the initial and boundary conditions in
(2.1) we find that

Io’ Ioh(t) g(s) ds + ok(x) dx u(x, t) dx.

A similar formula holds for hs. By taking the difference and using (2.6), we find that

O<-_h(t)-h(t) <- (g(s)- g(s)) ds =6.

LEMMA 2.4.

(2.7) [h’(t)- h (t)l <-- C6.

Pro@ As already mentioned in the paragraph following (1.1), h(t) and each of
its t-derivatives are bounded independently of 6, if e0 -< _-< T (for any eo>0) and hn(t)
is continuous in (t, 6) up to 0. Thus Green’s function G8 for the domain

fin: 0<x < hn(t), 0<t<T

exists and the usual estimates hold independently of 6.
We can represent w u -un in 1 in the form

w(x, t)= (g-gs)(-)G(x, t; 0, -) d"

(2.8)
u(h(r), ’) -;-;G(x, t; h(’), r) dz.

Since Ihs(t)-h(t)l <= C6 by (2.5), we have

u(h(’), 7") <-_ C6
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also

G(x, t; O, r) <= Cx ifx=>A (VA>0).

Hence we deduce from (2.8) that

(2.9) lu(x,t)-uz(x,t)l-lw(x,t)l<-_C, ifx =>A.

Setting vl(t) ux(h(t), t) we can write an integral equation for vl (see [2, Chap. 8])

v(t) 2 v(r)Gx(h(t) t" h(r), r) dr + 2 u(, r)Ge(h (t), t; A, ) dr,

where Gx (x, t; , ) is Green’s function for the heat operator in the half space x > h.
A similar integral equation holds for

0
v(t) un(h(t), t)

with h(t), h(z) replaced by h(t), h(z), respectively. Taking the difference and setting

V(t)=va(t)-v2(t),

we obtain, after using Lemma 2.3 and (2.9),

V(t) 2 g(r)G (h (t), t’, h (r), r) dr

.+2 v(r)[G(h(t),t;h(r),)-G(h(t),t;h(r),)]d+O().

Denote the second integral on the right-hand side by J and take for simplicity I 0.
Since

G(x, t; , )=K(x, t; , )+K(-x, t; , ),
where

[ix-el’- IK(x, t; , r)= 2//t_exp L4(t -rjJ’
we easily obtain, using Lemma 2.3,

J=2 v2(r)[K(h(t),t;h(r),r)-K(hs(t),t;h(r),r)]dr+O(6)=-J+O(6).

Using the mean value theorem we find that

F(t, r) I;J 2 vz(r)
(t -r)3/2 [-[h’(:)- h; ()]] d

=2 v2(r)
F(t, r) I;(t_r)3/2 V() ddr

H(t,)V()dj,
C

In(t, )l--

Combining the above estimates, we arrive at the inequality

V(r)
V(t)lC 4t

+ C6.
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Hence IV(t)]--< C6, and (2.7) follows.
Using Lemma 2.4 we shall now complete the proof of Theorem 2.2. Since

g(t)=g(t)+6l(t),
we can expand

(2.10) h(t) h(t)+6y(t)+ W(t), u(x, t)= un(x, t)+6v(x, t)+Z(x, t)

in analogy to (1.2) with g(t), 6(t) replaced by g(t), l(t) and e replaced by 6; W, Z,
y and v depend of course on 6.

We shall prove below that

(2.11) w(t)l <-_ c=.
Sup.pose for the moment that (2.11) is true. We modify the control l(t) replacing it
by l(t)= 8o(t) (i.e., the Dirac measure with support at 0), and set, (t) g(t) + 3l (t).

Then in analogy to (2.10), (2.11)

(2.12) /(t) h(t)+8(t)+ l’(t), t(x, t)= u(x, t)+6g(x, t)+(x, t)

and

(2.13) (t)[-<- C,z.
From the proof of Theorem 1.2 with g(t), 8(t) replaced by g(t), l(t), we have

(2.14) r(T)<’,(t)-a8 for some a >0,

where c is independent of 8; a depends on 3’1 (in the definition of l(t)). Indeed, we
use here (1.7)-(1.9) and observe that, for any e0>0,

Fs(T,s)<=-c<O ifO<=s<-T-eo,

where c is independent of 6.
Combining (2.10)-(2.14) we see that, for small 8,

h T) < tYt T) a6 + C62 < t(T),
a contradiction to the maximality of h (T).

We shall now prove (2.11); the proof of (2.13) is similar.
The function Z satisfies

Z,-Zxx=O ifO<x<h(t), O<t<T,

Z(x, 0)=0 ifO<x <b,
(2.5)

Zx(0, t)=0 if 0<t < T,

Z(h(t),t)=u(h(t),t)-Sy(t)h’(t) if 0<t< T.

We compute
h (t)

u(, t) d-6r(t)h’(t)u(hn(t), t)-6r(t)h’(t)=

h(t)

[-Ux(e,t)-(-ux(h(t),t))]de+h’(t)(h(t)-h(t)-8V(t))
dhs(t)

+ tV(t)(h’(t)- h (t)),
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or
h(t)

Z (h(t), t)= h’(t)W(t)+ fh(,) [-Ux (, t) + ux (h (t), t)] d:
(2.16)

+ 6y(t)(h ’(t)- h (t)).

Next, noting that
b h(t)

h(t)=Io g(s)ds+Io 4(x)dx-lo u(x,t)dx,

h(t) g(s) ds + qb(x) dx u(x, t) dx,

and subtracting the respective sides, we get, after using the last equation in (1.3),

ioh(t) f
h(t)

(2.17) W(t) Z(x, t) dx u(x, t) dx.
"h(t)

We introduce the function

S(x,t)=- Z(,tld.

It satisfies

St-S,,,,=O if0<x<h(t), 0<t<T,

(2.18) S(x,O)=O if0<x<b,

S(O, t)=O if0<t<T,

and, by (2.17),
h (t)

(2.19) S(h(t), t)= W(t)+ u(x, t) dx.
dhs(t)

Since Sx(h(t), t)=-Z(h(t), t), if we make use of (2.16), (2.19) we find that

(2.20) S 4- h’(t)S R (t) on x h(t),

where

fh(t) fh(t,f,h(t) 02
R (t)= h’(t) u (x, t) dx d

u (_ t___)
Jhs(t) ahs(t)

8y(t)(h ’(t)- h ’(t)).

Using Lemmas 2.3, 2.4 we easily see that

(2.21) [e (t)[ <- C2.
Since S is a solution of (2.18), (2.20), we deduce from (2.21) (for instance by

considering the function S/82) that

IS (x, t)[ _-< C2.

Recalling (2.19) and Lemma 2.3, we immediately get (2.11). This completes the proof
of Theorem 2.2.
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Remark. Suppose we change the control set K in problem (H), taking
T

where MT>A. Then the optimal control is given by

A
if O_-<t_-<

M
g(t)

A
if >.

Indeed, the proof is the same as for Theorem 2.2.

3. A cooling prolflem. Consider the parabolic problem

(3.1)

ut-uxx+k(x)u--O if0<x<l,

ux(0, t)-0 if 0<t < T,

u(1, t)-0 if 0<t< T,

u(x, 0)= 1 ifO<x <1,

O<t<T,

where k (x) is a control function. We take the control set to be

K {k(x)sL(O, 1); O<-_k(x) <=M, Io k(x) dx O, k(x) monotone increasing},
where 0 and M are given, and M> 0 > 0.

We consider a proble,m of best cooling:
Problem (ILK). Find k K such that

Uk(O, T)= rlain u(0, T),
kK

where Uk, ll are the solutions u corresponding to k and k respectively.
Thus the optimal control is the one which yields the smallest temperature at

x=O,t=T.
The existence of a solution to this problem can be established by taking minimizing

sequences. Our main interest here is in characterizing the optimal control.
THEOREM 3.1. Problem (IIK) has a unique solution k*, given by k*(x)=-O.
Proof. Suppose the assertion is not true. Then there exists an optimal

control k, k k*. It follows that for any sufficiently small 8 there exist nonnegative
functions 18 (x), (x) with support in intervals E {0 =< x =< a }, . {b =< x =< 1} such that
b-a >=c >0,

t(x) dx t(x) dx

and

(3.2) k (x + 8l (x 8 (x is increasing;

c is independent of . For simplicity we write l, l.
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(3.3)

We set

For any positive e consider the problem:

0 02

o-u,----u, +(k(x)+el(x))u, =0
Ox 2 ifO<x<l, O<t<T,

(3,7)

and

(3.4) u. v + ew + z

and substitute this into (3.3). Comparing powers of e , e we find that (3.3) holds if

u.(1, t)=0 if 0<t < T,

u, (x, 0) 1 if 0 < x < 1.

(3.6)

(3.5)

vt Vxx + kv 0 for 0 < x < 1,

vx(O,t)=O, v(1, t) 0 for 0<t < T,

v(x, 0)= 1 for 0<x <1;

w,-wx +kw =-l(x)v for 0<x <1,

w(0, t) 0, w(1, t) 0 for 0<t < T,

w(x, 0)=0 for 0 <x <1;

O<t<T,

0<t<T,

z,-Zxx+(k+el)z=-e21(x)w for 0<x < 1, 0<t< T,

z(O,t)=O, z(1, t)=O for 0< < T,

z(x, 0)=0 for 0<x <1.

Denotc by G(x, t; j, -) the Green’s function for (3.5), that is,

Gee+G,+kG=O (z < t),

G(x, t; O, ’)= O, G(x, t; 1, ’)= 0,

G(x, t; , ’)8o(-x) as r t.

Then we can write

(3.8)

and

(3.9)

where

(3.10)

v(x, t)= Io G(x, t; , O) d

w(x, t)= fo fo G(x, t; ,, -)[-l(,)v(,, -)] d, dr:-

F(x, , t)= Ic G(x, t; , -)G(, z; n, O) dn.

0
mu,(0, t)=0 if 0<t < T,
Ox
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We introduce also the Green’s function G(x, t; , -) for (3.5) with k(x) replaced
by k(x)+el(x). Then we can represent the solution z of (3.7) in the form

(3.11) z(x, t)=-e G(x, t; , ’)/()w (, ’) dd’;

also,

(3.12) w(x, t)=- G(x, t; , ’)l()v(, ’) d dr.

We observe that if the coefficients k (x) and l(x) are H61der continuous then G and
G can be constructed by the parametrix method. Furthermore, they are majorized
by the fundamental solutions, so that, if Ik(x)l _-< c, Ik(x) /  t(x)l <_- c, then

C C
(3.13) G(x, t" , -) < G(x, t" , -)<=4t-" =4-z"
For L coefficients k and l, the Green’s function can be obtained by approximating
with Green’s functions for smooth coefficients k,,, 1, (k,, k, l,, /); from the para-
metrix method we obtain (3.13) for the approximating Green’s functions with C
independent of m; hence (3.13) holds even without the assumption of H61der con-
tinuity.

We now specialize to e =6. Then Ik(x)l<-M, [6l(x)l<-M and thus (3.13) holds.
Using this in (3.9), (3.11) we obtain, since I l(x)= 1,

(3.14) Iw(x, t)[ <_- C,

(3.15) Iz(x, t)l--< C,.
Setting F(s) F(0, s, T), we claim that

(3.16) F’(s) < 0.

Indeed,

By (3.8)

T

F’(:)=Io d- Io Ge(O, T; , -)G(, ’; n, O) d,1

T

+ Io dz Io G(0, T; , ’)Go (, z; r/, 0)dr/=J1 +J2.

T

J2 J0 G(0, T; :, ’)ve(s, ’) d,

where v is the solution of (3.5). By the maximum principle re(l, t)<= 0. Since

(v),-(v) + kv -k’v 0,

we can apply the maximum principle to ve and deduce ’hat ve < 0 in 0 < s < 1, 0 < < T.
Consequently, J2 < 0.

Treating in the same way solutions U U,, of

-U-Uee+k()U=O (0<so< 1, 0<r < T),

Ue(0, ’) 0, U(1, z) 0 (0 < - < T),

U(s, T) q,, (so) - 80(s) as mo
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with q () _-< 0, we see that

Ge(0, T;,z)<0 (0<<I,0<-<T),

and consequently also J1 <0. It follows that (3.16) holds. In fact the above proof
yields also the estimate

(3.17) F’() <-C < 0,

where C is a constant independent of 8.
Let ks(x)= k(x)+Sl(x). Replacing k by ks in the above analysis and by -[

(notice that k’(x)>=O, by (3.2)) we obtain a solution

t. =v +e+
a.nalogous to (3.4), and t. is the solution u of (3.1) corresponding to the control
k ks + 8l which belongs to K (recall (3.2)). In view of (3.17),

r? (0, T) < w (0, T) a8 (a > 0),

where a is a constant independent of 8. Taking e 8 and making use of (3.15) and
of the corresponding estimate for , we conclude that

7.(0, T)< u(0, T)-a8 +C82< u(0, T),

which is a contradiction to the minimality of u (0, T).
Remark 3.1. The method of this section does not seem to apply to the correspond-

ing cooling problem for

ut-(k(x)ux)x=O (O<x<l,O<t<T),

where k varies in the set:

{k measurable, meas {k(x) 1}= 0, meas {k(x) 2}= 1-0}.

Partial results for this problem were obtained by Joel Friedman [6].
Remark 3.2. The method of this paper extends to other free boundary problems

with one-dimensional spacial variable x (instead of the Stefan problem), to other
objective functionals (such as a weighted average of the temperature o a (x)u (x, T) dx
in the rod problem), and to hyperbolic equations such as ut,- uxx k (x)u (k (x) is the
control). Problems with x in R will require deeper analysis of the e-perturbation
problem.
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PROPERTIES OF RELAXED TRAJECTORIES FOR A CLASS OF
NONLINEAR EVOLUTION EQUATIONS ON A BANACH SPACE*

N. U. AHMED

Abstract. In this paper, we consider a class of nonconvex control problems in a Banach space, which
is convexified by introducing measure-valued controls. We study some topological properties of the set of
trajectories of the original system and that of the relaxed system. It is shown that, under certain reasonable
assumptions, the set of trajectories of the original system is dense (in an appropriate topology) in the set
of relaxed trajectories. As a corollary of this result it follows that the attainable set of the original system
is dense in that of the relaxed system. These results are directly useful in terminal optimization problems
and time-optimal control problems. For illustration, we present two examples in 6.

Key words, nonlinear evolution equations, measure-valued controls, original and relaxed systems,
Cestri property, original and relaxed trajectories, attainable set, terminal control, time-optimal control

1. Introduction. It is known that convexity conditions play a central role in the
study of existence of optimal controls. In fact if the tangent bundle (also known as
the orientor field or the velocity field) satisfies the convexity condition or more precisely
the Cesari property [1], [2], [3], [4], [5], [6], [7], [8], in the general case, then under
some additional regularity assumptions [1], one can prove the existence of optimal
controls. Both Kuratowski and Cesari properties have been widely used in the literature
for this purpose [1], [2], [5], [6], [7], [8], [18].

If an original optimal control problem does not satisfy the convexity condition
one may introduce Radon measures or, in particular, probability measures as general-
ized controls. This convexities the tangent bundle of the controlled system thereby
making it possible to prove the existence of optimal (generalized) controls for the
relaxed system. Once this is done, a natural question arises as to whether the relaxed
optimal trajectory can be approximated closely by a trajectory of the original control
problem. This question can be answered by showing if or not the set of original
trajectories is dense (in an appropriate topology) in the set of relaxed trajectories.

For finite dimensional problems and for systems governed by functional equations,
this question has been studied in the literature [9], [10], [11].

In this paper we wish to study this question for a class of controlled nonlinear
evolution equations on a Banach space. Under the usual convexity condition optimal
control of this class of systems was studied by Ahmed and Teo [1], [2]. Using the
Cesari property, the existence of optimal controls for a Lagrange problem was also
shown in Ahmed and Teo [1]. In this paper we remove the convexity hypothesis,
introduce the generalized controls and prove the density of the set of original trajec-
tories in the set of relaxed trajectories.

2. Basic notation. Let H be a separable Hilbert space and E a dense linear
subspace of H carrying the structure of a reflexive Banach space with H* and E*
denoting the corresponding (topological) duals. It is assumed that the injection E H
is continuous and E is dense in H. Identifying H* with H we have E cH c E*. Let
(y, X)E*-E denote the duality product of an element y of E* with an element x of E.
For scalar products in H we use the notation (y, x)H. The norms will be denoted by
[" ]c for G (E, H, E*). If y H and x E then (y, X)E._E (Y, X)H. The Banach space
E, furnished with the weak topology, will be denoted by either Ew or (E, rE.). Let

*Received by the editors January 15, 1982, and in revised form July 6, 1982. This work was supported
in part by the National Science and Engineering Council of Canada under grant no. 7109.

" Department of Electrical Engineering, University of Ottawa, Ottawa, Ontario, Canada KIN 6N5.

953



954 . u. AHMED

I=(0, T) be any bounded interval in R/-[0, a3) and denote by Lv(L G) the
equivalence classes of strongly measurable functions on I with values in the Banach
space G and furnished with the norm topology

Ilxll w,  
ess sup {Ix (t)lo, t I}

for 1 --<_ p < oo,

for p oo.

Here G stands for any of the Banach spaces E, H or E* and 1 _-< p-<_ m. For 1 < p,
q < m and G a reflexive Banach space, the spaces Lp(L G) and Lq(L G*) are also
reflexive and (Lp(L G))* Lq(L G*) provided p-1 + q-1 1. We are mostly interested
in the Banach spaces Lo (L E) and Lp(I, H) and the corresponding duals Lq (/, E*) and
Lq(L H). For a Banach space G, C(I, G) denotes the space of (strongly) continuous
functions on I with values in G. Furnished with the
sup {[x(t)lo, I}, C(I, G) is a Banach space. For Gw (G, re.), C(I, Gw) denotes the
topological vector space of functions defined on I with values in the Banach space G
and continuous in the weak topology. This is a locally convex complete topological
vector space.

3. Admissible controls. Let B be a Polish space and F a closed subset of B. Let
q/denote the set of all measurable functions {u} defined on I with values u(t) F a.e.
We call 0//the class of original controls.

Let M(F) denote the space of all probability measures on the Borel tr-field of F
and Cb (F) the space of all real-valued bounded continuous functions on F. In M(F)
we define a base of neighbourhoods:

where

{N(v,F, e): v M(F), F finite subsets of Cb(F) and e >0},

N(v,F, e)-- {/x M(F)’ Ir g dtx It g dv <e, g F}.
This base of neighbourhobds defines a topology on M(F) and with this topology M(F)
becomes a Hausdorff topological space. A net {/z}M(F) converges weakly to an
element/x M(F) if and only if, for every g Cb (F)

Ir g dlz --+ Ir g d.
Since M(F)c Cb* (F), the topology defined above is also known as the (weak star)
w*-topology and the associated convergence as the w*-convergence. This topology
is metrizable and M(F) with this topology becomes a separable metric space [12,
Thm. 6.2, p. 43]. Further if F is compact, then M(F) is a compact metric space [12,
Thm. 6.4, p. 44]. Since F is a closed subset of the Polish space B, M(F) is topologically
complete, that is, M(F) is homeomorphic to a complete metric space and hence M(F)
is also a Polish space. Let // denote the family of all weakly measurable functions
{/x } defined on I with values t*, M(F) for all L By weak measurability of/x we
mean that the numerical valued function

-- Ir g dtxt

is Lebesgue measurable for each g e Cb (F).
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4. The controlled system and basic assumptions. We consider that the controlled
system is governed by the following nonlinear evolution equation

(1) m=A(t)x+f(t,x,u), tel x(0) xo
dt

in the Banach space E, where u e a//, {A (t), e I} is a family of densely defined linear
operators, not necessarily bounded in H, with domains D(A(t))cE and range
R (A (t)) c E* and, in general, f :! E F--> E*. We call this the original system.

Similary for a/z e ///, we consider the evolution equation

dX-A(t)x +.frf(t,x, tr) dtz,(tr), tel, x(0)=x0.(2) d--7
We call this the relaxed system.

For 1 < p, q < m with p-1 + q

with

-1 1, let L denote the operator determined by

D(L) =- {x e Lp (I, E)" x (t) e D(A (t)) (q D(A*(t)) for e/,

and A (t)x (t), A*(t)x (t), (t) e C(I, E*) f’) Lq(I, E*)}

(d(Lx)(t)=- -+A(t) x, tel forxeD(L).

We assume throughout the paper that L is densely defined as a linear operator from
Lp(L E) to Lq(L E*) and that the strong and weak extensions of L from Lp(L E) to
L(I, E*) coincide (that is Ls Lw) [13], [1], [2].

For u e a// and xoeD(A(t)), eL an element x, eLp(L E) is said to be a strong
solution of the evolution equation (1) if x,(0) =x0 and (Lx)(t)=f(t,x,(t), u(t)) a.e.
on L We denote this family of solutions byX {Xu" u e q/} and call it the set of original
trajectories.

Similarly for a generalized control /z e.//// and xoeD(A(t)), t eL an element
x, e Lo(LE) is a strong solution of the evolution equation (2) if x,(0)=x0 and
(Lsx,)(t)=rf(t,x,(t),tr) dlzt(tr) a.e. on L We denote this family of solutions by
Xr-= {x,"/z e} and call it the set of relaxed trajectories.

We assume throughout the presentation, unless stated otherwise, that the
operators A and f satisfy the following conditions.

Assumption (A1). {A(t), e I} is a family of densely defined linear operators in
H (not necessarily bounded) with domains D(A(t))cE and range R(A(t))cE* for
tel

Assumption (A2). (A(t)e, e)E.-E--<_0 for all e eD(A(t))c E, eL and the strong
and weak extensions of L from Lp (/, E) to Lq (/, E*) coincide.

Assumption (F1). The function t-->(f(t,e, tr), g)E*-z is measurable on I for
arbitrary e, g e E and tr e B and f" I E B --> E* is demicontinuous in the sense that
whenever t, --> in L :, ---> in E and v, --> v in B

(f(t,, , v, ), e )._z --> (f(t, , v ), e )._z

for each e e H.
Assumption (F2).

(f(t, x, o-) -f(t, y, o-), x y)e,_e --< 0
for all x, y e E and tre F.
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Assumption (F3). There exists an h Lo (/, R+) and a _-> 0 such that

[f(t,x,r)l,<=h(t)+a[x{ a.e.

for each x 6 E and for all tr F.
Assumption (F4). There exists an ha Lx(L R+),/3 >0 such that

(f(t, x, tr), X)F.-E <= h (t) 13 Ix IP a.e.

for each x E and for all tr F.
LEMMA 4.1. Under the assumptions (A1)-(A2) and (F1)-(F4)’
(i) For each (ordinary) control u ql and initial state Xo E, the evolution equation

(1) has a unique strong solution x Lp(I, E).
(ii) For each (relaxed) control I l and initial state xo E, the evolution equation

(2) has a unique strong solution x Lp(I, E).
Further, in either case, x C(I, Ew) f’) C(I, H) and x(t) D(A(t)) a.e.
This result essentially follows from a general result due to Browder [13, Thm. 5,

p. 54] and has been used in control theory [2, Thm. 3.1, p. 62], [1, Thm. 2.5.2, p.
111]. Here we have stated the result under slightly stronger condition (Assumption
(F1)) than necessary for the proof of only existence of solutions. This is essential for
our purpose.

Remark 4.1. The result (ii) of Lemma 4.1 also follows from Browder’s general
result by simply requiring that the mapping (t, x,/z)" I E M(F)E*, defined by

[(t, x, l’(t, x, r) cl (,r),

satisfy the properties (F2)-(F4) uniformly with respect to/x M(F).

5. Properties of ordinary and relaxed trajectories. For each (t,x)A-----
{(t, x)I x E" x D(A(t))} the set R(t, x), defined by

R(t, x)-= {e* E*’ e*(4)= (A(t)x, 4)v,*- +(f(t, x, tr),

for some tr 1-" and for all b D(A*(t))},

determines the tangent bundle (velocity field) for the original system (1). Similarly
for each (t, x) A the set R,(t, x) given by

Rr(t, x) {e* E*" e*(ck) (A (t)x, )F._t + IF (f(t, X, 0"), 9) dl.t (tr)

for some/z M(F) and for all 4 D(A*(t))}
determines the velocity field for the relaxed system (2). Set

(3) Ro(t, x)-=C1 Co R (t, x)

and consider the differential inclusions

(4) (t)Ro(t,x(t)), tI, x(0) x0

and

(5) (t) Rr(t, x (t)), I, x (0) Xo.

The set Xr given by

X =- {x C(I, Ew) OD(L)" x(O) Xo and k(t) R,(t, x(t)) a.e. in I},
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defines the family of trajectories generated by the differential inclusion (5). As we
shall see later, the setX is, in fact, the admissible trajectories of the relaxed dynamical
system (2) (Corollary 5.1). Similarly we define the set X0 as being the admissible
trajectories of the differential inclusion (4) corresponding to the tangent bundle Ro.

Denote by A(A*) the function tA(t)(A*(t)) from I into (E,E*), where
(E, E*) denotes the space of linear operators (not necessarily bounded) from E to
E*. Let us define

D(A)=-{g Lp(I, E): (Ag)(t)=-A(t)g(t) is defined a.e. on I

and Ag L(I, E*)}
and similarly

D(A*) Lp (I, E).

In the sequel we need the following result.
LEMMA 5.1. Suppose the operators A and f satisfy the assumptions (A1)-(A2)

and (F1)-(F4) respectively. Then the sets X, X andXo are all conditionally sequentially
compact subsets of C(L Ew ).

Proof. The proof follows from arguments similar to those given in [2, Thm. 4.1].
Note. The assumption: D(A*) is a set of category II in L,(.r, E) [2, Lemma 4.2,

p. 64]: is not necessary. It was used merely to prove that the set {, x X} is a
bounded subset of L(I, E*). But it follows from direct computation using the facts
that (i) the set of trajectories X are strong solutions to (1) cer,tained in a bounded
subset of C(I, Ew)f3 Lp(I, E) and hence the set {x, x X}, , denoting the weak or
strong extension on A in Lp (/, E), is a bounded subset ofL(/, E*); and (ii) the growth
condition (F3) implies that f maps bounded subsets of Lp(L E) into bounded subsets
of L(L E*).

With the help of the above preparatory results we can now prove our main results.
THEOREM 5.1. Suppose that the assumptions ofLemma 5.1 hold and that F is a

compact subset of the Polish space B. Then:
(i) for each (t,x) A, Rr(t,x) is a closed convex subset orE*;
(ii) Xr Xo;

and
(iii) Xr (hence Xo) is a sequentially compact subset of C(I, Ew).
Proof. (i) Since M(F) is the space of probability measures, R(t,x), for (t, x) A,

is obviously convex. The closure follows from the facts that M(F) is compact whenever
F is so and that tr-(f(t,x, tr),e)._E is continuous on F for each (t, x) A and e E.

(ii) For the proof of this it suffices to show that R(t, x)= Ro(t, x) for (t, x) A.
Since F is a compact subset of a Polish space B, M(F) is compact and, being the space
of probability measures, is obviously convex. Thus it follows from the Krein-Milman
Theorem [14, Thm. 4, p. 440], [1. Thm. 1.1.15, p. 11] that extM(F) (---the set of
extremal points of M(F)) is nonempty. Let 8 denote the Dirac measure on F with
support concentrated at the point tr F. Define M0 {/,: tr F}. Clearly M0 c M(F)
and Mo ext M(F). Again by the Krein-Milman theorem C1 Co M0 M(F). We show
that this implies that R(t, x) Ro(t, x) for (t, x) A. First, we shbw that Ro(t, x)
R(t,x). Indeed, for any uCoM0, there exist an integer n, numbers {ai:
1, 2,.. n} with O >0, E Oi 1 and {O" 1, 2,... n}s F such that
and for e E,

Ir (f(t, x, tr), e) ai(f(t, x, cri), e).d/.,
i=1
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Since u M(F) also, the set

f
Co R (t, x)=- i e* E*" e*(e)= (A (t)x, e)+ Jr ([(t, x, tr), e) dv

for some u Co M0 and for all e D(A*(t))}
is clearly contained in Rr(t, x), and, since Rr(t, x) is closed and convex,

CI Co R (t, x =- Ro(t, x c Rr(t, x ).

Now we show that Rr(t, x) Ro(t, x). Let e* R(t, x); then, by definition, there exists
a ix M(F) such that, for all e eD(A*(t)),

(6) e*(e) (A(t)x, e) + Iv ([(t, x, or), e) dix (o-).

Since Cl Co Mo M(1-’), there exists a sequence {v"} Co Mo such that v - ix weakly
in M(F) and hence

(7) fr(f(t,x, tr), e) dv" --- Ir(f(t, x, tr), e) dlx.

Let e* E* correspond to u" defined by

e*, (e)= (A(t)x, e)+ Iv (f(t, x, or), e) du

for all e D (A*(t)). Clearly e ,* e Co R (t, x), and, since, by virtue of (6) and (7), e * - e *
in the w *- topology on E*, we conclude that e * C1 Co R (t, x). Thus R(t, x Ro(t, x)
for arbitrary (t, x) A. This proves that R(t, x)= Ro(t, x) and hence the differential
inclusions (4) and (5) are equivalent and consequently Xr Xo.

(iii) By Lemma 5.1 X (hence X0) is a conditionally sequentially compact subset
of C (/, E). Therefore it suffices to prove its closure. Let {x,} Xr and suppose x, - x*
in C(I, E). As in Ahmed and Teo [2, Thin. 5.2, p. 73] we can show that (1) *(t)
exists a.e. on ! with *Lo(I,E*), (2) x*(t)D(A(t)) a.e. on I and (3) :*(t)
R(t, x(t)) a.e. on L (Note that for the proof of the last inclusion (3) we need closure
and convexity of R(t, x (t)) which follow from part (i) of this theorem and consequently
the assumption (FS) in [2] is not required here.) As a consequence, there exists, for
almost all /, a ix e M(F) such that

(8) (2*(t),e)=(A(t)x*(t),e)+ fr(f(t,x*(t),tr),e)dix
for all e 6D(A*(t)). Let ix denote the mapping t-ix on L The crucial question is
whether or not we can select a measurable substitute ix* for ix (that is ix* A/) such
that (8) holds with ix* replacing ix. For each tI, for which *(t), A(t)x*(t) and
tr f(t, x*(t), tr) exist, define the set

G*(t)=- { u M(F)" (i*(t), e) (A(t)x*(t), e)
(9)

+ Jr (f(t, x*(t), tr), e) du for all e D(A*(t))}.
This defines a set-valued mapping G* from I into 2tr), and the problem of existence
of a ix* A/reduces to the problem of existence of a measurable selection of G*. We
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show that G* has indeed a measurable selection. For this we note that since F is a
closed subset of a Polish space B, M(F) is a separable metric space with a metric
compatible with its topology. Thus if we can show that t--> G*(t) is a measurable
multifunction (set-valued function) with closed or complete values, then by virtue of
a selection theorem due to Himmelberg, Jacobs and Van Vleck [15, Thm. 1, p. 278],
[1, Thm. 1.4.4, p. 40] we shall be able to conclude that there exists a (weakly)
measurable function * from I into M(F) such that tx* G*(t) for L This would
then imply that x* S Xr and hence that Xr is closed. That G* has closed (hence
complete) values G*(t), follows from the facts that, for any arbitrary e s E, the function
(r -->(f(t, x*(t), (r), e) is continuous on F and that M(F) is compact. It remains to show
that G* is a measurable multifunction. By virtue of the equivalence of conditions (i)
and (v) [15, Thm. 1, p. 278], [1, Tm. 1.4.3, p. 39] it suffices to show that, for every
e > 0, there exists a closed set I c I such that the graph y(G*) of the set-valued map
G*, which is the restriction of G* to I, is a closed subset of I x M(F). Indeed, since
x* Lp(I, E) and 2", Ax* and {f(., x*(. ), o-), o, F}c Lq(I, E*), for every e >0, there
exists a closed set I cI with Lebesgue measure l(I\h)<e such that on I2.*, Ax*
and f(., x*(. ), o’) are continuous E*- valued functions and x* is a continuous E-valued

,) o o o)function. Let (t", t y(G*) such that t" --> and tt -- tz we show that (t, tz e
0 ,/(G*) or equivalently, te G (to). Since l is closed, oI and further, due to

continuity of the restrictions

{2*(t), A (t)x*(t), I},
(o)

(*(t), e)-(*(t), e) and (A(t)x*(t"), e)--(A(t)x*(t), e)

for each e e E. It remains to verify that

(11) Ir (f(t’ x*(t)’ r), e)dtz-- Ir (f(t’ x*(t)’ (r), e)dtz .
Clearly for every e e E,

Ir (f(tn’ x*(tn)’ cr)’ e) dtz n- Ir (f(t’ x*(t)’ tr)’ e)d

--< Ir {(f(tn’ x*(t’)’ o’), e)-(f(t, x*(t), o’), e)} d/x"(12)

+ Ir (f(t’x*(t)’cr)’e)dt"-Ir (f(t’x*(t)’(r)’e)dlx"

Since on L, x* is a continuous E-valued function and {t", t,}e I and L is closed, it
follows from (F1) and the compactness of F that

(13) (f(t",x*(t"),tr),e)E._-(f(t,x*(t),o-),e)._

uniformly in (r on F.
Recalling that {tz n} is a sequence of bounded positive (probability) measures, it

follows from the above fact that, for every e >0, there exists an nl n(e, e) such that

(14) {(f(t", x*(t"), o’), e)-(f(t, x*(t), o-), e)} dtt" <-
0for all n > n. Since/z -/z there exists an n2 n2(e, e) such that the last term in
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(12) is less than e/2 for n > na. Hence for all n > n v n2 we have

fr (f(t", x*(t"), o’), e)dlz"-Iv (f(t’ x*(t)’ o"), e)dl <e

and, e e E and e > 0 being arbitrary, we conclude that (11) holds. Thus it follows from
(10) and (11) that tx eG*(t) and hence the graph y(G*) is a dosed subset of
I M(F) and this implies that G*(t) is a measurable multifunction as required to
complete the proof.

As a corollary to the above theorem, we have the following result.
CooLgV 5.1. The relaxed system

dx(t)=A(t)x(t)+Irf(t,x(t) r) d,(o’) a.e. inI,
dt

x(0) =Xo,

is equivalent to the differential inclusion

Yc (t) R(t, x (t)) a.e. in I,

x(0) =x0,

in the sense that 4 C(L E) Lo (L E) is a solution of the latter if and only if it is a
solution of the former ]’or some control Ix tt. Further, since R Ro, the relaxed system
(2) and the differential inclusions (4) and (5) are all equivalent.

With the help of the above result we can now prove our main result which states
that any relaxed trajectory can be approximated as closely as desired by a trajectory
of the original system (1). For this we make use of a result due to Datko [16, Lemma
7, p. 23].

Let Y be a topological space and F a measurable set-valued mapping defined
on I with nonempty values F(t) 2 v. By the integration tF(t)dt of the function F,
we mean that

ItF(t) dt=- {Itf(t) dt, f any measurable selection of F}.
LEMMA 5.2. Let Y be a separable reflexive Banach space and let cb(Y) denote

the class of closed bounded subsets of Y. Let K" I - cb(Y) and suppose there exists a
g L(I, R) for some 1 < r < o such that

sup{y*(x),x K(t)}<-g(t) a.e. onI

for all y* Y* with lY*[v* -<- 1. Then, for any measurable setY c Iwith Lebesgue measure
t(y) 0,

(15) I, C1 Co K(t)dt=C11,K(t)dt
and further the set-valued mapping - C1 Co K(t) is measurable.

This result is due to Datko [!6, Lemma 7, p. 23]. We are now prepared to prove
our main result.

Note. For the sake of notational convenience we shall use the symbol A-
{A (t), I} to denote both the original operator and its extension.

THEOREM 5.2. Suppose the assumptions of Theorem 5.1 hold, and that, for each
E and L the set

F(t,)={e*E" e*=f(t,,r),rF}
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is a closed subset of E*. Then the set of original trajectories X is dense in the set of
relaxed trajectories Xr (=Xo) with respect to the usual topology on C(I, H).

Proof. Let x be an arbitrary element of Xr, then by definition (t)eRr(t, x(t))
a.e. and x(0)= Xo. Let y (v) denote an element of X corresponding to an admissible
original control v q/. Since x, y Lp (I, E) and , ) Lq (I, E*) and E cH c E*,
with E being dense in H, it follows [1, Thm. 1.2.15, p. 27] that x, y C(I, H).

Thus

--d Ix (t)- y(t, v)l 2(A (t)- f(t, v), x(t)- y(t, v))*_z
dt

a.e. on I. Since y is a strong solution of the original system (1) we can rewrite the
above equality as

d
(16) -lx(t)-y(t,v)l=2(2(t)-A(t)y(t,v)-f(t, y(t,v),v(t)),x(t)-y(t,v)).

Further, being a strong solution of the relaxed system, x(t)eD(A(t)) a.e. and Ax
Lq(L E*). Thus we can rearrange (16) as,

dlx (t) y (t, v)l 2(A (t) -A (t)x (t) -f(t, x (t), v (t)), x (t) y (t, v))
dt

+2(A(t)(x(t)-y(t, v)),x(t)-y(t, v))

+2(f(t,x(t), v(t))-f(t, y(t, v), v(t)),x(t)-y(t, v)),

from which, by virtue of (A2) and (F2), we obtain

d
(17) -[x(t)-y(t, v)l<-2((t)-A(t)x(t)-f(t,x(t), v(t)),x(t)-y(t, v))

for almost all I and any v
For the given x, define the multifunction K with values K(t)F(t,x(t)), el. It

follows from (F3) that there exists a function g L(I, R) such that

(18) sup{e*(e),e*K(t)}<-g(t) a.e.

for any e E with ]e [z -<_ 1.
Further it follows from the hypothesis of the theorem that K(t) is a closed subset

of E* for every for which it is defined. Thus, for Y E* and r--q, K satisfies the
hypotheses of Lemma 5.2 and consequently, for any measurable subset Y =/,

(19) I, C1 Co K(t)dt:C11,K(t)dt.
By Theorem 5.1, Rr R0, and Xr Xo, and hence

Rr(t,x(t))=Ro(t,x(t))=A(t)x(t)+C1CoK(t) a.e.

and

(t)Ro(t,x(t)) a.e.

Thus, A(t)-A(t)x(t)C1CoK(t)a.e. on I and denoting A-Ax by f* we have
f*(t) C1 Co K (t) a.e. and that f* L(I, E*). Since g Lq(I, R) (see (18)), for every
e >0, we can find an integer m re(e), and partition the interval I- [0, T] into
intervals {/. [ti-, t.],/" 1, 2,..., m, to 0, t, T} of, say, equal lengths T/m such
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that I LI/., and

(20) Ig(t)lq dt <

for all/" {1, 2,..., m }.
Since f*(t) C1 Co K (t) a.e., it follows from (19) that, for each interval//, there

exists a sequence of measurable functions {f’, n 1, 2, .}, for each / {1, 2,. ., m},
such that

and

f’ (t) K (t) a.e. on/.

(21) (f*(t), e(t))z._zdt= lim It (f(t), e(t))._zdt

for each e Lp(LE) and/" {1, 2,..., m}. Define {/"} such that f"(t)=f(t) for
and/" e{1, 2,..., m}. Clearly/" L,(LE*). Since f" (t) e K (t) a.e. andK is a measur-
able set-valued mapping with closed values, and, by hypothesis (F1),
(f(t, x (t), r), e), for e e E, is continuous and F is compact it follows that the multifunc-
tion Gn, defined by

G, (t) =- {r F" (f" (t), e) (f(t, x (t), r), e ), e e E},

is nonempty, measurable and has closed (hence compact) values. Thus, by the selection
theorem due to Kuratowski and Ryll-Nardzewski [1, Thm. 1.4.5, p. 40], G, has a
measurable selection u" q/such that f"(t)=f(t, x(t), u"(t)) a.e. on L Integrating (17)
over the interval [0, t], I, with v replaced by u ", we have

(22) Ix(t)-y"(t)lz2 (f*(O)-f"(O),x(O)-y"(O))E._udO

for tel where y"---y(u ") and f*--Yc-Ax. Since {y"}X and X is a conditionally
sequentially compact subset of C(I, Ew) (Lemma 5.1), there exists a subsequence of
{yn}, relabelled as {y"}, and a yO C(L Ew) such that yn

_
y0 in C(L Ew). Further, {yn}

being a sequence of strong solutions of the system (1) all contained in Lp(I, E) with
limit y0, the set {Ay n, w-lim Ay"} is contained in a bounded subset of Lq(I, E*). Hence
it follows from (F3) and the evolution equation (1) that the set of distributional
derivatives {)", )o} is contained in a bounded subset of L,(L E*). Therefore X is
also a conditionally sequentially compact subset of Lp(I, E) and there exists a sub-
sequence of the sequence {y"}, relabelled as {y"}, such that y" - yo strongly in Lo(L E)
and consequently r/" (x y") --> (x yO) r/o strongly in Lp(L E).

On the other hand it follows from (21) that f" --> f* weakly in Lq (L E*). Thus, for
any/’{1, 2,... ,m},

lim,, ft (f* -f", ’r/’)E,_ dt 0

and consequently for the given e >0 there exists an integer n*= n*(e, m(e)) such
that for n _>- n*

(23) (f*-f", rl") dt <4m
for all f {1, 2,..., m}. Since, for an arbitrary /, there is a f {1, 2,..., m} such
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that /. we have, using (22) and (23),

Ix (t) y" (t)12n<= () + 2

for all n _-> n*.
Therefore for any e > 0, there exists an integer n (e)= no and hence an ordinary

control u= u" q/and a yO= y(u o) such that

IIx yll =- sup {Ix (t)- y(t)lH, e [} < e.

This completes the proof of the theorem.
Since the trajectories of both the original and relaxed systems are elements of

C(/, H), it makes sense to talk of attainable sets in H. For - e [0, T], let

M(’) {y H" y x,(z), u

denote the attainable set at time - of the original system (1) and

M(r) =- {y H’ y x, (r), Ix

that of the relaxed system (2). Then, as a consequence of the previous result (Theorem
5.2), we have the following:

COROLLARY 5.2. For each " [0, T], the set M(r) is strongly dense in M(z).
Remark 5.1. For each r [0, T], the (relaxed) attainable set M(r) is a weakly

sequentially compact subset of E H.
The result presented in this paper are directly useful in terminal optimization

problems and time-optimal control problems [2].

6. Examples. In this section we present two examples of evolution equations to
which our general theory applies. The first one is an example of a parabolic system
with a strongly nonlinear perturbation term introduced by Browder with controls
considered in [3], [4]. The second is an example of a general class of first order systems
of linear partial differential equations, the symmetric positive systems of Friedrichs,
with a nonlinear perturbation term [13, p. 79], [17, p. 73].

Example 1. Strongly nonlinear parabolic system. Let a =(at, a.,..., a,) be a
multi-index with {a} nonnegative integers and define [a[==x a. Let p_->2 and
q =-p(p- 1), and let W"’ W"’ (f) denote the usual Sobolev space, where f is an
open bounded connected subset of R" with smooth boundary 0f, with the usual norm

Let E be a closed subspace of W"’" having the structure of a reflexive Banach space
so that C Wg"" cE W"’".

Let B and F c B be as defined in 3.
We introduce the nonlinear operators f through the following Dirichlet form:

b(t, , )-- , (F(t, .; qb, Dl&, ,D,,qb;

for b, q E and v B, where (g, h L,-L. =-" ll g h dy.
We assume that the functions {F, la[<_-m } satisfy the following properties:
(F1)’ For each a, F(t, y; r/; v) is measurable in (t, y)I xfl--Q and continuous

in the variables (t, r/, v); eL r/---{r/s, Icl-<_ m}, and v B.
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(F2)’ For each (t, y Q, and each pair ,/(/’) {/ (,/’), Ict[ - m },

E (F(t, y; n; v)-F(t, y; n’; v))(n-n)0

for all v e F.
(F3)’ For a fixed p > 1, there exists a constant c (possibly dependent on F) and

a function g eL(Q)(q- +p-= 1) such that for almost all (t, y)Q and each B m

uniformly in v F,
(F4)’ There exists a positive number c 0 and a function h L (Q) L (L L (fi))

such that

F. F(t,y;l;v)q>-c Z I,/["-h(t,y) a.e. inQ

uniformly with respect to e F.
It is not all,cult to verify that under the above assumptions, for each v e B, the

Dirichlet form b is bounded in W’" for each I. Further for each fixed e I, v e B,
and 6 e W0 b (t, , ) is a continuous linear (antilinear in the complex case)
form on W’; hence there exists a function f’IxW’W-’ such that
(f(t,&),)w-._w.,=b(t,,). For the nonlinear operator f (see (1)), we may
choose E W’" and

f(t, 6,)-(t, 6).

Under the given assumptions (F1)’-(F4)’, it is easy to verify that f, (as defined
above) considered as a mapping from I xE xB E*, satisfies our basic assumptions
(F1)-(F4) of 4. We consider this f as the nonlinear perturbation in (1).

For the linear operator {A (t), e I}, consider the bilinear form

a(t, 6,) Z (a (t, .)DO, D)_,,

where s (a positive integer) m, &, W’"; and for all a, fl, a(t,.)L() with
r =p/(p-2), p 2. We may assume that the functions {a} are continuous in the
first variable and measurable in the second. Clear.ly for each

continuous bilinear form on W’ x W’ and defines a bounded linear operator Ao(t)
from W’" to W-’q so that for each I and , e W’

(A0(t), )w-._w., a(t, , ), t I.

Assuming that

F. a.a (t, y)::a ->_ 0,

for all (t, y) Q I fl, where : =- :,1 :2 .:,, y=a or /3, it is clear that
a(t, , &)0 for Ws’p. For the operator A ={A(t), I} (see (1)) we choose
A (t) =- -Ao(t), I with domain

D(A (t)) =- {6 e E" Ao(t)6 E*,D10a 0, ]a 1_-< s 1}.

For s m, {A (t), e I} is a family of bounded linear operators from E to E* and for
s > m it is a family of unbounded operators with domains D(A(t))E and range
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R (A(t))-E*. We cow,sider this operator A as the linear part in (l) and take L2(I’)
for H. Clearly for p ->_ 2, E cH c E* and A satisfies the basic assumptions of 4.

Using the operators A and f as defined above we obtain the differential equation
(O/Ot)=A(t)+f(t,,u), u ql, which is a special case of the general evolution
equation (1). Note that for the operator A (t), /, one can choose any elliptic partial
differential operator satisfying the basic assumptions. Also the choice ofE(W"p c E
W’’p) partly determines the boundary conditions.

Example 2. First order hyperbolic systems. We consider the quasilinear hyperbolic
system of the form

0___0+ Ai(t,y)Dfl+B(t,y)+F(t,y;;u)=O, (t,y)Q.=_il)
Ot =1

(0, y) O0(Y), y O,

O(t,y)=0, tI, yOfI,

where D.O 0O/Oy with an r-vector-valued function on I l, fl an open bounded
set in R and I (0, T).

As in the previous example we proceed with the nonlinear term. F is a function
defined on I x lxR xB -R which satisfies the following properties:

(F1)" F: I l) x R xB -R is continuous.
(F2)" For each (t, y) I x fl and each pair , ’ R

(F(t, y;e; v)-F(t, y; e’; v),c-C’)R>-O forallvF.

(F3)" There exists a function g L(Q) and a constant c >_-0 such that

IF(t, y;; v)l<-clelP-X+g(t, y) a.e. inQ

uniformly in v e F.
(F4)" There exists a function h eLl(Q) and a number Cl >0 such that

(F(t,y;C;v),C)R>=CllelP-h(t,y) a.e. in Q

uniformly in v e F.
We chooseE Lp(fl), E* L(l) andH L2(fl) withp -> 2, p-X +q- 1. Clearly

E H E* since fl is bounded. Define

f(t, ok, v)---F(t, .; d(’); v(.))

for e I, d e E and v B. Under the assumptions (F1)"-(F4)" it is easy to verify that

f maps I xE xB into E* and satisfies the basic assumptions (F1)-(F4) of 4.
For the linear operator {A(t), I} we take the symmetric positive system of

Friedrichs [13, p. 79], [17, p. 73]

Ao(t)d E A(t, )Dd (.) +B (t, )ok ("),
=1

where d’ is an r-vector-valued function on l and A, ] 1, 2, , n and B are (r x r)
matrix-valued functions on Q-=I l which are assumed to satisfy the following
properties"

(A1)" B is a matrix-valued CO function on t while each A,/" 1, 2,..., n, is
a matrix-valued C function on t.

(A2)" The operator A0 is hermitian nonnegative in the sense that

Re {(B (t, y)6 :)- 1/2 E ((D.jA)(t, y)6 so)} -> 0
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for all complex r-dimensional vectors : and (t, y) Q.
Define {A (t), I} by setting

D(A(t))=Id) E: Ao(t)d) E*,

with A(t)d =-Ao(t)d for d D(A(t)). Since D(A(t)) contains C, it is dense in E.
Combining these we obtain the evolution equation (OO/t) A(t)d/ +f(t, all, u), u ql

as a special case of (1).
Remark 6.1. It is clear from the above examples that the choice of the state

spaceE depends, among other factors, on the form of the abstract function x f(t, x, v).
Similarly the choice of B (the space where the controls take their values) depends on
the mapping v f(t, x, v). For example, if the functionsF (Example 1) andF (Example
2) depend on v along with its spatial derivatives of order up to k (0 <-k <) we may
choose for B a Sobolev space wk’s(f, Rd)={V E Ls(,Rd): IID vll , for
a suitable 1 _-< s <. Clearly these are Polish spaces. We may also choose for B any
closed bounded convex subset of W0k’s, 1 < s <, furnished with the weak topology.
With respect to the weak topology B is a compact Hausdorff space and, since the
dual w-k’s’(1/S + 1Is’ 1) of W0’s is separable, this topology is metrizable [14, Thm.
V.5.2, p. 426] and hence B is a Polish space. If F and F do not depend on the spatial
derivatives of v, one may then choose for B a closed bounded convex subset of
L(I, Ra). In this case B is w*-compact and, since L1 is separable, this topology is
also metrizable [14, Thm. V.5.1, p. 426] and hence B is a Polish space. In the case
of LI(I, Rd), we can choose a weakly compact subset B c L(I), Rd). Since the weak
topology is metrizable [14, Thm. V.6.3] B is again a Polish space. In fact we can
choose for B any separable Fr6chet space since it is Polish. Thus there are many
choices within the framework of Polish spaces mainly determined by the function f
and specific control constraints.

Acknowledgment. The author would like to thank Professor Berkovitz and the
anonymous reviewers for valuable comments that led to substantial improvement of
the results of the paper.
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BOUNDARY STABILIZATION OF LINEAR ELASTODYNAMIC
SYSTEMS*

JOHN LAGNESEt

Abstract. It is proved that an elastic medium which occupies a bounded region in three dimensional
Euclidean space can be uniformly stabilized by means of traction forces applied on a portion of the boundary
of the medium (the remaining portion being clamped) provided the geometry of the boundary is suitably
restricted. It is also shown that in the absence of such restrictions the medium can still be strongly stabilized
by such traction forces.

Key words, elastodynamic systems, boundary control, uniform stabilization, strong stabilization

1. Introduction and statement of results. The main purpose of this paper is to
show that an elastic medium which occupies a bounded region fl in three dimensional
Euclidean space can be uniformly stabilized by means of traction forces applied on a
portion of the boundary of the medium, provided the geometry of the boundary is
suitably restricted. However, we will also show that in the absence of such restrictions
the medium can still be strongly stabilized by such traction forces.

If u (u l, u2, u3) denotes the coordinates of the displacement at time of the
particle which in the nondeformed state has coordinates x (xl, x2, x3), then if the
displacements are small the governing dynamical system is

(1.1) [3(X)Ui,tt--O’i],]+q(x)ui--O, xs1, t>0, i=1,2,3.

Subscripts following a comma denote differentiation, e.g., ui, Oui/Ot, o’ii,k OO’ii/OXk,
and the summation convention is used throughout, p (x)> 0 is the local density of the
medium and q(x)ui(q(x)>= O) represents a restoring force proportional to the displace-
ment ui. ri, the stress tensor, is related to the strain tensor

Ekl 1/2(Uk, + I’ll, k)

by the relation

O’i] aiikIe kl.

The aik are the coefficients of elasticity. These will depend on x when the material
is inhomogeneous, but we shall assume that they do not depend on time. They have
the symmetry properties

(1.2) ai]kl akli.i afilk.

These coefficients, as well as p(x) and q(x), are assumed to be of class CX(). If we set

then (1.1) may be written

cok (a + ai)

--(Ci]klUk,l) + q (X )Ui O.p (X )Ui,u
C3X]

The cim clearly have the same symmetry properties as the aij and we suppose they
satisfy an ellipticity condition

(1.3) Ci]klijkl > Coi]i]

* Received by the editors February 12, 1982, and in revised form October 25, 1982.
Department of Mathematics, Georgetown University, Washington, D.C. 20057.
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for some Co > 0, all x fl and all real second order tensors :ij. It follows at once that

(1.4) aijklijkl Oijii

for all symmetric second order tensors
The boundary all of is assumed to be class C2 and to consist of two disjoint

parts, F0 and F, with F and relatively open in aft. F0 will be assumed to be
either empty or to have a nonempty interior, and the elastic medium is assumed to
be fixed there, that is,

(1.5) u=0, xF0, t>0, i=1,2,3.

On F traction forces are specified:

(1.6) n=F, xF, t>0, i=1,2,3,

where n (n , nz, n3) is the unit normal vector pointing into the exterior of . It is
by means of these forces that the system (1.1), (1.5), (1.6) is to be stabilized.

Associated with smooth solutions of (1.1), (1.5), (1.6) is the energy functional

E (u, t) a [Oui.,ui., + quiui + iieii] dx

[Ou,u, +quu +aee] dx

in which the integrand is evaluated at time t. A short calculation shows that

E(u, t)= Ox(Ui.,ii) dx ui,, d.

Consequently, the linear feedback law

(1.7) F -b Ot’

where b is a nonnegative function, stabilizes the system in the sense that the energy
is nonincreasing. (One could just as well choose the slightly more general feedback
law.F -bu., 1, 2, 3, b O. All of our results extend to this situation with only
trivial modifications in statements and proofs.) Our main result is the following.

THEOREM 1.1. Assume that

(1.8) bCa(), b(x)bo>O on F,

and that there is a vector fieM f ([1, f2, f3) of class C2(fi) such that

(1.9) [. n 0 on F0,

(1.10) [. n >O on F,

(1.11) [.Vpaoin forsomea>-l,

(1.12) A() (2 +a)Ciikiik in for all second order tensors [ii], where

A() 2L.,cl [c, l.
Then there are positive constants C, 8, such that

(1.13) E(u, t)Ce-E(u, 0), 0,

for every solution of (1.1), (1.5), (1.6), (1.7) for which E(u, O)<
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The condition E(u, 0)<+oo means that ui(’, 0)EHI(’},), ui,t(’, 0)EL2(’),), and
u(., 0)= 0 on Fo in the sense of traces if Fo , 1, 2, 3. In 2 it will be proved
that for such initial data the problem (1.1), (1.5), (1.6), (1.7), has a unique weak
solution which satisfies E(u,.) C([0, oo)).

Conditions (1.9), (1.10) mean that flows of f (i.e., solutions of : =f(x)) which
begin in remain in l. Conditions (1.11) and (1.12) comprise a nontrapping hypothesis
relative to these flows, and may be interpreted as meaning that the distance between
flows (measured in a suitable metric depending on the coefficients of (1.1)) increases
with time, and thus excludes regions which would cause such flows to be "pinched"
together. We refer to [11, 4] for a complete discussion of related geometric conditions
associated with the ordinary wave operator.

The condition (1.10) does not seem necessary from a physical standpoint and it
would be useful to eliminate it since (1.9) and (1.10) together force F0fq Fx if 01)

is to be as smooth as required above. On the other hand, both this degree of smoothness
and the condition Fofq F1 are needed in the proof to assure that (1.1), (1.5), (1.6),
(1.7) has classical pointwise solutions, as it is known that singularities in solutions can
occur only at corners of 0f or at points of For’IF1. However, there are specific
geometries in which 0f is only piecewise smooth and also FofqF1 , yet such
singularities do not occur (at least for certain specific elastodynamic systems). Our
results would then also apply to such special situations still assuming, of course,
(1.8)-(1.12).

A simple situation in which all hypotheses of Theorem 1.1 are met is the following.
Let f f/-/o, where f/o and D, are bounded regions in R 3 with C2 boundaries Fo
and F1, respectively. Assume that (i) fo c f, (ii) fo is starshaped and f/1 strongly
starshaped with respect to a common point Xo o, and (iii) the coefficients p and ajk
in (1.1) are constants. Conditions (1.9)-(1.12) will then hold with f(x) x -Xo.

One may completely eliminate the geometric restrictions of Theorem 1.1 and
also weaken condition (1.8) and still obtain the following strong stabilization result.

THEOREM 1.2. Assume that b e CI(), b >-0, bO. If u is a solution of (1.1),
(1.5), (1.6), (1.7) with E(u, O)< +co, then

E(u, co) -" lim E(u, t) 0.
t-oO

When F0 F , this last result can be deduced from the general stabilization
results of Benchimol [2] (cf. Slemrod [10]). However, these results imply only weak
stabilization in the general case, again because of the possible occurence of singular
solutions, although it may be possible to augment the arguments in [2] to obtain
Theorem 1.2. However, we will use a totally different approach based on Proposition
3.1 below, a result which also plays a key role in the proof of Theorem 1.1. Results
analogous to Theorem 1.1 were obtained in [7] for solutions of scalar wave equations
in R", and for solutions of the ordinary wave in [3], [4], [8]. The proof presented
here follows a line of reasoning similar to that in [7], but also requires ad hoc arguments
specific to the system under consideration and substantially different from those in [7].

Finally, we note that uniform stabilization of evolutionary systems such as the
one considered here is closely related to exact controllability of solutions of such
systems, and such controllability results could easily be deduced from Theorem 1.1
using a technique originally devised by D. L. Russell [9]. Because the argument is
now standard (cf. [3]) we will not pursue further the exact controllability question.

Theorems 1.1 and 1.2 are proved in 3. In the next section an existence and
regularity theory will be developed for solutions of (1.1), (1.5), (1.6) with F given by
the feedback law (1.7).
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2. Existence, uniqueness, and regularity of solutions. We consider the problem

(2.1) pu,, o’. + qu 0, x lq, > 0, 1, 2, 3,

(2.2) u--0, xFo, t>0,

(2.3) o-gni + bu. 0, x F, > 0, 1, 2, 3,

(2.4) u(x, O)= Uo(X), ut(x, O)= Vo(X), x f.

The coefficients have the smoothness assumed in 1 and satisfy

O(x)>=Oo>O, q(x)>-O, b(x)>=O,

and the ajk possess the symmetry and ellipticity properties (1.2) and (1.4).
In order to formulate the definition of a solution to (2.1)-(2.4) we introduce the

following real Hilbert spaces. For m >= 1 an integer,

n (Z2())3, Vrmo (Hro (l))3, Y-,r1 (L2(F1))3,
where Hv’o (f) consists of real functions in H"*(f) which vanish on Fo. The scalar
product and norm in H are denoted by (.,.)r, and l" [, respectively, and those in Zr,
by (’,’)rl and 1. Ir. The norms of u in Hro (f), Lz(fD and LZ(F1) are

(1, In [Du’2 dx) 1/9’ (If ’ulp dx) 1/2’ (IF1 lul2 d) 1/v’
respectively. The norm on Vro will be denoted by I[" [1,. When m 1 we shall write

Vro and I1" I1, respectively, in place of Vo and I1" I1. Finally we introduce the "finite
energy" space E defined as follows: E Vro H algebraically, and we endow E with
the inner product

((u1 u%, (v ), v%) Ia (cul" ) 1) 1 2)
k.lU ,i + qu V +pu V dx.

(Strictly speaking, (.,.) is only a semi-inner product if F0 and q(x)=-O, in which
case E is defined to be the space of equivalence classes of Vro xH modulo zero energy
states u(1)=a +b ^x, u (2 =0.) E is a Hilbert space and, if F0 or if q(x)>0 on a
set in f of positive measure, it follows from Korn’s inequality that E is topologically
equivalent to Vvo xH endowed with the usual product norm.

The problem (2.1)-(2.4) will be treated as an initial value problem for an evolution
equation in E by setting u (1)= u, u (2) u,. Then (2.1), (2.4) can be written

(2.5) Ut AU O, > O,

(2.6) U(0) U0,

where U (u (, u())’, Uo (Uo, Vo)’, (’ denotes the transpose of a vector) and A is
the linear operator in E defined by

D(A)={(u (), u2))EIu) Vo,
(In -ulu (2) Vro, cii,lU ,, on Fx, 1, 2, 3},

(0AU=
(1/p)4

U, U eD(A),

and

U(1) (X(Ci]klU(1) 1))
3

k.l--qul
i="
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A short calculation shows that if U eD(A) and V Vro x Vro,

(AU, V)E I.. [Ciik(U(2)V(’) (’)V(2)x (2) ()
k,l i,j--Uk, id +q(u .v -u

(2.7)

[ bg (2) v (2) dg

and therefore A is dissipative, that is,

(AU, U)E <--0, U D(A).

If it were also true that Re (I-A)= E, it would follow from the Lumer-Phillips
theorem that A is the infinitesimal generator of a strongly continuous semigroup e tA,
t--> 0, Of contractions on E, and the unique weak solution of (2.5), (2.6) would then
be given by e tAUo, Uo E. This is certainly the case when 0f’) but not so
when F0 f’)F # , since then the problem (I-A)U F E can have weak solutions
U which are not in D(A) (singularities can occur at points of F0f’) F). However, we
will prove the following.

PROPOSITION 2.1. A has a dissipative extension A with D(A)c Vro Vro and
Rg(I-A)=E.

Proof. Let Vro x Vro, and ’ denote the dual of relative to E, so that
c E c e, with each space dense in the one which follows it and with continuous

injections. For U, V in , we define B (U, V) as the right side of (2.7)"

B(U, V)- f [Ci]kl(U (2)" (1) (1). (2) (2) (1) (1) (2)]k,lt"i,i --Uk,lVi,i )+q(u v -u v dx

IF bu (2)
/3

(2) dtr.

B(U, V) is a continuous bilinear form on , so there is an operator A e(, o’)
such that

B (U, V) <AU, V>
for all U, V in g, where <F, G> denotes the scalar product of F e g’ and G e in
the g’-g duality. We now define an operator A as follows"

Then

D(X)={UegIXUeE}, AU =AU forUD(A).

B(U, V)=(AU, V)

for all U D(A), V g, so A is a dissipative extension of A. We now show that
Rg(I-A)=E.

To do so, let F (f(’), f(2)) e E and consider first the equation (I -A)U F. This
is equivalent to

u (’) e Vo, u () Vro,

u()-u(2)=f(), pu(2)-,sCu(’)=pf(2),
(1).,. 12)C,kU ,, =-bu. on F, 1, 2, 3.
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This system is easily uncoupled and yields the following problem for u

u(1) e Vo OU(1)-,.cgu(1) =o(f(1) +f(2)),
(1) 11) (1) 1 2, 3.CkU k, + bu bf on F1,

Let e Vo be chosen so that

Ciiklk.n + bOi bfl
(1)and set w u

on F
-. The problem for w is then

weVo,
pw w p(f() +/(2))_ (p6 _,.) .__ g,

CiikIWk, lrt -}- bwi 0 on F1, 1, 2, 3.

A variational formulation of this problem is

W E VFo,
(2.8) Ii,(CijklWk,ll)i,i_l_OW t)..bqw .1))dx..l_IF bw vdo.= fag vdx

(1).

V E VFo.

Because of the ellipticity condition (1.3) and since b->0 on F1, we can use the
Lax-Milgram theorem to conclude that (2.8) has a unique solution in Vro. Then setting
u (1) w + , u (2) u (1)_f(1), we obtain

(2.9) u (1) VFo, u (2)
( VFo, u (2)

U (1)_f(1),

(1) (2) (1)
k, lVi,] q"PU v + qu v) dx

(2.10)

From (2.9)we have

+Iv bu(2)’vd’=Y pf(2)’vdx VvVro.

Ii (Cqklu (1). (1)
k,iV i,1 + qu

t’
(1)

V (1)) dx I (CiiklU (2). (1) (2) (1))k,ll;i,] +qu .v dx

(1) (1) (1))(Ciitfk.tV.i + qf(1) V dx.

Setting v v (27 in (2.10) and then adding to it the last expression yields

(U, V)z-B(U, V)=(F, V) VVe ,
that is, (I A)U F.

We can now easily deduce the following existence, uniqueness and regularity
results for (2.1)-(2.4).

THEOREM 2.1 (existence-uniqueness). Assume that Uo Vro, Vo H. Then there is
a unique function u such that

u e c([0, o); Vro), u (0) u0,

ut e C([0, eo); H), u,(0) Vo,

s/ ToU e Hi(0, T; r,),
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and

T

IO ff [CiiklUk,l)i,i q- qt put fDt] dx dt

(2.11) T

+ fo IF b(ToU)t (yo&)dcrdt=O

or every T > 0 and every in the space

Dr ={b [b L((O, T); Vro), , L2((O, T);H),(O)=(T)=O}.
Remark. oU denotes the trace of u on
ToM2.2 (regularity). Assume that uo V., voe Vro satisfy the compatibility

condition

C,kt(UO)k.tn + b (Vo)i 0 on F1,

Then the solution to (2.1)-(2.4) satisfies
(2.12) u, C([O, oo); Vro),
(2.13) u, C([0, oo); H),

(2.14) 4- yoU

and

i=1,2,3.

(2.15) Ii2[Cqkllgk, lVi,i q-(pUttq-qu)" ld] dX q-fF b(yoU), (yov) &r=O

for every v Vro. If, in addition, Fo fq F1 , then

(2.16) u C([O, oo); V2vo)
and satisfies (2.1)-(2.4) in the pointwise sense.

Proof of Theorem 2.1. fi is the generator of a strongly continuous semigroup _e ‘,
->0, of contractions on E. Suppose Uo (Uo, Vo)’ 6 D(). Then for >-0, U(t) =etaUo

belongs to D (A), is strongly continuously differentiable in E and is the unique solution
to U(O)= Uo,

(2.17) (U’(t), V)-B(U(t), V)=O YVES, t->O.

Setting V (v, 0), v Vro, we obtain

fa (2)]via + (u(ta) 0-) v} dx 0{C,ia[(U(ta))k,--Uk, q -u

and so u()=ul. Then setting V=(0,) with DT we obtain (2.11) after an
integration by parts in t, where u u (). Also, setting V U in (2.17) and integrating
in we obtain

1/21u(t)l- B(U(t), U(t)) dt--1/21Uol,

or

-l U(t)l+ b l(3,oU),[ &rdt-1/2lUo[.
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Thus x/you HI((0, T); Zrl). This proves Theorem 2.1 if UoD(fi,), and the case
Uo E is now easily handled by approximating Uo with elements from D (A).

Proof of Theorem 2.2. The assumptions on u0, v0 mean that Uo D(A) cD(A),
and so we have Ut(t)=et(AUo), that is, W Ut is the unique weak solution of
Wt-AW O, W(O)= AUo. Equations (2.12)-(2.15) then follow from Theorem 2.1.
If also Fof-lFl= , then A=A so that U(t)D(A), t>-O and AUC([O,);E).
Equation (2.16) then follows from standard a priori estimates for solutions of elliptic
boundary value problems [1 ].

3. Decay of solutions. In this section Theorems 1.1 and 1.2 will be proved. The
proofs will be given under the assumption that either Fo or that meas {x f[q (x) >
0} > 0. The argument given below has to be modified slightly along the lines of [7]
to handle the case Fo and q(x)= 0, due to the fact that (2.1)-(2.3) then admits
nontrivial solutions with zero energy.

The proofs of both Theorems 1.1 and 1.2 are based on the following result.
PROPOSITION 3.1. If b >-_0 on rl, bO, then for every e >0 there is a number C

such that for every > 0 and for every solution of (2.1)-(2.4) for which E(u, O) <

(3.1) IO IO e-2t3tuiuidXdt<=ce(u’ O)+e e-2t3tui,tui,tdxdt.

This proposition will be proved at the end of this section.
Proof of Theorem 1.1. We first suppose that E(ut, O)<+o, that is,

(u(., 0), ut(’, O))sD(A). According to Theorem 2.2, u then satisfies (1.1), (1.5)-(1.7)
in the pointwise sense on fl x (0, o).

Our starting point is the identity

0 (pui,.-(ri +qui)(2tui,, + 2(f’ Vui) + (fm,. 1)Ui).

It can be verified that this is equivalent to

O___Q 0
Ri(x, t) + Q2(x, t)(3.2)

Ot
(x, t) Ox--

where

O t(oui,tui,, + o’qeii + quiui) + 2(f. Vui)oui,, +(fm,m- 1)puiui,,,

02 -(f 7p )ui,tui, + (f 7q)u,ui + 2quui criiu’,f,,,,mi

[2riiui,,.f,i 2rqe, aqkl,meiieifm ],

and

Ri 2tui,,rii + 2(f" Vui)crii + (f., 1)rqui + Of’ui,tui,,-ri.,ei.f.-quiu&.

We define the functional

(a 1)tE(u, t)+ Ia O,(x, t) dx.O(t)

Then from (3.5)

(3.3) O(t)=(a-1)E(u,t)+(a-1)t-E(u,t)+ [Ria(x,t)+O(x,t)]dx.

We shall prove below that there are positive numbers C, 6 and to, independent of u,
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such that

(3.4)
-6E(u, t) + C In uiui dx, >-_ to.O(t)

We may then obtain the conclusion of Theorem 1.1 as follows. Multiply (3.4) by e
and integrate from to (t _-> to) to obtain

e -2SE(u, s ds + 2fl e-2tso (s) ds + O (s) e -23s

(3.5)
<-- C e-2t3tuiui dx dt,

where C is independent of/3. For sufficiently large we have

0 <- Q(t) -<- CtE(u, 0).

In fact, from Korn’s inequality [5, Thin. 3.1] and [5, Thm. 3.3],

fF/ 12( t__ 1)pUiUi,,l dxVu)pu.,

=< C Ja (u,ug, + ugu + ug,,u,,) dx

<= CI (eiieii + quiui "+" Ui, tUi, t) dx

<- C Ia (aiiktei.iekt + quiui + Ui,tUi,t)CX

<- CE(u, t) <- CE(u, 0).

-213t

It follows from (3.5) that

(3.6) e-2E(u, s) ds <= CE(u, O) + e-2gtuiui dx dt

for a suitable tl > 0, where C depends on tl but not on/3. Since

1

s) ds <--_ tiE(u, O)e-2t3SU (u,

we may replace tt in (3.6) by zero. We now invoke Proposition 3.1 with a small
enough e and obtain

I) e-2tE(u, s) ds <- CE(u, 0).

Since C does not depend on/3 it follows that

(3.7) Jo E(u, s) ds <- CE(u, 0).

This has been proved under the assumption E(ut, 0) < +o, but may easily be extended
to initial data satisfying E(u, 0)< +o by approximating such data by smoother data.
The exponential decay (1.13) follows from (3.7) in a standard way (cf. [7]) because
of the semigroup property of the map S(t): (u(., 0), ut(., 0))- (u(., t), ut(’, t)).
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To complete the proof of Theorem 1.1 we must still verify (3.4). Using Gauss’
theorem we obtain from (3.3)

O(t) (t 1)E(u, t) + Ia Q2(x, t) dx

+ [ [2(f" VUi)o.iinj--o.imSim(f" n)]do.
o

+ [ [(t + 1)tui,to.qni + 2(f. Vui)o.qtli(3.8)
o

+(fro,,,- 1)o.quin] +pUi,tUi,,(f n)--o.imeim(f n)--quiui(f n)] do..

The integral over Fo is nonpositive for the following reason. On Fo, u 0 hence
uia (OudOn )n there. Therefore

2(f" VUi)o.qrl-o.imeim(f n)= 2(f. n)o.qUi,j--o.imeimf n

(f" n)o.iseis

because of the symmetry of o.s. The last expression is nonpositive on Fo because of
(1.9) and the ellipticity condition (1.4). Thus

O(t)<_-.(a-1)E(u,t)+ O2(x,t)dx +Ir ["’]do’,

where [.. denotes the integrand in the integral over 1"1 on the right side of (3.8).
Next we estimate a Q2 dx. Using (1.11) and (1.12) we have

If (2 dx ta [-(f" Vp)u.,u,,- A(Du + 2o’qeq] dx

+ Ia [(f" Vq)+2q]uiuidx-lao’iiu’,f,,,,,,,idx
< Ia [--Olpl,li, tUi, ao./]e/] olquiui dx

-Iao.qudm,midx+CIauiuidx

Thus

O(t) <- -(a + l)E(u, t) + C In UiUi dx Ill o’ijUdm’m] dx "- IF [...]do’.

By the Schwarz inequality and (1.4)

Io’ijUifm,m] < C(eklekl /2(UiUi 1/2 < 6ekle kl + Csuiui --qei] W Cuiui
co

for any > 0. Choosing suciently small gives

O(t)-(a+l)E(u,t)+CIauiuidx+Ir [" "]d.



978 JOHN LAGNESE

To estimate the remaining boundary integral we use the boundary condition (2.3).
Thus

[... do. Ir [-(a + 1)tbui,,ui,,-2b(f" Vui)ui,,-b(fi,,, 1)uiui,,

+(f nlpui,ui.,-(f n)o.i,e,,-quiui(f nl]do..

The last term in the integral is nonpositive because of (1.10). The second term is
estimated as follows:

Ir 2b(f Vui)ui,do.

As for the third term, we have

b (f,,,,, 1 )Ui,tUi do"

t Ir ui,juij do" + C Ir ui, tui, do"

<-- cqu,u, do" + C ui,u, do"
CO

o"qei do" + C Ui.tUi, do".
CO

t ft" tliui do" + C, Ir ui, tui, do"

<Cfl (uiui + ui,]ui,i) dx + C, IF ui, tui, do"

CI (i]i] qgiui) dx + CS F ui, tui, d

6CE(u, t) + C f Ui, tUi,tdm
F

By choosing suciently small we obtain

+ [ ( (. n))ed,
OF

where 0 < < infr (f" n). The last integral is therefore nonpositive and the remaining
integral over F1 is nonpositive for all suciently large t. This proves (3.4) and completes
the proof of Theorem 1.1.

Proof of Theorem 1.2. Again we may suppose without loss of generality that
E(ut, 0)< +. Then, as we shall prove below,

(3.9) e-2tE(u, t) dt < C (E(u, O) + E(u,, 0)) + e e -2’ui,ttui,tt dx dt.

Theorem 1.2 follows from (3.9). In fact, since (d/dt)E(u, t) 0 we have

E(u, t)=E(u, )+F(u, t),

where F(u, t) O. From (3.9)

--2Be E(u’ m)NC(E(u’ O)+E(ut’ O))+e Io f e-2BtUi’ ttUi, tt dx dt.
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As was proved in Theorem 2.2, the function w Ou/Ot also satisfies (2.1)-(2.3), hence
E(w, t) <=E(ut, 0) and the last integral does not exceed eCE(ut, 0)//3 for some constant
C independent of e and/3. Therefore

E(u, ) <-2C(E(u, O) + E(ut, 0)) + eCE(u,, 0).

Letting/3 $0 we get

E(u, c) <= eCE(u,, O) Ve > O,

that is, E(u, o)= O.
To prove (3.9) we first apply Proposition 3.1 to the solution w Ou/Ot to obtain

(3.10) e-2’ui.,ui.,dx dt < O) + e e -2ttui,,,ui,,, dx dt.

From (2.15) we have

(3.11) a(u(t), v)+(u"(t), v)+(b(yoU)’(t), yoV)rl =0 fv Vro, >0,

where

(U, V Jfl (Ci]klUk,lVi,] + qu v) dx.

Replace v by e-2’tu (t) and integrate from 0 to to obtain

o
e-Ota (u (t), u (t)) dt

=--Io e-2t3t (u"(t)’ u (t)) dt lo e -2, (b (yoU)’, yoU)rl dt

Io e-t’[u’(t)[ dt- Io e-t’O--[(u’(t)’3, u(t))+1/2[/-Yu]] d,.

The last integral is evaluated by parts and may be written

Jo[e-20’((u (t),u(t))+1/21x/-yoUl-)]o +2fl e-2’[(u’(t),u(t))+[#byou(t)l]dt.

The limit at m vanishes since the factor multiplying e- does not exceed

C([u’(t)[ + lu (t)[z + Ilu (t)ll=) C(lu’(t)[ + a(u(t), u(t)))

CE(u, t) CE(u, 0).

It follows that

Co e-O(lu’()l+lu()l) dt +(u, O)

if N 1, where C is independent of . (If > 1, the let side of (3.9) does not exceed
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E(u, 0).) Since

-2Bte-2OtE(u, t) dt =1/2 e pui,tui.tdx +a(u(t), u(t)) dt,

(3.9) follows readily from the last inequality, (3.1) and (3.10). This completes the
proof of Theorem 1.2.

Proof of Proposition 3.1. As in the proofs of Theorems 1.1 and 1.2, we may
assume E(u,, 0)< +oo, without loss of generality. Then u satisfies (3.11), in which v
may clearly be chosen to be complex-valued. That is

(3.12) a(u(t), )+ (u"(t), )+(b(/oU)’(t), yo)rx=O

for every v in the complex space Vro defined as in 2 but using complex HX(f) space.
7 (, 2, 73) denotes the complex conjugate of v (v, v2, v3).

Let T>O be fixed and b s C(R) such that 4(0)=4’(0)=0 and 4(t)= 1 for
=> T, and set w 4m. Then w(O) w’(O) 0 and w(t) u(t) for => T. From (3.12)
we see that w satisfies

a(w(t), 6)+ (w"(t), 6)+(b(yoW)’(t), 6)r (g, t5)+ (h, tS)r(3.13)

where
g 2&’u’ + b"u L2(0, oo; Vro),

h bob ’(yoU L2(0, co; (H1/2(F))3)
satisfy g h 0 for >- T, h 0 on Fo. It follows that

(3.14) Io dtIggdx= fo dt ggdx<-CE(u,O),

Jo [h,/(r) at CE(u, 0), 1, 2, 3.(3.15)

Let be a complex parameter with Im w < 0 and be the Fourier transform of
W

ff (x, to)= Jo e-i’w (x, t) dt.

The integral converges in Vro for each such to. If in (3.12) we replace v by eiO’tv and
integrate in from 0 to o it follows that r satisfies

2a(,, )-to (w, e)+ito(bvow, Vo)rl=(,, )+(ft, e)rl Vv Vro,
[r__r 1/2since w(0) w’(0) 0, where ff Vro, h’ ro (1"))3 are the Fourier transforms of g

and h, respectively. We shall write the last equation as

where for w, v in Vro,

ao,(w, v) a(w, fi)-to2(w, fi)+ito(byow,

We now consider, for general complex values of to and arbitrary g (L2(fl))3,
h aro (F))3, the problem

W VFo,
(3.16)

a (w, v)= (g, )+ (h, e)r Vv Vro,
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where L2(I), Hro(F) are now complex spaces. Thus, for example,

Igl2= (g’ g’)= In g(x),(x)p dx.

Proposition 3.1 will follow from the following result.
LEMMA 3.1. Equation (3.16) has a unique solution w ]’or each to in some neigh-

borhood of the half-plane Im to <_- 0. For to one has the estimate

(3.17) IIw
where C

The proof of the Proposition 3.1 may now be completed as follows. It suffices to
assume 0<fl<fl for some fl>0. Write w=-i for >0 and small. By
Plancherel’s theorem

e-lw(., t)l dt I(’, )l d=,

e-2’lw’(., t)l2 dt= I11(., )1 d.

Let A > 0 be so large that A-2< e. By Lemma 3.1 there is a number 6 6(A)> 0
such that if [A and ]fl{6 the estimate (3.17) holds or . Thus

Xl2,r da
A

/2.r dt CE(u, 0),

where we have used (3.14), (3,15). Also
2

I(,, )1= d I(" )l= d < I11( )1= d

2e e-2’lw’( t)lz dt.

Therefore

(3.18)

<= CE(u, O) + e e-Zt’Jw’( t)lz dt,

which is almost the result in Proposition 3.1, except that w appears in the integrals
instead of u. But using the fact that w bu and that b (t) 1 for >= T one easily obtains

I0 e-2t3tlb/(’’ t)12 dt<-CE(u’O)+Io e-213tlW(’’ t)12 dt,

Io e-Olw’( )1 d- C E(u, O)/ e-Olu’(., t)l d

from which (3.1) follows, in view of (3.18).
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Proof ofLemma 3.1. The proof is similar to the proof of [7, Lemma 1], although
that result is weaker and pertains only to solutions of the ordinary wave equation.
One considers a, (w, v) as a sesquilinear form in H with dense domain Vro. Then ao,
is a holomorphic family of type (a) [6, p. 395] in a half plane : Im to < 8 for some
8 > 0. This means that (i) ao,(v, v) is holomorphic in to s for each v e Vro, and (ii)
each ao,, to e , is sectorial and closed with constant dense domain. Clearly only (ii)
has to be checked.

Writing to a-i we calculate (note a (v, t3) is real)

(3.19) Re ao,(v, v) a(v,

(3.20) Im

Since

if/ >-8 with 8 small we have

(3.21) Re a,o(v, v)+ =lvl=>-fllvll=,
(3.22) IIm a (v, v)l -< C(,o)[Re & (v, v) +lv I].
Equations (3.21) and (3.22) imply that the values of ao, (v, v) lie in the sector ]arg (sr +
a 2) <- O, where 0 < O < rr/2 satisfies tan O C(to), and that a,o is closed.

Associated with a,o is an m-sectorial operator ,o in H such that

for every v Vro and w D(..d,,), and one has D(o,)cD(ao,) Vro. Since ao, is
holomorphic in the half plane : Im to < 8, ’o, is a holomorphic family of operators
in [6, Thm. 4.2, p. 395]. Furthermore from (3.12) and the compactness of the
injection Vro H, it follows that ,o has a compact resolvent for each to . We now
invoke [6, Thm. 1.10, p. 371] and conclude that either zero is an eigenvalue of each
0,, or else ,1 exists as a bounded operator on H for all to with the possible
exception of a finite number of values in each compact subset of . As we shall show,
zero cannot be an eigenvalue of 0, if Im to <= 0. From this it follows that o exists
fror all to in some neighbourhood W of Im to _<-0.

Thus suppose -/ Im to =< 0 and that w Vro satisfies

a(w, v)=O Vv Vro.
If a =0 it follows from (3.19) that a(w, )=0, hence w--0. If a 0 we have from
(3.20)

hence, if/ >0, w0 once again. If fl 0, then since b0 on F there is a point
Xo F1 an open ball So in R 3 centered at x0 such that w 0 on F1 (’lSo and, from (3.16),

(3.23) a(w, tS)-c w, t3)=0 Vv Vro.
Choose p so small that So contains no point of F0, and extend w into fo-" f LI So by
setting w 0 in fo . Then w (H(Do))3 since w 0 on F1 fq So. If v (C (fo))3

its restriction to f is in Vro hence, from (3.23),

pwk -x(Cijkt6i.i)+(a --q)6k dx=O.
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Thus w is a.weak solution in fo of the elliptic system

t9
(CiikIWk,l) -[- (a2P(3.24) Ox-- q)wi O, 1, 2, 3

But w- 0 in the open set I)o-f hence, by the unique continuation property of
solutions of (3.24), w --0 in fo.

Thus ,1 exists in a neighborhood of Im to _-< 0. If to and lal IRe to --< too <
+ we have from (3.21)

II,,ll_-<c(,.oo)[l,.,,.,l+l,.,I] v,., D(M,.o).
But, since the null space of o, is {0}, the term Iv[ on the right may be dropped by a
standard argument. This completes the proof when h -0. In the general case we use
the trace theorem to obtain a function w (Ha(12))3 such that, on F, w 0, criini hi
(i 1, 2, 3), and

3

(3.25) Y. Ilwill,_,.,) <-_ CIIh ll./...
i=1

Let Z be the unique solution in D (do,) of MZ where

gi +--[O’iid "t-(to --q)wi].

By what has already been proved,

(3.26) Ilzll--< c (,o)lgl <- c(,o)(Igl / IIh 11/2,),
where C(to) is bounded on bounded sets in W’. Set u Z + w Vro. Then if v Vro
we have

a,,,(u, v)= (’Z, O)+a,,,(w, v)

=(g, 7)- [triiTu+(q-to )w,,]dx

+ [ triiniOgdcr + a,,, (w, v) (g, ) + (h, .) 1-"

Thus u is the unique solution of (3.16) and from (3.25), (3.26) we have the estimate

Ilu II--< IIzll / IIw II--< c (,o)([gl / IIh II/=,l),
This completes the proof of Lemma 3.1.
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ERRATUM: ADMISSIBLE INPUT ELEMENTS FOR SYSTEMS IN
HILBERT SPACE AND A CARLESON MEASURE CRITERION*

L. F. HOI AND D. L. RUSSELLS;

Page 638 of the paper as printed repeats the text of p. 630. The correct version
of p. 638 is as follows:

Since/x is a Carleson measure and (4.11) holds,

tx(E) <-- E ix(S,,) <-A Y
n=l n=l 2

5A 5A
-2 X Ilnl<

PROPOSITION 4.4. Let H with boundary [ctio o(i’)L(-, ). Let
(z) be defined by (4.6). Then, if is a Carleson measure on {z IRe (z) > 0},

(4.12) n ((z))2d(z)lOA f- ]&(it)[Zdt"
(z)>0

Proof. For each r > 0 let

Jo(it) if [o(it)[ >r,
(t)

0 otherwise.

From o(i" LZ(-, ), we conclude that the support of r is a subset of (-,
of finite (Lebesgue) measure. Then LZ()LI(r), and we conclude, since
vanishes outside , that LI(-, ). Moreover

f. , l o(it) (4.13)
0

Let a(s)= tz (E,). Then we can see that

(4.14) IR (c(z))2dt(z)=-IsZda(s)=SfoSa(s)ds"(z)>0

From the definition (4.8) of it is clear that for any two such functions, 01, 0z, we have

(01 "b O2)(Z I(Z + 2(Z )"

* This Journal, 21 (1983), pp. 614-640.
5 Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019.
$ Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
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Hence

(4.15)

& (z) (0,. + (o(i") h,.))(z)

<- J,(z + (,o(i 1- ,)(z
<-_(zl+r

since I (it)- 6r(t)l is either equal to 0 or is _-< r. Let

F --{ZIr(Z)>S}.

Suppose z e E2r. Then (z)> 2r and (4.15) gives

r(Z)(z)--r>r,
and we conclude z e Ft. Thus

E=F.
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